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Preface

Since the publication of the first edition of this book in 1992, the state of the art of
fiber-optic communication systems has advanced dramatically despite the relatively
short period of only 10 years between the first and third editions. For example, the
highest capacity of commercial fiber-optic links available in 1992 was only 2.5 Gb/s.
A mere 4 years later, the wavelength-division-multiplexed (WDM) systems with the
total capacity of 40 Gb/s became available commercially. By 2001, the capacity of
commercial WDM systems exceeded 1.6 Tb/s, and the prospect of lightwave systems
operating at 3.2 Tb/s or more were in sight. During the last 2 years, the capacity
of transoceanic lightwave systems installed worldwide has exploded. Moreover, sev-
eral other undersea networks were in the construction phase in December 2001. A
global network covering 250,000 km with a capacity of 2.56 Tb/s (64 WDM channels
at 10 Gb/s over 4 fiber pairs) is scheduled to be operational in 2002. Several conference
papers presented in 2001 have demonstrated that lightwave systems operating at a bit
rate of more than 10 Tb/s are within reach. Just a few years ago it was unimaginable
that lightwave systems would approach the capacity of even 1 Tb/s by 2001.

The second edition of this book appeared in 1997. It has been well received by
the scientific community involved with lightwave technology. Because of the rapid ad-
vances that have occurred over the last 5 years, the publisher and I deemed it necessary
to bring out the third edition if the book were to continue to provide a comprehensive
and up-to-date account of fiber-optic communication systems. The result is in your
hands. The primary objective of the book remains the same. Specifically, it should be
able to serve both as a textbook and a reference monograph. For this reason, the em-
phasis is on the physical understanding, but the engineering aspects are also discussed
throughout the text.

Because of the large amount of material that needed to be added to provide com-
prehensive coverage, the book size has increased considerably compared with the first
edition. Although all chapters have been updated, the major changes have occurred in
Chapters 6–9. I have taken this opportunity to rearrange the material such that it is bet-
ter suited for a two-semester course on optical communications. Chapters 1–5 provide
the basic foundation while Chapters 6–10 cover the issues related to the design of ad-
vanced lightwave systems. More specifically, after the introduction of the elementary
concepts in Chapter 1, Chapters 2–4 are devoted to the three primary components of a
fiber-optic communications—optical fibers, optical transmitters, and optical receivers.
Chapter 5 then focuses on the system design issues. Chapters 6 and 7 are devoted to
the advanced techniques used for the management of fiber losses and chromatic dis-

xv
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persion, respectively. Chapter 8 focuses on the use of wavelength- and time-division
multiplexing techniques for optical networks. Code-division multiplexing is also a part
of this chapter. The use of optical solitons for fiber-optic systems is discussed in Chap-
ter 9. Coherent lightwave systems are now covered in the last chapter. More than 30%
of the material in Chapter 6–9 is new because of the rapid development of the WDM
technology over the last 5 years. The contents of the book reflect the state of the art of
lightwave transmission systems in 2001.

The primary role of this book is as a graduate-level textbook in the field of optical
communications. An attempt is made to include as much recent material as possible
so that students are exposed to the recent advances in this exciting field. The book can
also serve as a reference text for researchers already engaged in or wishing to enter
the field of optical fiber communications. The reference list at the end of each chapter
is more elaborate than what is common for a typical textbook. The listing of recent
research papers should be useful for researchers using this book as a reference. At
the same time, students can benefit from it if they are assigned problems requiring
reading of the original research papers. A set of problems is included at the end of
each chapter to help both the teacher and the student. Although written primarily for
graduate students, the book can also be used for an undergraduate course at the senior
level with an appropriate selection of topics. Parts of the book can be used for several
other related courses. For example, Chapter 2 can be used for a course on optical
waveguides, and Chapter 3 can be useful for a course on optoelectronics.

Many universities in the United States and elsewhere offer a course on optical com-
munications as a part of their curriculum in electrical engineering, physics, or optics. I
have taught such a course since 1989 to the graduate students of the Institute of Optics,
and this book indeed grew out of my lecture notes. I am aware that it is used as a text-
book by many instructors worldwide—a fact that gives me immense satisfaction. I am
acutely aware of a problem that is a side effect of an enlarged revised edition. How can
a teacher fit all this material in a one-semester course on optical communications? I
have to struggle with the same question. In fact, it is impossible to cover the entire book
in one semester. The best solution is to offer a two-semester course covering Chapters
1 through 5 during the first semester, leaving the remainder for the second semester.
However, not many universities may have the luxury of offering a two-semester course
on optical communications. The book can be used for a one-semester course provided
that the instructor makes a selection of topics. For example, Chapter 3 can be skipped
if the students have taken a laser course previously. If only parts of Chapters 6 through
10 are covered to provide students a glimpse of the recent advances, the material can
fit in a single one-semester course offered either at the senior level for undergraduates
or to graduate students.

This edition of the book features a compact disk (CD) on the back cover provided
by the Optiwave Corporation. The CD contains a state-of-the art software package
suitable for designing modern lightwave systems. It also contains additional problems
for each chapter that can be solved by using the software package. Appendix E provides
more details about the software and the problems. It is my hope that the CD will help
to train the students and will prepare them better for an industrial job.

A large number of persons have contributed to this book either directly or indirectly.
It is impossible to mention all of them by name. I thank my graduate students and the
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students who took my course on optical communication systems and helped improve
my class notes through their questions and comments. Thanks are due to many instruc-
tors who not only have adopted this book as a textbook for their courses but have also
pointed out the misprints in previous editions, and thus have helped me in improving
the book. I am grateful to my colleagues at the Institute of Optics for numerous dis-
cussions and for providing a cordial and productive atmosphere. I appreciated the help
of Karen Rolfe, who typed the first edition of this book and made numerous revisions
with a smile. Last, but not least, I thank my wife, Anne, and my daughters, Sipra,
Caroline, and Claire, for understanding why I needed to spend many weekends on the
book instead of spending time with them.

Govind P. Agrawal

Rochester, NY
December 2001
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flip-chip technique, 153, 154
fluorescence time, 227, 255
FM index, 486
forward-error correction, 199, 271, 333, 391
four-wave mixing, 66, 242, 272, 302, 359,

372–374, 445, 457, 463, 503, 507
efficiency of, 359, 373
intrachannel, 310
nondegenerate, 304

Franz–Keldysh effect, 122
free spectral range, 233, 311, 340
free-carrier absorption, 236

frequency chirp, 47, 52, 112, 191, 280, 406,
414, 431

amplifier-induced, 239, 285, 358
fiber-induced, 286
gain-switching-induced, 416
linear, 313
modulation-induced, 201
nonlinear, 314
power penalty due to, 209–213
SPM-induced, 405
XPM-induced, 371

frequency hopping, 390
frequency-division multiplexing, see multi-

plexing, WDM systems
frequency-shift keying, see modulation for-

mat
front end, 149

bandwidth of, 149
high-impedance, 149
low-impedance, 150
transimpedance, 150

gain
amplifier, 228
APD, 144
Brillouin, 344
parametric, 249
polarization-dependent, 45, 197, 456
Raman, 243

gain bandwidth, see bandwidth
gain coefficient, 93, 227
gain margin, 101, 208
gain nonuniformity, 375
gain saturation, 229, 234, 245, 257, 379
gain spectrum, 252
gain switching, 114, 416
gain–bandwidth product, 146, 147
gain-flattening technique, 249, 258, 375
Gaussian distribution, 36, 494
Gaussian pulse, see pulse
Gaussian random process, 114, 117, 162
Gaussian statistics, 156, 162, 173, 269, 456
ghost pulse, 310
Gordon–Haus jitter, see timing jitter
graded-index fiber, see fibers
graded-index lens, 345
grating

acoustically induced, 343
apodized, 294, 298
arrayed-waveguide, 316, 347
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Bragg, 293, 313, 342, 345, 346, 349,
357, 372

built-in, 100, 289, 343, 344
cascaded, 311
chirped, 104, 296–299, 311, 385, 416
concave, 345
DFB-laser, 100
diffraction, 344
dispersion of, 296
elliptical, 345
external, 103
fiber, 247, 255, 293–299, 304, 342,

346, 372, 390, 391, 416
insertion loss of, 298
Moiré, 298, 392
nonlinear-index, 197, 463
nonlinearly chirped, 314, 316
phase-shifted, 346
reflection, 345
sampled, 311, 316, 390
superstructure, 104
waveguide, 351

grating period, 100, 104, 289, 293, 313,
345

group index, 96
group velocity, 38, 266, 439, 444
group-velocity dispersion, see dispersion
group-velocity mismatch, 272
GVD, see dispersion
GVD parameter, 38, 46, 271, 280, 288, 303,

404–411

Hermite–Gauss function, 430
heterodyne detection, 480
heterodyne receiver

ASK asynchronous, 493–495
ASK synchronous, 490–492
asynchronous, 488, 507
balanced, 501
dispersion compensation at, 286
DPSK asynchronous, 497
dual-filter FSK, 489, 493, 495
FSK asynchronous, 495–496
FSK synchronous, 493
integrated, 510
intensity noise at, 500–502
performance of, 507–511
phase noise in, 498–500
phase-diversity, 499
polarization-diversity, 504, 510

PSK synchronous, 492
sensitivity degradation of, 497–507
sensitivity of, 490–497
synchronous, 488, 508

high-definition television, 186
holographic technique, 102, 294, 297
homodyne detection, 287, 480
homodyne receiver

ASK synchronous, 491
PSK synchronous, 492

homogeneous broadening, 252
hypercube architecture, 337

impact ionization, 142, 159
impulse response, 53
index-matching liquid, 119, 214
inelastic scattering, 243
InGaAsP/InP technology, 356
inhomogeneous broadening, 252
injection locking, 113
integrated circuits

optoelectronic, 123, 153, 360, 510
photonic, 124

integrated-services digital network, 185
interaction length, 61
interdigited electrode, 148
interferometer

Fabry–Perot, 214, 291, 339
Gires–Tournois, 291
Mach–Zehnder, 292, 342, 349, 358,

392
Michelson, 343, 359, 374
Sagnac, 343, 359, 377

intermediate frequency, 286, 479, 488
intermodulation distortion, 383
intermodulation products, 383
International Telecommunication Union, 332
Internet, 187
Internet protocol, 381
intersymbol interference, 151, 204
intraband nonlinearity, 242
intrachannel nonlinear effects, 309
inverse scattering method, 405, 409, 414,

415
ionization coefficient ratio, 144, 161, 166
ISDN, 185
ITU wavelength grid, 332

Johnson noise, 157
junction heating, 109
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Lagrangian density, 308
Lambertian source, 88, 92
Langevin force, 114
laser linewidth, 116, 498
laser threshold, 94
lattice constant, 82, 85, 86
LED, 87–92

bandwidth of, 91
broad-spectrum, 92
coupling efficiency for, 119
edge-emitting, 92
modulation response of, 90
P–I characteristics of, 87
reliability of, 125
resonant-cavity, 92
responsivity of, 89
spectral distribution of, 89
structures for, 91
surface-emitting, 91, 119
temperature dependence of, 89
transfer function of, 90

lens coupling, 119, 120
light-emitting diodes, see LED
lightwave systems

amplifiers for, 261–272
architectures for, 183
coherent, see coherent systems
components of, 16–19
design of, 188–195
dispersion-limited, 50–53, 190–192,

269, 279–281
evolution of, 4–8
high-capacity, 310–320, 331
history of, 1–4
long-haul, 195–202
loss-limited, 189–190
point-to-point, 183–185
quasi-linear, 309
soliton, see soliton systems
spectral efficiency of, 332
subcarrier, see SCM systems
submarine, 306
TDM, see TDM systems
terrestrial, 198–200, 306
undersea, 124, 200–202, 266
unguided, 15
WDM, see WDM systems

LiNbO3 technology, 304, 355, 357
linear channel, 150

transfer function of, 151

linewidth enhancement factor, 110, 113, 117,
212, 237, 282, 416

liquid crystal, 341, 356
liquid-phase epitaxy, 86
load resistor, 150, 157
local oscillator, 479–482

intensity noise of, 500
linewidth of, 498

local-area network, see networks
Lorentzian spectrum, 60, 117, 227
loss

bending, 58, 289
cavity, 95, 99, 107
channel, 192
connector, 72, 192
coupling, 243, 346, 359
distribution, 188
fiber, 55–59, 189, 301, 418
insertion, 186, 289, 298, 304, 356
internal, 95, 236, 341
mode-selective, 202
polarization-dependent, 45, 197, 456
scattering, 236
splice, 72, 192

loss management, 418–427
lumped amplification, 420–422, 461

Mach–Zehnder interferometer, 123, 342, 346,
377, 410

map period, 306, 372, 432
map strength, 433

critical, 433
Marcum’s Q function, 495
Markoffian approximation, 114
matched-filter detection, 389
material absorption, 56
material dispersion, see dispersion
Maxwell’s equations, 29
mean time to failure, 124
MEMS technology, 106, 355
meridional rays, 26
metropolitan-area network, see networks
Michelson interferometer, 343, 359, 374
microlens, 345
micromirror, 355
microstrip line, 287
microwave communication, 2, 381, 478
microwave subcarrier, 382
Mie scattering, 58
modal noise, 202
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mode
fiber, see fiber modes
longitudinal, 96, 99, 202, 205, 416
waveguide, 345

mode converter, 289, 299
mode index, 33, 35, 297

carrier-induced change in, 110
periodic variation of, 100

mode locking, 114, 416
active, 416
harmonic, 417

mode-partition coefficient, 206
mode-partition noise, 116, 171, 205–208
mode-suppression ratio, 100, 101, 207, 215
modulation

amplitude, 14, 282
cross-phase, 65
frequency, 14, 283
large-signal, 112
nonlinear phase, 64
phase, 14, 110, 283, 418
pulse-code, 10
pulse-duration, 10
pulse-position, 10
self-phase, 64
sinusoidal, 90, 110, 418
small-signal, 110
synchronous, 310, 443
synchronous phase, 444

modulation bandwidth, 91, 92
modulation format, 13–15, 482–487

AM-VSB, 382, 384
ASK, 14, 483–484
carrier-less AM/PM, 385
continuous-phase FSK, 487
CPFSK, 510
CRZ, 14, 309
DPSK, 485
FSK, 14, 283, 385, 485–487
MSK, 487
nonreturn-to-zero, see NRZ format
NRZ, 13
on–off keying, 15, 483
PSK, 15, 484–485
quadrature AM, 385
quadrature PSK, 385
return-to-zero, see RZ format
RZ, 13
RZ-to-NRZ conversion, 362

modulation index, 383, 384

modulation instability, 197, 305
modulation response, 110
modulator

acousto-optic, 486
amplitude, 443
electroabsorption, 122, 123, 283, 358,

360, 417
external, 280
frequency, 370
integrated, 280
intensity, 426
LiNbO3, 123, 411, 417, 426, 443, 484
Mach–Zehnder, 123, 283, 377, 410,

418, 484
multiquantum-well, 123, 417
phase, 370, 390, 411, 444, 467, 484,

485
synchronous, 462

molecular-beam epitaxy, 86
moment method, 267
momentum matrix element, 80
MONET project, 335, 356
Morse code, 2
MPEG, 11, 186
multiplexer

add–drop, 348–350
TDM, 375
WDM, see demultiplexer

multiplexing
code-division, 388–392
coherence, 392
electric-domain, 11
frequency-division, 11
polarization, 447–450
subcarrier, 381–388
time-division, 11, 315, 375–381
wavelength-division, 330–362

multiplication layer, 143

narrow-deviation FSK, 486, 489
network protocol

ATM, 334
CSMA, 187
Ethernet, 187
TCP/IP, 334

network topology
bus, 185
hub, 185
ring, 188
star, 188
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networks
access, 336
active-star, 188
all-optical, 336
broadcast, 185, 334
CATV, 185, 381–386
distribution, 185, 334
local-area, 186, 334
local-loop, 336
mesh, 334
metropolitan-area, 185, 334
multihop, 335
passive-star, 188
WDM, see WDM networks
wide-area, 334

noise
amplifier, 197, 230, 255, 264, 435–

437
beat, 392
clipping, 385
current, 261
electrical amplifier, 157
Gaussian, 527
intensity, 115, 169, 214, 500–502
laser, 114–117
mode-partition, 116, 205–208
1/ f , 117
phase, 216, 498–500
preamplifier, 261
receiver, 155–162, 482
shot, 114, 156, 262, 481
spontaneous-emission, 230, 261, 270
thermal, 157, 166, 262, 481
white, 156, 157, 230

noise figure, 157, 230, 231, 236, 241, 255,
263

nonlinear effects, 59–67, 196, 269, 301, 309,
404–411, 506

cascaded, 304
interchannel, 306, 310
intrachannel, 306, 309, 380
second-order, 304

nonlinear gain, 116, 117
nonlinear length, 270
nonlinear optical-loop mirror, 377, 445
nonlinear refraction, 64
nonlinear Schrödinger equation, 66, 196, 270,

307, 405–411, 450, 529
nonradiative recombination, 83

NRZ format, 13, 152, 194, 195, 282, 371,
376, 411, 418

numerical aperture, 25, 88, 92, 118
Nyquist criterion, 9
Nyquist noise, 157

on–off keying, see modulation format
optical amplifiers, see amplifiers
optical beat interference, 387
optical bus, 186
optical circulator, 291, 298, 304, 342, 357
optical communication systems, see light-

wave systems
optical cross-connect, 354–357
optical data links, 184, 203
optical detector, see photodetector
optical feedback, see feedback
optical fibers, see fibers
optical filter, see filter
optical isolator, 120, 213, 216, 506
optical networks, see networks
optical phonons, 243
optical preamplifier, see preamplifier
optical receiver

APD, 159
components of, 18
design of, 149
front end of, 149
integrated, 153, 510
linear channel of, 150
noise in, 155–162
OEIC, 153
p–i–n, 158
packaging of, 154
performance of, 174–176
role of, 18
sensitivity of, 162–168
WDM, 360

optical switch, see switch
optical tap, 185
optical transmitter, 118–126

components of, 17
driving circuitry in, 121
monolithic, 123
OEIC, 123
optical feedback in, 120
packaging of, 124
reliability of, 124
role of, 17
soliton, 416–418



INDEX 541

source–fiber coupling in, 118
WDM, 360

optoelectronic integration
for receivers, 153
for transmitters, 123

optogalvanic effect, 374
orthoconjugate mirror, 304
outside-vapor deposition, 69

p–i–n photodiode, 138
p–n junction, 81, 137
p–n photodiode, 137
packet switching, 334, 336, 381
parametric amplifier, 249
paraxial approximation, 27
partial soliton communication, 434
passive photonic loop, 338
periodic poling, 304
perturbation theory, 444
phase conjugation, 67, 300–305, 316, 359,

457, 503
phase modulation, 317, 370
phase-locked loop, 374, 487, 488, 498
phase-mask technique, 297
phase-matching condition, 66, 302, 343, 463
phase-shift keying, see modulation format
photodetector

avalanche, see APD
bandwidth of, 136
design of, 136
inverted MSM, 148
MSM, 148
quantum efficiency of, 134
responsivity of, 134
traveling-wave, 141

photodiode
p–i–n, 138
p–n, 137
waveguide, 141

photoelastic effect, 343
photon lifetime, 107
photoresist, 102
piezoelectric transducer, 313
pigtail, 118, 416
planar lightwave circuit, 155, 292, 316, 342,

343, 346, 353, 355, 376
Planck’s formula, 79
PMD, see dispersion

compensation of, 197, 317–320
first-order, 45

pulse broadening induced by, 45
second-order, 45

PMD parameter, 45, 449, 455
point-to-point links, 183–185

WDM, 331–334
Poisson statistics, 156, 167
polarization multiplexing, 272, 445
polarization scrambling, 271, 333, 467, 503
polarization-mismatch effects, 502
polarization-mode dispersion, see dispersion
polarization-multilevel coding, 450
population inversion, 79–81, 93, 256
population-inversion factor, 230
postcompensation technique, 313
power booster, 231, 263
power budget, 192–193, 384
power penalty

chirp-induced, 210
dispersion-induced, 204, 504
extinction ratio, 169
feedback-induced, 215
filter-induced, 363
FWM-induced, 372
heterodyne-detection, 481
intensity-noise, 170
LO-noise, 500
modal-noise, 202
mode-partition noise, 206–208
phase-noise, 498
Raman-induced, 368
Rayleigh-induced, 248
RIN-induced, 170, 500
router-induced, 365
sources of, 202–217
timing-jitter, 173
XPM-induced, 372

preamplifier, 149, 151, 241, 261–264
prechirp technique, 281–283
preform, 68, 70
principal states of polarization, 317
pulse

chirped, 47, 211, 267, 281, 307, 414
gain-switched, 416
Gaussian, 47, 204, 211, 239, 267, 281,

286, 307, 408, 429
mode-locked, 416
secant hyperbolic, 407, 429
super-Gaussian, 52, 238, 282
ultrashort, 237, 362

pulse broadening



542 INDEX

general formula for, 524
GVD-induced, 48
PMD-induced, 44, 45
source-induced, 50

pulse-code modulation, see modulation
pump depletion, 245
pump-station spacing, 260, 423
pumping efficiency, 251
pumping scheme

backward, 248, 423
bidirectional, 423

Q parameter, 164, 165, 168, 170, 172, 262,
270, 491

quantization noise, 9
quantum efficiency

differential, 109
external, 87, 109, 148
internal, 83, 87, 109
photodetector, 134
total, 88, 109

quantum limit, 167, 174
quantum-well laser, see semiconductor lasers
quasi-phase-matching, 304

Raman amplification, 245, 367, 422, 425
backward, 423

Raman amplifier, see amplifiers
Raman crosstalk, see crosstalk
Raman gain, 63, 243, 366
Raman scattering, 59, 366–368, 506

intrapulse, 424, 450
spontaneous, 62, 246
stimulated, 62, 243, 445

Raman shift, 62
Raman-induced frequency shift, 424, 450
Raman-induced jitter, see timing jitter
rare-earth elements, 250
rate equation, 90, 107, 114, 253
Rayleigh distribution, 494
Rayleigh scattering, 57, 248, 249
RC circuit, 193
RC time constant, 136, 137
receiver, see optical receiver
receiver design, see optical receiver
receiver noise, see noise
receiver sensitivity, 162–168, 241, 261, 263,

490–497, 507
degradation of, 168–173, 202–217, 497–

507

recirculating fiber loop, 197, 269, 307, 309,
426, 435, 464

recombination rate, 84
recombination time, 84
regenerators, 184, 196, 280, 357
relative intensity noise, see RIN
relaxation oscillations, 111, 112, 115, 117,

210
repeater spacing, 185, 419
repeaters, 184
resonant coupler, 349
responsivity, 261

APD, 144, 159
LED, 89
photodetector, 134

Rice distribution, 494, 496
ridge waveguide, 98, 361
RIN, 115, 170, 214, 384, 500

dispersion-induced, 385
reflection-induced, 384
spectrum of, 115

ring cavity, 417
ring topology, 188
rise time, 112, 135, 193–195
rise-time budget, 193–195
router

passive, 352
static, 352
waveguide-grating, 351
WDM, 351

RZ format, 13, 114, 152, 194, 195, 317,
372, 376, 411, 418

Sagnac interferometer, 343, 359, 377
sampling theorem, 9
saturable absorber, 417, 445
saturation current, 81
saturation energy, 237, 255
saturation power, 227, 235

output, 229, 235, 241, 255
saturation velocity, 137
SBS, see Brillouin scattering
Schottky barrier, 148
SCM systems, 381–388

analog, 382–385
digital, 385–386
distortion in, 383
multiwavelength, 386

SDH, 13, 199, 336
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self-phase modulation, 64, 196, 239, 270,
286, 301–302, 307, 386, 404–
411, 506

Sellmeier equation, 39
semiconductor lasers

broad-area, 97
buried heterostructure, 98
characteristics of, 106
coupled-cavity, 102
coupling efficiency for, 120
DFB, see distributed feedback lasers
EDFA pumping by, 251
external-cavity, 416
feedback sensitivity of, 120, 214
FM response of, 486
frequency stability of, 374
gain in, 93
gain-guided, 97
index-guided, 98
intensity noise of, 500
linewidth of, 116
longitudinal modes of, 96
materials for, 84
mode-locked, 240, 416
modulation response of, 110–114
MQW, 87, 213
multisection, 344
narrow linewidth, 499
noise in, 114–117
P–I Characteristics, 109
packaging of, 125
quantum-dot, 87
quantum-well, 87
quantum-wire, 87
reliability of, 124
single-frequency, 99
SNR of, 116
strained MQW, 87, 213, 499
stripe-geometry, 97
structures for, 96–99
surface-emitting, 105
temperature sensitivity of, 107
threshold of, 94
transfer function of, 111
tunable, 103, 359

semiconductor optical amplifiers, 232–243
angled-facet, 233
applications of, 241
bandwidth of, 233
buried-facet, 234

demultiplexing with, 379
design of, 233
Fabry–Perot, 232
facet reflectivity of, 233
filters based on, 344
four-wave mixing in, 304, 359
mode locking with, 417
polarization sensitivity of, 236
properties of, 234–243
pulse amplification in, 237
switching with, 356
tilted-stripe, 233
traveling-wave, 232
wavelength conversion with, 357
window-facet, 234

shot noise, see noise
shuffle network, 337
sideband instability, 197
signal

analog, 8–11, 382–385
audio, 8, 11, 185
beat, 418
binary, 8
clock, 377
crosstalk, 365
digital, 8–11, 385–386
duobinary, 284
FSK, 284
heterodyne, 481
homodyne, 480
microwave, 286, 381
multichannel, 340
phase-conjugated, 302
reduced-bandwidth, 284
spectrally encoded, 390
studio-quality video, 385
TE-polarized, 236
time-reversed, 301
TM-polarized, 236
video, 8, 11, 185, 382
WDM, 257, 345, 348, 351, 353, 368

signal-to-noise ratio, 10, 116, 158–161, 230,
372, 481

signature sequence, 389
silica-on-silicon technology, 342, 347, 349,

351, 353, 361, 376
silicon optical bench, 120, 342
silicon-on-insulator technology, 351
skew rays, 26
slope efficiency, 109, 122
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slow axis, 36
small-signal gain, 235, 245
SNR, see signal-to-noise ratio
Soleil–Babinet compensator, 319
soliton period, 406
soliton self-frequency shift, 450
soliton systems

amplifier noise in, 435–437
amplifier spacing for, 420–422
design of, 425–445
dispersion management for, 427–435,

463–467
high-capacity, 445–450
jitter control in, 442–445
modulation format for, 411
timing jitter in, 439–445
transmitters for, 416–418
WDM, 458–467

solitons
amplification of, 427
black, 409
bright, 406
broadening of, 418
collision of, 458–462, 464
dark, 409–411
DDF for, 427–429
dispersion-managed, 309, 429–435
distributed amplification of, 422
effect of fiber loss, 418
fundamental, 406
Gaussian shape for, 429
gray, 409
guiding-center, 421
higher-order, 406
information transmission with, 411
interaction of, 412–414, 447, 456
loss-managed, 418–427
order of, 406
orthogonally polarized, 465
path-averaged, 421
periodic amplification of, 420–422
properties of, 406–408
self-frequency shift of, 424
sources of, 416–418

SONET, 13, 199
source–fiber coupling, 118
spatial hole burning, 110
spatial phase filter, 316
speckle pattern, 202
spectral broadening, 280

spectral efficiency, 332, 341, 392
spectral filtering, 411
spectral hole burning, 110, 252
spectral inversion, 457

midspan, 300
spectral slicing, 338, 361, 362
splice loss, see loss
split-step Fourier method, 270, 429
spontaneous emission, 78, 79, 89, 107, 114,

230, 261
spontaneous-emission factor, 107, 230, 236,

255
spot size, 36
spot-size converter, 120, 485
spread-spectrum technique, 388
squaring loop, 488
SRS, see Raman scattering
staircase approximation, 428, 463
star coupler, 188, 337, 338, 350–351, 381
star topology, 188
Stark effect, 417

quantum-confinement, 485
Stark splitting, 252
stimulated Brillouin scattering, see Brillouin

scattering
stimulated emission, 78, 80, 92, 107
stimulated Raman scattering, see Raman scat-

tering
Stokes shift, 59, 250
stop band, 293, 294, 299, 311, 314, 346
streak camera, 286
subcarrier multiplexing, see multiplexing,

SCM systems
supercontinuum, 362, 380
surface acoustic wave, 343, 486
surface recombination, 83
susceptibility, 29
switch

bubble, 356
directional-coupler, 355
electro-optic, 355
electroholographic, 357
gate, 356
liquid-crystal, 356
Mach–Zender, 355
MEMS, 355
polymer-based, 355
semiconductor, 356
SOA-based, 356
space-division, 354
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thermo-optic, 355
wavelength-division, 357

switching time, 355
synchronous digital hierarchy, see SDH
synchronous optical network, see SONET
synchronous transport module, 13
system design, see lightwave systems
system margin, 192, 217

TCP/IP protocol, 381
TDM, see multiplexing
TDM systems, 375–381

demultiplexer for, 377–380
multihop, 381
multiplexer for, 375
performance of, 380
single-hop, 381

TE polarization, 236
telecommunication fiber links, 198–202
telegraphy, 2
thermal equilibrium, 78, 79, 81
thermal noise, see noise
thermo-optic coefficient, 355
thermoelectric cooler, 122, 125
thermoelectric heater, 416

segmented, 314
third-order dispersion, see dispersion
three-level system, 253
threshold condition, 95
threshold current, 95, 98, 108

temperature dependence of, 107
time-division multiplexing, see multiplex-

ing, TDM systems
timing jitter, 372, 439–445, 452–457, 464

acoustic, 454
ASE-induced, 266–269
collision-induced, 461–462
control of, 429, 442–445, 457
electrical, 171–173
Gordon–Haus, 266, 439
PMD-induced, 455
Raman-induced, 452
receiver, 171–173
soliton-interaction-induced, 456
TOD-induced, 457
WDM, 461–462
XPM-induced, 310

TM polarization, 236
tone spacing, 485
total internal reflection, 24, 26, 58, 87

transatlantic cable, 200
transfer function, 54, 90, 111, 151, 194,

286, 290, 292, 293
transistor

field-effect, 153
heterojunction-bipolar, 154, 362
high-electron-mobility, 153

transit time, 136, 139, 144
transition cross section, 227, 253
transmitter, see optical transmitter
transoceanic transmission, see lightwave sys-

tems
triple-beat distortion, 383
tuning range, 105
twin-amplifier configuration, 236
two-level system, 78, 226

homogeneously broadened, 227
two-photon absorption, 110

V parameter, 33, 289
V-shaped grooves, 345
vapor-axial deposition, 69
vapor-phase epitaxy, 86
variational method, 308, 430
Vernier effect, 105
vertical-cavity surface-emitting lasers, 105,

203, 214, 361
vestigial sideband, 382

walk-off effect, 371
wall-plug efficiency, 88, 109
wave equation, 29
waveguide dispersion, see dispersion
waveguide grating, see grating
waveguide photodiode, 141
waveguide-grating router, 338, 362, 374
wavelength conversion, 67, 304, 357–360
wavelength routing, 351
wavelength-division multiplexing, see mul-

tiplexing, WDM systems
WDM, see multiplexing, WDM systems, WDM

networks
WDM components, 339–362
WDM networks

all-optical, 334
Banyan, 337
broadcast, 334–336
deBruijn, 337
distribution, 334–336
Lambdanet, 337
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multihop, 336
multiple-access, 336–338
opaque, 334
passive, 338
Rainbow, 338
router for, 351
shuffle, 337
single-hop, 336
transparent, 334
transport, 334

WDM receiver, 360
WDM systems, 330–338, 373

amplifiers for, 271–272
coherent, 508
components for, 339, 362
crosstalk in, 362–375
dispersion-limited, 375
dispersion-managed, 310–320
point-to-point links, 331–334
soliton, 458–467
spectral efficiency of, 332
subcarrier-multiplexed, 386

WDM transmitter, 360
wide-deviation FSK, 486, 489
Wiener–Khinchin theorem, 156

zero-dispersion wavelength, 40, 50, 51, 54,
191, 269, 271, 302, 373
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Chapter 1

Introduction

A communication system transmits information from one place to another, whether
separated by a few kilometers or by transoceanic distances. Information is often car-
ried by an electromagnetic carrier wave whose frequency can vary from a few mega-
hertz to several hundred terahertz. Optical communication systems use high carrier
frequencies (∼100 THz) in the visible or near-infrared region of the electromagnetic
spectrum. They are sometimes called lightwave systems to distinguish them from mi-
crowave systems, whose carrier frequency is typically smaller by five orders of mag-
nitude (∼1 GHz). Fiber-optic communication systems are lightwave systems that em-
ploy optical fibers for information transmission. Such systems have been deployed
worldwide since 1980 and have indeed revolutionized the technology behind telecom-
munications. Indeed, the lightwave technology, together with microelectronics, is be-
lieved to be a major factor in the advent of the “information age.” The objective of
this book is to describe fiber-optic communication systems in a comprehensive man-
ner. The emphasis is on the fundamental aspects, but the engineering issues are also
discussed. The purpose of this introductory chapter is to present the basic concepts and
to provide the background material. Section 1.1 gives a historical perspective on the
development of optical communication systems. In Section 1.2 we cover concepts such
as analog and digital signals, channel multiplexing, and modulation formats. Relative
merits of guided and unguided optical communication systems are discussed in Sec-
tion 1.3. The last section focuses on the building blocks of a fiber-optic communication
system.

1.1 Historical Perspective

The use of light for communication purposes dates back to antiquity if we interpret
optical communications in a broad sense [1]. Most civilizations have used mirrors, fire
beacons, or smoke signals to convey a single piece of information (such as victory in
a war). Essentially the same idea was used up to the end of the eighteenth century
through signaling lamps, flags, and other semaphore devices. The idea was extended
further, following a suggestion of Claude Chappe in 1792, to transmit mechanically
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Figure 1.1: Schematic illustration of the optical telegraph and its inventor Claude Chappe. (After
Ref. [2]; c©1944 American Association for the Advancement of Science; reprinted with permis-
sion.)

coded messages over long distances (∼100 km) by the use of intermediate relay sta-
tions [2], acting as regenerators or repeaters in the modern-day language. Figure 1.1
shows the basic idea schematically. The first such “optical telegraph” was put in service
between Paris and Lille (two French cities about 200 km apart) in July 1794. By 1830,
the network had expanded throughout Europe [1]. The role of light in such systems
was simply to make the coded signals visible so that they could be intercepted by the
relay stations. The opto-mechanical communication systems of the nineteenth century
were inherently slow. In modern-day terminology, the effective bit rate of such systems
was less than 1 bit per second (B < 1 b/s).

1.1.1 Need for Fiber-Optic Communications

The advent of telegraphy in the 1830s replaced the use of light by electricity and began
the era of electrical communications [3]. The bit rate B could be increased to ∼ 10 b/s
by the use of new coding techniques, such as the Morse code. The use of intermediate
relay stations allowed communication over long distances (∼ 1000 km). Indeed, the
first successful transatlantic telegraph cable went into operation in 1866. Telegraphy
used essentially a digital scheme through two electrical pulses of different durations
(dots and dashes of the Morse code). The invention of the telephone in 1876 brought
a major change inasmuch as electric signals were transmitted in analog form through a
continuously varying electric current [4]. Analog electrical techniques were to domi-
nate communication systems for a century or so.

The development of worldwide telephone networks during the twentieth century
led to many advances in the design of electrical communication systems. The use
of coaxial cables in place of wire pairs increased system capacity considerably. The
first coaxial-cable system, put into service in 1940, was a 3-MHz system capable of
transmitting 300 voice channels or a single television channel. The bandwidth of such
systems is limited by the frequency-dependent cable losses, which increase rapidly for
frequencies beyond 10 MHz. This limitation led to the development of microwave
communication systems in which an electromagnetic carrier wave with frequencies in
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Figure 1.2: Increase in bit rate–distance product BL during the period 1850–2000. The emer-
gence of a new technology is marked by a solid circle.

the range of 1–10 GHz is used to transmit the signal by using suitable modulation
techniques.

The first microwave system operating at the carrier frequency of 4 GHz was put
into service in 1948. Since then, both coaxial and microwave systems have evolved
considerably and are able to operate at bit rates ∼100 Mb/s. The most advanced coax-
ial system was put into service in 1975 and operated at a bit rate of 274 Mb/s. A severe
drawback of such high-speed coaxial systems is their small repeater spacing (∼1 km),
which makes the system relatively expensive to operate. Microwave communication
systems generally allow for a larger repeater spacing, but their bit rate is also limited
by the carrier frequency of such waves. A commonly used figure of merit for commu-
nication systems is the bit rate–distance product, BL, where B is the bit rate and L is
the repeater spacing. Figure 1.2 shows how the BL product has increased through tech-
nological advances during the last century and a half. Communication systems with
BL ∼ 100 (Mb/s)-km were available by 1970 and were limited to such values because
of fundamental limitations.

It was realized during the second half of the twentieth century that an increase
of several orders of magnitude in the BL product would be possible if optical waves
were used as the carrier. However, neither a coherent optical source nor a suitable
transmission medium was available during the 1950s. The invention of the laser and
its demonstration in 1960 solved the first problem [5]. Attention was then focused
on finding ways for using laser light for optical communications. Many ideas were
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Figure 1.3: Increase in the capacity of lightwave systems realized after 1980. Commercial
systems (circles) follow research demonstrations (squares) with a few-year lag. The change in
the slope after 1992 is due to the advent of WDM technology.

advanced during the 1960s [6], the most noteworthy being the idea of light confinement
using a sequence of gas lenses [7].

It was suggested in 1966 that optical fibers might be the best choice [8], as they
are capable of guiding the light in a manner similar to the guiding of electrons in cop-
per wires. The main problem was the high losses of optical fibers—fibers available
during the 1960s had losses in excess of 1000 dB/km. A breakthrough occurred in
1970 when fiber losses could be reduced to below 20 dB/km in the wavelength region
near 1 µm [9]. At about the same time, GaAs semiconductor lasers, operating contin-
uously at room temperature, were demonstrated [10]. The simultaneous availability of
compact optical sources and a low-loss optical fibers led to a worldwide effort for de-
veloping fiber-optic communication systems [11]. Figure 1.3 shows the increase in the
capacity of lightwave systems realized after 1980 through several generations of devel-
opment. As seen there, the commercial deployment of lightwave systems followed the
research and development phase closely. The progress has indeed been rapid as evi-
dent from an increase in the bit rate by a factor of 100,000 over a period of less than 25
years. Transmission distances have also increased from 10 to 10,000 km over the same
time period. As a result, the bit rate–distance product of modern lightwave systems can
exceed by a factor of 107 compared with the first-generation lightwave systems.

1.1.2 Evolution of Lightwave Systems

The research phase of fiber-optic communication systems started around 1975. The
enormous progress realized over the 25-year period extending from 1975 to 2000 can
be grouped into several distinct generations. Figure 1.4 shows the increase in the BL
product over this time period as quantified through various laboratory experiments [12].
The straight line corresponds to a doubling of the BL product every year. In every
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Figure 1.4: Increase in the BL product over the period 1975 to 1980 through several generations
of lightwave systems. Different symbols are used for successive generations. (After Ref. [12];
c©2000 IEEE; reprinted with permission.)

generation, BL increases initially but then begins to saturate as the technology matures.
Each new generation brings a fundamental change that helps to improve the system
performance further.

The first generation of lightwave systems operated near 0.8 µm and used GaAs
semiconductor lasers. After several field trials during the period 1977–79, such systems
became available commercially in 1980 [13]. They operated at a bit rate of 45 Mb/s
and allowed repeater spacings of up to 10 km. The larger repeater spacing compared
with 1-km spacing of coaxial systems was an important motivation for system design-
ers because it decreased the installation and maintenance costs associated with each
repeater.

It was clear during the 1970s that the repeater spacing could be increased consid-
erably by operating the lightwave system in the wavelength region near 1.3 µm, where
fiber loss is below 1 dB/km. Furthermore, optical fibers exhibit minimum dispersion in
this wavelength region. This realization led to a worldwide effort for the development
of InGaAsP semiconductor lasers and detectors operating near 1.3 µm. The second
generation of fiber-optic communication systems became available in the early 1980s,
but the bit rate of early systems was limited to below 100 Mb/s because of dispersion in
multimode fibers [14]. This limitation was overcome by the use of single-mode fibers.
A laboratory experiment in 1981 demonstrated transmission at 2 Gb/s over 44 km of
single-mode fiber [15]. The introduction of commercial systems soon followed. By
1987, second-generation lightwave systems, operating at bit rates of up to 1.7 Gb/s
with a repeater spacing of about 50 km, were commercially available.

The repeater spacing of the second-generation lightwave systems was limited by
the fiber losses at the operating wavelength of 1.3 µm (typically 0.5 dB/km). Losses
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of silica fibers become minimum near 1.55 µm. Indeed, a 0.2-dB/km loss was real-
ized in 1979 in this spectral region [16]. However, the introduction of third-generation
lightwave systems operating at 1.55 µm was considerably delayed by a large fiber
dispersion near 1.55 µm. Conventional InGaAsP semiconductor lasers could not be
used because of pulse spreading occurring as a result of simultaneous oscillation of
several longitudinal modes. The dispersion problem can be overcome either by using
dispersion-shifted fibers designed to have minimum dispersion near 1.55 µm or by lim-
iting the laser spectrum to a single longitudinal mode. Both approaches were followed
during the 1980s. By 1985, laboratory experiments indicated the possibility of trans-
mitting information at bit rates of up to 4 Gb/s over distances in excess of 100 km [17].
Third-generation lightwave systems operating at 2.5 Gb/s became available commer-
cially in 1990. Such systems are capable of operating at a bit rate of up to 10 Gb/s [18].
The best performance is achieved using dispersion-shifted fibers in combination with
lasers oscillating in a single longitudinal mode.

A drawback of third-generation 1.55-µm systems is that the signal is regenerated
periodically by using electronic repeaters spaced apart typically by 60–70 km. The
repeater spacing can be increased by making use of a homodyne or heterodyne detec-
tion scheme because its use improves receiver sensitivity. Such systems are referred
to as coherent lightwave systems. Coherent systems were under development world-
wide during the 1980s, and their potential benefits were demonstrated in many system
experiments [19]. However, commercial introduction of such systems was postponed
with the advent of fiber amplifiers in 1989.

The fourth generation of lightwave systems makes use of optical amplification for
increasing the repeater spacing and of wavelength-division multiplexing (WDM) for
increasing the bit rate. As evident from different slopes in Fig. 1.3 before and after
1992, the advent of the WDM technique started a revolution that resulted in doubling
of the system capacity every 6 months or so and led to lightwave systems operating at
a bit rate of 10 Tb/s by 2001. In most WDM systems, fiber losses are compensated
periodically using erbium-doped fiber amplifiers spaced 60–80 km apart. Such ampli-
fiers were developed after 1985 and became available commercially by 1990. A 1991
experiment showed the possibility of data transmission over 21,000 km at 2.5 Gb/s,
and over 14,300 km at 5 Gb/s, using a recirculating-loop configuration [20]. This per-
formance indicated that an amplifier-based, all-optical, submarine transmission system
was feasible for intercontinental communication. By 1996, not only transmission over
11,300 km at a bit rate of 5 Gb/s had been demonstrated by using actual submarine
cables [21], but commercial transatlantic and transpacific cable systems also became
available. Since then, a large number of submarine lightwave systems have been de-
ployed worldwide.

Figure 1.5 shows the international network of submarine systems around 2000 [22].
The 27,000-km fiber-optic link around the globe (known as FLAG) became operational
in 1998, linking many Asian and European countries [23]. Another major lightwave
system, known as Africa One was operating by 2000; it circles the African continent
and covers a total transmission distance of about 35,000 km [24]. Several WDM sys-
tems were deployed across the Atlantic and Pacific oceans during 1998–2001 in re-
sponse to the Internet-induced increase in the data traffic; they have increased the total
capacity by orders of magnitudes. A truly global network covering 250,000 km with a
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Figure 1.5: International undersea network of fiber-optic communication systems around 2000.
(After Ref. [22]; c©2000 Academic; reprinted with permission.)

capacity of 2.56 Tb/s (64 WDM channels at 10 Gb/s over 4 fiber pairs) is scheduled to
be operational in 2002 [25]. Clearly, the fourth-generation systems have revolutionized
the whole field of fiber-optic communications.

The current emphasis of WDM lightwave systems is on increasing the system ca-
pacity by transmitting more and more channels through the WDM technique. With
increasing WDM signal bandwidth, it is often not possible to amplify all channels
using a single amplifier. As a result, new kinds of amplification schemes are being
explored for covering the spectral region extending from 1.45 to 1.62 µm. This ap-
proach led in 2000 to a 3.28-Tb/s experiment in which 82 channels, each operating at
40 Gb/s, were transmitted over 3000 km, resulting in a BL product of almost 10,000
(Tb/s)-km. Within a year, the system capacity could be increased to nearly 11 Tb/s
(273 WDM channels, each operating at 40 Gb/s) but the transmission distance was
limited to 117 km [26]. In another record experiment, 300 channels, each operating
at 11.6 Gb/s, were transmitted over 7380 km, resulting in a BL product of more than
25,000 (Tb/s)-km [27]. Commercial terrestrial systems with the capacity of 1.6 Tb/s
were available by the end of 2000, and the plans were underway to extend the capacity
toward 6.4 Tb/s. Given that the first-generation systems had a capacity of 45 Mb/s in
1980, it is remarkable that the capacity has jumped by a factor of more than 10,000
over a period of 20 years.

The fifth generation of fiber-optic communication systems is concerned with ex-
tending the wavelength range over which a WDM system can operate simultaneously.
The conventional wavelength window, known as the C band, covers the wavelength
range 1.53–1.57 µm. It is being extended on both the long- and short-wavelength sides,
resulting in the L and S bands, respectively. The Raman amplification technique can be
used for signals in all three wavelength bands. Moreover, a new kind of fiber, known
as the dry fiber has been developed with the property that fiber losses are small over
the entire wavelength region extending from 1.30 to 1.65 µm [28]. Availability of such
fibers and new amplification schemes may lead to lightwave systems with thousands of
WDM channels.

The fifth-generation systems also attempt to increase the bit rate of each channel
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within the WDM signal. Starting in 2000, many experiments used channels operating at
40 Gb/s; migration toward 160 Gb/s is also likely in the future. Such systems require an
extremely careful management of fiber dispersion. An interesting approach is based on
the concept of optical solitons—pulses that preserve their shape during propagation in
a lossless fiber by counteracting the effect of dispersion through the fiber nonlinearity.
Although the basic idea was proposed [29] as early as 1973, it was only in 1988 that
a laboratory experiment demonstrated the feasibility of data transmission over 4000
km by compensating the fiber loss through Raman amplification [30]. Erbium-doped
fiber amplifiers were used for soliton amplification starting in 1989. Since then, many
system experiments have demonstrated the eventual potential of soliton communication
systems. By 1994, solitons were transmitted over 35,000 km at 10 Gb/s and over
24,000 km at 15 Gb/s [31]. Starting in 1996, the WDM technique was also used for
solitons in combination with dispersion management. In a 2000 experiment, up to 27
WDM channels, each operating at 20 Gb/s, were transmitted over 9000 km using a
hybrid amplification scheme [32].

Even though the fiber-optic communication technology is barely 25 years old, it has
progressed rapidly and has reached a certain stage of maturity. This is also apparent
from the publication of a large number of books on optical communications and WDM
networks since 1995 [33]–[55]. This third edition of a book, first published in 1992, is
intended to present an up-to-date account of fiber-optic communications systems with
emphasis on recent developments.

1.2 Basic Concepts

This section introduces a few basic concepts common to all communication systems.
We begin with a description of analog and digital signals and describe how an ana-
log signal can be converted into digital form. We then consider time- and frequency-
division multiplexing of input signals, and conclude with a discussion of various mod-
ulation formats.

1.2.1 Analog and Digital Signals

In any communication system, information to be transmitted is generally available as
an electrical signal that may take analog or digital form [56]. In the analog case, the
signal (e. g., electric current) varies continuously with time, as shown schematically in
Fig. 1.6(a). Familiar examples include audio and video signals resulting when a mi-
crophone converts voice or a video camera converts an image into an electrical signal.
By contrast, the digital signal takes only a few discrete values. In the binary represen-
tation of a digital signal only two values are possible. The simplest case of a binary
digital signal is one in which the electric current is either on or off, as shown in Fig.
1.6(b). These two possibilities are called “bit 1” and “bit 0” (bit is a contracted form of
binary digit). Each bit lasts for a certain period of time TB, known as the bit period or
bit slot. Since one bit of information is conveyed in a time interval TB, the bit rate B,
defined as the number of bits per second, is simply B = T −1

B . A well-known example of
digital signals is provided by computer data. Each letter of the alphabet together with
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Figure 1.6: Representation of (a) an analog signal and (b) a digital signal.

other common symbols (decimal numerals, punctuation marks, etc.) is assigned a code
number (ASCII code) in the range 0–127 whose binary representation corresponds to
a 7-bit digital signal. The original ASCII code has been extended to represent 256
characters transmitted through 8-bit bytes. Both analog and digital signals are charac-
terized by their bandwidth, which is a measure of the spectral contents of the signal.
The signal bandwidth represents the range of frequencies contained within the signal
and is determined mathematically through its Fourier transform.

An analog signal can be converted into digital form by sampling it at regular inter-
vals of time [56]. Figure 1.7 shows the conversion method schematically. The sampling
rate is determined by the bandwidth ∆ f of the analog signal. According to the sam-
pling theorem [57]–[59], a bandwidth-limited signal can be fully represented by dis-
crete samples, without any loss of information, provided that the sampling frequency
fs satisfies the Nyquist criterion [60], fs ≥ 2∆ f . The first step consists of sampling
the analog signal at the right frequency. The sampled values can take any value in the
range 0 ≤ A ≤ Amax, where Amax is the maximum amplitude of the given analog signal.
Let us assume that Amax is divided into M discrete (not necessarily equally spaced) in-
tervals. Each sampled value is quantized to correspond to one of these discrete values.
Clearly, this procedure leads to additional noise, known as quantization noise, which
adds to the noise already present in the analog signal.

The effect of quantization noise can be minimized by choosing the number of dis-
crete levels such that M > Amax/AN , where AN is the root-mean-square noise amplitude
of the analog signal. The ratio Amax/AN is called the dynamic range and is related to
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Figure 1.7: Three steps of (a) sampling, (b) quantization, and (c) coding required for converting
an analog signal into a binary digital signal.

the signal-to-noise ratio (SNR) by the relation

SNR = 20log10(Amax/AN), (1.2.1)

where SNR is expressed in decibel (dB) units. Any ratio R can be converted into
decibels by using the general definition 10log10 R (see Appendix A). Equation (1.2.1)
contains a factor of 20 in place of 10 simply because the SNR for electrical signals is
defined with respect to the electrical power, whereas A is related to the electric current
(or voltage).

The quantized sampled values can be converted into digital format by using a suit-
able conversion technique. In one scheme, known as pulse-position modulation, pulse
position within the bit slot is a measure of the sampled value. In another, known as
pulse-duration modulation, the pulse width is varied from bit to bit in accordance with
the sampled value. These techniques are rarely used in practical optical communication
systems, since it is difficult to maintain the pulse position or pulse width to high accu-
racy during propagation inside the fiber. The technique used almost universally, known
as pulse-code modulation (PCM), is based on a binary scheme in which information
is conveyed by the absence or the presence of pulses that are otherwise identical. A
binary code is used to convert each sampled value into a string of 1 and 0 bits. The
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number of bits m needed to code each sample is related to the number of quantized
signal levels M by the relation

M = 2m or m = log2 M. (1.2.2)

The bit rate associated with the PCM digital signal is thus given by

B = m fs ≥ (2∆ f ) log2 M, (1.2.3)

where the Nyquist criterion, fs ≥ 2∆ f , was used. By noting that M > Amax/AN and
using Eq. (1.2.1) together with log2 10 ≈ 3.33,

B > (∆ f/3)SNR, (1.2.4)

where the SNR is expressed in decibel (dB) units.
Equation (1.2.4) provides the minimum bit rate required for digital representation

of an analog signal of bandwidth ∆ f and a specific SNR. When SNR > 30 dB, the
required bit rate exceeds 10(∆ f ), indicating a considerable increase in the bandwidth
requirements of digital signals. Despite this increase, the digital format is almost al-
ways used for optical communication systems. This choice is made because of the
superior performance of digital transmission systems. Lightwave systems offer such
an enormous increase in the system capacity (by a factor ∼ 10 5) compared with mi-
crowave systems that some bandwidth can be traded for improved performance.

As an illustration of Eq. (1.2.4), consider the digital conversion of an audio signal
generated in a telephone. The analog audio signal contains frequencies in the range
0.3–3.4 kHz with a bandwidth ∆ f = 3.1 kHz and has a SNR of about 30 dB. Equa-
tion (1.2.4) indicates that B > 31 kb/s. In practice, a digital audio channel operates at
64 kb/s. The analog signal is sampled at intervals of 125 µs (sampling rate f s = 8 kHz),
and each sample is represented by 8 bits. The required bit rate for a digital video signal
is higher by more than a factor of 1000. The analog television signal has a bandwidth
∼4 MHz with a SNR of about 50 dB. The minimum bit rate from Eq. (1.2.4) is 66 Mb/s.
In practice, a digital video signal requires a bit rate of 100 Mb/s or more unless it is
compressed by using a standard format (such as MPEG-2).

1.2.2 Channel Multiplexing

As seen in the preceding discussion, a digital voice channel operates at 64 kb/s. Most
fiber-optic communication systems are capable of transmitting at a rate of more than
1 Gb/s. To utilize the system capacity fully, it is necessary to transmit many channels
simultaneously through multiplexing. This can be accomplished through time-division
multiplexing (TDM) or frequency-division multiplexing (FDM). In the case of TDM,
bits associated with different channels are interleaved in the time domain to form a
composite bit stream. For example, the bit slot is about 15 µs for a single voice channel
operating at 64 kb/s. Five such channels can be multiplexed through TDM if the bit
streams of successive channels are delayed by 3 µs. Figure 1.8(a) shows the resulting
bit stream schematically at a composite bit rate of 320 kb/s.

In the case of FDM, the channels are spaced apart in the frequency domain. Each
channel is carried by its own carrier wave. The carrier frequencies are spaced more than
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Figure 1.8: (a) Time-division multiplexing of five digital voice channels operating at 64 kb/s;
(b) frequency-division multiplexing of three analog signals.

the channel bandwidth so that the channel spectra do not overlap, as seen Fig. 1.8(b).
FDM is suitable for both analog and digital signals and is used in broadcasting of radio
and television channels. TDM is readily implemented for digital signals and is com-
monly used for telecommunication networks. It is important to realize that TDM and
FDM can be implemented in both the electrical and optical domains; optical FDM is
often referred to as WDM. Chapter 8 is devoted to optical-domain multiplexing tech-
niques. This section covers electrical TDM, which is employed universally to multiplex
a large number of voice channels into a single electrical bit stream.

The concept of TDM has been used to form digital hierarchies. In North America
and Japan, the first level corresponds to multiplexing of 24 voice channels with a com-
posite bit rate of 1.544 Mb/s (hierarchy DS-1), whereas in Europe 30 voice channels
are multiplexed, resulting in a composite bit rate of 2.048 Mb/s. The bit rate of the
multiplexed signal is slightly larger than the simple product of 64 kb/s with the number
of channels because of extra control bits that are added for separating (demultiplexing)
the channels at the receiver end. The second-level hierarchy is obtained by multiplex-
ing 4 DS-1 TDM channels. This results in a bit rate of 6.312 Mb/s (hierarchy DS-2)
for North America or Japan and 8.448 Mb/s for Europe. This procedure is continued to
obtain higher-level hierarchies. For example, at the fifth level of hierarchy, the bit rate
becomes 565 Mb/s for Europe and 396 Mb/s for Japan.
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Table 1.1 SONET/SDH bit rates

SONET SDH B (Mb/s) Channels
OC-1 51.84 672
OC-3 STM-1 155.52 2,016
OC-12 STM-4 622.08 8,064
OC-48 STM-16 2,488.32 32,256
OC-192 STM-64 9,953.28 129,024
OC-768 STM-256 39,813.12 516,096

The lack of an international standard in the telecommunication industry during the
1980s led to the advent of a new standard, first called the synchronous optical network
(SONET) and later termed the synchronous digital hierarchy or SDH [61]–[63]. It
defines a synchronous frame structure for transmitting TDM digital signals. The basic
building block of the SONET has a bit rate of 51.84 Mb/s. The corresponding optical
signal is referred to as OC-1, where OC stands for optical carrier. The basic building
block of the SDH has a bit rate of 155.52 Mb/s and is referred to as STM-1, where
STM stands for a synchronous transport module. A useful feature of the SONET and
SDH is that higher levels have a bit rate that is an exact multiple of the basic bit rate.
Table 1.1 lists the correspondence between SONET and SDH bit rates for several levels.
The SDH provides an international standard that appears to be well adopted. Indeed,
lightwave systems operating at the STM-64 level (B ≈ 10 Gb/s) are available since
1996 [18]. Commercial STM-256 (OC-768) systems operating near 40 Gb/s became
available by 2002.

1.2.3 Modulation Formats

The first step in the design of an optical communication system is to decide how the
electrical signal would be converted into an optical bit stream. Normally, the output of
an optical source such as a semiconductor laser is modulated by applying the electrical
signal either directly to the optical source or to an external modulator. There are two
choices for the modulation format of the resulting optical bit stream. These are shown
in Fig. 1.9 and are known as the return-to-zero (RZ) and nonreturn-to-zero (NRZ)
formats. In the RZ format, each optical pulse representing bit 1 is shorter than the bit
slot, and its amplitude returns to zero before the bit duration is over. In the NRZ format,
the optical pulse remains on throughout the bit slot and its amplitude does not drop to
zero between two or more successive 1 bits. As a result, pulse width varies depending
on the bit pattern, whereas it remains the same in the case of RZ format. An advantage
of the NRZ format is that the bandwidth associated with the bit stream is smaller than
that of the RZ format by about a factor of 2 simply because on–off transitions occur
fewer times. However, its use requires tighter control of the pulse width and may lead
to bit-pattern-dependent effects if the optical pulse spreads during transmission. The
NRZ format is often used in practice because of a smaller signal bandwidth associated
with it.
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Figure 1.9: Digital bit stream 010110 . . . coded by using (a) return-to-zero (RZ) and (b)
nonreturn-to-zero (NRZ) formats.

The use of the RZ format in the optical domain began to attract attention around
1999 after it was found that its use may help the design of high-capacity lightwave sys-
tems [64]–[66]. An example of the RZ format is provided by the dispersion-managed
soliton systems where a chirped pulse propagates inside the fiber link in a periodic
fashion, and the average dispersion is used to counteract the buildup of the nonlin-
ear effects [67]. In an interesting variant of the RZ format, known as the chirped RZ
(or CRZ) format, optical pulses in each bit slot are chirped before they are launched
into the fiber link but the system is operated in a quasi-linear regime [68]. In other
schemes, modulation formats well known in the field of microwave communications
are applied to the optical domain. Such formats are known as carrier-suppressed RZ
(CSRZ), single-sideband, or vestigial-sideband formats [59]. Such RZ formats benefit
from a reduced bandwidth compared to the standard RZ format.

An important issue is related to the choice of the physical variable that is modulated
to encode the data on the optical carrier. The optical carrier wave before modulation is
of the form

E(t) = êAcos(ω0t + φ), (1.2.5)

where E is the electric field vector, ê is the polarization unit vector, A is the amplitude,
ω0 is the carrier frequency, and φ is the phase. The spatial dependence of E is sup-
pressed for simplicity of notation. One may choose to modulate the amplitude A, the
frequency ω0, or the phase φ . In the case of analog modulation, the three modulation
choices are known as amplitude modulation (AM), frequency modulation (FM), and
phase modulation (PM). The same modulation techniques can be applied in the digital
case and are called amplitude-shift keying (ASK), frequency-shift keying (FSK), and
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Figure 1.10: Generic optical communication system.

phase-shift keying (PSK), depending on whether the amplitude, frequency, or phase of
the carrier wave is shifted between the two levels of a binary digital signal. The sim-
plest technique consists of simply changing the signal power between two levels, one
of which is set to zero, and is often called on–off keying (OOK) to reflect the on–off
nature of the resulting optical signal. Most digital lightwave systems employ OOK in
combination with PCM.

1.3 Optical Communication Systems

As mentioned earlier, optical communication systems differ in principle from mi-
crowave systems only in the frequency range of the carrier wave used to carry the
information. The optical carrier frequencies are typically ∼200 THz, in contrast with
the microwave carrier frequencies (∼1 GHz). An increase in the information capac-
ity of optical communication systems by a factor of up to 10,000 is expected simply
because of such high carrier frequencies used for lightwave systems. This increase
can be understood by noting that the bandwidth of the modulated carrier can be up
to a few percent of the carrier frequency. Taking, for illustration, 1% as the limiting
value, optical communication systems have the potential of carrying information at
bit rates ∼1 Tb/s. It is this enormous potential bandwidth of optical communication
systems that is the driving force behind the worldwide development and deployment
of lightwave systems. Current state-of-the-art systems operate at bit rates ∼10 Gb/s,
indicating that there is considerable room for improvement.

Figure 1.10 shows a generic block diagram of an optical communication system. It
consists of a transmitter, a communication channel, and a receiver, the three elements
common to all communication systems. Optical communication systems can be clas-
sified into two broad categories: guided and unguided. As the name implies, in the
case of guided lightwave systems, the optical beam emitted by the transmitter remains
spatially confined. This is realized in practice by using optical fibers, as discussed
in Chapter 2. Since all guided optical communication systems currently use optical
fibers, the commonly used term for them is fiber-optic communication systems. The
term lightwave system is also sometimes used for fiber-optic communication systems,
although it should generally include both guided and unguided systems.

In the case of unguided optical communication systems, the optical beam emitted
by the transmitter spreads in space, similar to the spreading of microwaves. How-
ever, unguided optical systems are less suitable for broadcasting applications than mi-
crowave systems because optical beams spread mainly in the forward direction (as a re-
sult of their short wavelength). Their use generally requires accurate pointing between
the transmitter and the receiver. In the case of terrestrial propagation, the signal in un-
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guided systems can deteriorate considerably by scattering within the atmosphere. This
problem, of course, disappears in free-space communications above the earth atmo-
sphere (e.g., intersatellite communications). Although free-space optical communica-
tion systems are needed for certain applications and have been studied extensively [69],
most terrestrial applications make use of fiber-optic communication systems. This book
does not consider unguided optical communication systems.

The application of optical fiber communications is in general possible in any area
that requires transfer of information from one place to another. However, fiber-optic
communication systems have been developed mostly for telecommunications applica-
tions. This is understandable in view of the existing worldwide telephone networks
which are used to transmit not only voice signals but also computer data and fax mes-
sages. The telecommunication applications can be broadly classified into two cate-
gories, long-haul and short-haul, depending on whether the optical signal is transmit-
ted over relatively long or short distances compared with typical intercity distances
(∼100 km). Long-haul telecommunication systems require high-capacity trunk lines
and benefit most by the use of fiber-optic lightwave systems. Indeed, the technology
behind optical fiber communication is often driven by long-haul applications. Each
successive generation of lightwave systems is capable of operating at higher bit rates
and over longer distances. Periodic regeneration of the optical signal by using repeaters
is still required for most long-haul systems. However, more than an order-of-magnitude
increase in both the repeater spacing and the bit rate compared with those of coaxial
systems has made the use of lightwave systems very attractive for long-haul applica-
tions. Furthermore, transmission distances of thousands of kilometers can be realized
by using optical amplifiers. As shown in Fig. 1.5, a large number of transoceanic light-
wave systems have already been installed to create an international fiber-optic network.

Short-haul telecommunication applications cover intracity and local-loop traffic.
Such systems typically operate at low bit rates over distances of less than 10 km. The
use of single-channel lightwave systems for such applications is not very cost-effective,
and multichannel networks with multiple services should be considered. The concept
of a broadband integrated-services digital network requires a high-capacity communi-
cation system capable of carrying multiple services. The asynchronous transfer mode
(ATM) technology also demands high bandwidths. Only fiber-optic communication
systems are likely to meet such wideband distribution requirements. Multichannel
lightwave systems and their applications in local-area networks are discussed in Chap-
ter 8.

1.4 Lightwave System Components

The generic block diagram of Fig. 1.10 applies to a fiber-optic communication system,
the only difference being that the communication channel is an optical fiber cable. The
other two components, the optical transmitter and the optical receiver, are designed to
meet the needs of such a specific communication channel. In this section we discuss
the general issues related to the role of optical fiber as a communication channel and
to the design of transmitters and receivers. The objective is to provide an introductory
overview, as the three components are discussed in detail in Chapters 2–4.
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Figure 1.11: Components of an optical transmitter.

1.4.1 Optical Fibers as a Communication Channel

The role of a communication channel is to transport the optical signal from transmit-
ter to receiver without distorting it. Most lightwave systems use optical fibers as the
communication channel because silica fibers can transmit light with losses as small as
0.2 dB/km. Even then, optical power reduces to only 1% after 100 km. For this reason,
fiber losses remain an important design issue and determines the repeater or ampli-
fier spacing of a long-haul lightwave system. Another important design issue is fiber
dispersion, which leads to broadening of individual optical pulses with propagation.
If optical pulses spread significantly outside their allocated bit slot, the transmitted
signal is severely degraded. Eventually, it becomes impossible to recover the origi-
nal signal with high accuracy. The problem is most severe in the case of multimode
fibers, since pulses spread rapidly (typically at a rate of ∼10 ns/km) because of differ-
ent speeds associated with different fiber modes. It is for this reason that most optical
communication systems use single-mode fibers. Material dispersion (related to the fre-
quency dependence of the refractive index) still leads to pulse broadening (typically
<0.1 ns/km), but it is small enough to be acceptable for most applications and can be
reduced further by controlling the spectral width of the optical source. Nevertheless,
as discussed in Chapter 2, material dispersion sets the ultimate limit on the bit rate and
the transmission distance of fiber-optic communication systems.

1.4.2 Optical Transmitters

The role of an optical transmitter is to convert the electrical signal into optical form and
to launch the resulting optical signal into the optical fiber. Figure 1.11 shows the block
diagram of an optical transmitter. It consists of an optical source, a modulator, and
a channel coupler. Semiconductor lasers or light-emitting diodes are used as optical
sources because of their compatibility with the optical-fiber communication channel;
both are discussed in detail in Chapter 3. The optical signal is generated by modulating
the optical carrier wave. Although an external modulator is sometimes used, it can
be dispensed with in some cases, since the output of a semiconductor optical source
can be modulated directly by varying the injection current. Such a scheme simplifies
the transmitter design and is generally cost-effective. The coupler is typically a mi-
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Figure 1.12: Components of an optical receiver.

crolens that focuses the optical signal onto the entrance plane of an optical fiber with
the maximum possible efficiency.

The launched power is an important design parameter. One can increase the am-
plifier (or repeater) spacing by increasing it, but the onset of various nonlinear effects
limits how much the input power can be increased. The launched power is often ex-
pressed in “dBm” units with 1 mW as the reference level. The general definition is (see
Appendix A)

power (dBm) = 10log10

(power
1 mW

)
. (1.4.1)

Thus, 1 mW is 0 dBm, but 1 µW corresponds to −30 dBm. The launched power is
rather low (<−10 dBm) for light-emitting diodes but semiconductor lasers can launch
powers ∼ 10 dBm. As light-emitting diodes are also limited in their modulation capa-
bilities, most lightwave systems use semiconductor lasers as optical sources. The bit
rate of optical transmitters is often limited by electronics rather than by the semicon-
ductor laser itself. With proper design, optical transmitters can be made to operate at
a bit rate of up to 40 Gb/s. Chapter 3 is devoted to a complete description of optical
transmitters.

1.4.3 Optical Receivers

An optical receiver converts the optical signal received at the output end of the opti-
cal fiber back into the original electrical signal. Figure 1.12 shows the block diagram
of an optical receiver. It consists of a coupler, a photodetector, and a demodulator.
The coupler focuses the received optical signal onto the photodetector. Semiconductor
photodiodes are used as photodetectors because of their compatibility with the whole
system; they are discussed in Chapter 4. The design of the demodulator depends on
the modulation format used by the lightwave system. The use of FSK and PSK for-
mats generally requires heterodyne or homodyne demodulation techniques discussed
in Chapter 10. Most lightwave systems employ a scheme referred to as “intensity
modulation with direct detection” (IM/DD). Demodulation in this case is done by a
decision circuit that identifies bits as 1 or 0, depending on the amplitude of the electric
signal. The accuracy of the decision circuit depends on the SNR of the electrical signal
generated at the photodetector.
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The performance of a digital lightwave system is characterized through the bit-
error rate (BER). Although the BER can be defined as the number of errors made per
second, such a definition makes the BER bit-rate dependent. It is customary to define
the BER as the average probability of incorrect bit identification. Therefore, a BER
of 10−6 corresponds to on average one error per million bits. Most lightwave systems
specify a BER of 10−9 as the operating requirement; some even require a BER as small
as 10−14. The error-correction codes are sometimes used to improve the raw BER of a
lightwave systems.

An important parameter for any receiver is the receiver sensitivity. It is usually
defined as the minimum average optical power required to realize a BER of 10 −9. Re-
ceiver sensitivity depends on the SNR, which in turn depends on various noise sources
that corrupt the signal received. Even for a perfect receiver, some noise is introduced
by the process of photodetection itself. This is referred to as the quantum noise or the
shot noise, as it has its origin in the particle nature of electrons. Optical receivers op-
erating at the shot-noise limit are called quantum-noise-limited receivers. No practical
receiver operates at the quantum-noise limit because of the presence of several other
noise sources. Some of the noise sources such as thermal noise are internal to the re-
ceiver. Others originate at the transmitter or during propagation along the fiber link.
For instance, any amplification of the optical signal along the transmission line with
the help of optical amplifiers introduces the so-called amplifier noise that has its origin
in the fundamental process of spontaneous emission. Chromatic dispersion in optical
fibers can add additional noise through phenomena such as intersymbol interference
and mode-partition noise. The receiver sensitivity is determined by a cumulative ef-
fect of all possible noise mechanisms that degrade the SNR at the decision circuit. In
general, it also depends on the bit rate as the contribution of some noise sources (e.g.,
shot noise) increases in proportion to the signal bandwidth. Chapter 4 is devoted to
noise and sensitivity issues of optical receivers by considering the SNR and the BER
in digital lightwave systems.

Problems

1.1 Calculate the carrier frequency for optical communication systems operating at
0.88, 1.3, and 1.55 µm. What is the photon energy (in eV) in each case?

1.2 Calculate the transmission distance over which the optical power will attenuate
by a factor of 10 for three fibers with losses of 0.2, 20, and 2000 dB/km. Assum-
ing that the optical power decreases as exp(−αL), calculate α (in cm−1) for the
three fibers.

1.3 Assume that a digital communication system can be operated at a bit rate of up
to 1% of the carrier frequency. How many audio channels at 64 kb/s can be
transmitted over a microwave carrier at 5 GHz and an optical carrier at 1.55 µm?

1.4 A 1-hour lecture script is stored on the computer hard disk in the ASCII format.
Estimate the total number of bits assuming a delivery rate of 200 words per
minute and on average 5 letters per word. How long will it take to transmit the
script at a bit rate of 1 Gb/s?
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1.5 A 1.55-µm digital communication system operating at 1 Gb/s receives an aver-
age power of −40 dBm at the detector. Assuming that 1 and 0 bits are equally
likely to occur, calculate the number of photons received within each 1 bit.

1.6 An analog voice signal that can vary over the range 0–50 mA is digitized by
sampling it at 8 kHz. The first four sample values are 10, 21, 36, and 16 mA.
Write the corresponding digital signal (a string of 1 and 0 bits) by using a 4-bit
representation for each sample.

1.7 Sketch the variation of optical power with time for a digital NRZ bit stream
010111101110 by assuming a bit rate of 2.5 Gb/s. What is the duration of the
shortest and widest optical pulse?

1.8 A 1.55-µm fiber-optic communication system is transmitting digital signals over
100 km at 2 Gb/s. The transmitter launches 2 mW of average power into the fiber
cable, having a net loss of 0.3 dB/km. How many photons are incident on the
receiver during a single 1 bit? Assume that 0 bits carry no power, while 1 bits
are in the form of a rectangular pulse occupying the entire bit slot (NRZ format).

1.9 A 0.8-µm optical receiver needs at least 1000 photons to detect the 1 bits ac-
curately. What is the maximum possible length of the fiber link for a 100-Mb/s
optical communication system designed to transmit −10 dBm of average power?
The fiber loss is 2 dB/km at 0.8 µm. Assume the NRZ format and a rectangular
pulse shape.

1.10 A 1.3-µm optical transmitter is used to obtain a digital bit stream at a bit rate
of 2 Gb/s. Calculate the number of photons contained in a single 1 bit when the
average power emitted by the transmitter is 4 mW. Assume that the 0 bits carry
no energy.
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Chapter 2

Optical Fibers

The phenomenon of total internal reflection, responsible for guiding of light in opti-
cal fibers, has been known since 1854 [1]. Although glass fibers were made in the
1920s [2]–[4], their use became practical only in the 1950s, when the use of a cladding
layer led to considerable improvement in their guiding characteristics [5]–[7]. Before
1970, optical fibers were used mainly for medical imaging over short distances [8].
Their use for communication purposes was considered impractical because of high
losses (∼1000 dB/km). However, the situation changed drastically in 1970 when, fol-
lowing an earlier suggestion [9], the loss of optical fibers was reduced to below 20
dB/km [10]. Further progress resulted by 1979 in a loss of only 0.2 dB/km near the
1.55-µm spectral region [11]. The availability of low-loss fibers led to a revolution
in the field of lightwave technology and started the era of fiber-optic communications.
Several books devoted entirely to optical fibers cover numerous advances made in their
design and understanding [12]–[21]. This chapter focuses on the role of optical fibers
as a communication channel in lightwave systems. In Section 2.1 we use geometrical-
optics description to explain the guiding mechanism and introduce the related basic
concepts. Maxwell’s equations are used in Section 2.2 to describe wave propagation
in optical fibers. The origin of fiber dispersion is discussed in Section 2.3, and Section
2.4 considers limitations on the bit rate and the transmission distance imposed by fiber
dispersion. The loss mechanisms in optical fibers are discussed in Section 2.5, and
Section 2.6 is devoted to a discussion of the nonlinear effects. The last section covers
manufacturing details and includes a discussion of the design of fiber cables.

2.1 Geometrical-Optics Description

In its simplest form an optical fiber consists of a cylindrical core of silica glass sur-
rounded by a cladding whose refractive index is lower than that of the core. Because of
an abrupt index change at the core–cladding interface, such fibers are called step-index
fibers. In a different type of fiber, known as graded-index fiber, the refractive index
decreases gradually inside the core. Figure 2.1 shows schematically the index profile
and the cross section for the two kinds of fibers. Considerable insight in the guiding
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Figure 2.1: Cross section and refractive-index profile for step-index and graded-index fibers.

properties of optical fibers can be gained by using a ray picture based on geometrical
optics [22]. The geometrical-optics description, although approximate, is valid when
the core radius a is much larger than the light wavelength λ . When the two become
comparable, it is necessary to use the wave-propagation theory of Section 2.2.

2.1.1 Step-Index Fibers

Consider the geometry of Fig. 2.2, where a ray making an angle θ i with the fiber axis
is incident at the core center. Because of refraction at the fiber–air interface, the ray
bends toward the normal. The angle θr of the refracted ray is given by [22]

n0 sinθi = n1 sinθr, (2.1.1)

where n1 and n0 are the refractive indices of the fiber core and air, respectively. The re-
fracted ray hits the core–cladding interface and is refracted again. However, refraction
is possible only for an angle of incidence φ such that sinφ < n 2/n1. For angles larger
than a critical angle φc, defined by [22]

sinφc = n2/n1, (2.1.2)

where n2 is the cladding index, the ray experiences total internal reflection at the core–
cladding interface. Since such reflections occur throughout the fiber length, all rays
with φ > φc remain confined to the fiber core. This is the basic mechanism behind light
confinement in optical fibers.
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Figure 2.2: Light confinement through total internal reflection in step-index fibers. Rays for
which φ < φc are refracted out of the core.

One can use Eqs. (2.1.1) and (2.1.2) to find the maximum angle that the incident
ray should make with the fiber axis to remain confined inside the core. Noting that
θr = π/2−φc for such a ray and substituting it in Eq. (2.1.1), we obtain

n0 sinθi = n1 cosφc = (n2
1 −n2

2)
1/2. (2.1.3)

In analogy with lenses, n0 sinθi is known as the numerical aperture (NA) of the fiber.
It represents the light-gathering capacity of an optical fiber. For n 1 � n2 the NA can be
approximated by

NA = n1(2∆)1/2, ∆ = (n1 −n2)/n1, (2.1.4)

where ∆ is the fractional index change at the core–cladding interface. Clearly, ∆ should
be made as large as possible in order to couple maximum light into the fiber. How-
ever, such fibers are not useful for the purpose of optical communications because of a
phenomenon known as multipath dispersion or modal dispersion (the concept of fiber
modes is introduced in Section 2.2).

Multipath dispersion can be understood by referring to Fig. 2.2, where different
rays travel along paths of different lengths. As a result, these rays disperse in time at
the output end of the fiber even if they were coincident at the input end and traveled
at the same speed inside the fiber. A short pulse (called an impulse) would broaden
considerably as a result of different path lengths. One can estimate the extent of pulse
broadening simply by considering the shortest and longest ray paths. The shortest path
occurs for θi = 0 and is just equal to the fiber length L. The longest path occurs for θ i

given by Eq. (2.1.3) and has a length L/sinφ c. By taking the velocity of propagation
v = c/n1, the time delay is given by

∆T =
n1

c

(
L

sinφc
−L

)
=

L
c

n2
1

n2
∆ . (2.1.5)

The time delay between the two rays taking the shortest and longest paths is a measure
of broadening experienced by an impulse launched at the fiber input.

We can relate ∆T to the information-carryingcapacity of the fiber measured through
the bit rate B. Although a precise relation between B and ∆T depends on many details,
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such as the pulse shape, it is clear intuitively that ∆T should be less than the allocated
bit slot (TB = 1/B). Thus, an order-of-magnitude estimate of the bit rate is obtained
from the condition B∆T < 1. By using Eq. (2.1.5) we obtain

BL <
n2

n2
1

c
∆

. (2.1.6)

This condition provides a rough estimate of a fundamental limitation of step-index
fibers. As an illustration, consider an unclad glass fiber with n1 = 1.5 and n2 = 1.
The bit rate–distance product of such a fiber is limited to quite small values since
BL < 0.4 (Mb/s)-km. Considerable improvement occurs for cladded fibers with a small
index step. Most fibers for communication applications are designed with ∆ < 0.01.
As an example, BL < 100 (Mb/s)-km for ∆ = 2×10−3. Such fibers can communicate
data at a bit rate of 10 Mb/s over distances up to 10 km and may be suitable for some
local-area networks.

Two remarks are in order concerning the validity of Eq. (2.1.6). First, it is obtained
by considering only rays that pass through the fiber axis after each total internal re-
flection. Such rays are called meridional rays. In general, the fiber also supports skew
rays, which travel at angles oblique to the fiber axis. Skew rays scatter out of the core at
bends and irregularities and are not expected to contribute significantly to Eq. (2.1.6).
Second, even the oblique meridional rays suffer higher losses than paraxial meridional
rays because of scattering. Equation (2.1.6) provides a conservative estimate since all
rays are treated equally. The effect of intermodal dispersion can be considerably re-
duced by using graded-index fibers, which are discussed in the next subsection. It can
be eliminated entirely by using the single-mode fibers discussed in Section 2.2.

2.1.2 Graded-Index Fibers

The refractive index of the core in graded-index fibers is not constant but decreases
gradually from its maximum value n1 at the core center to its minimum value n2 at
the core–cladding interface. Most graded-index fibers are designed to have a nearly
quadratic decrease and are analyzed by using α-profile, given by

n(ρ) =
{

n1[1−∆(ρ/a)α]; ρ < a,
n1(1−∆) = n2 ; ρ ≥ a,

(2.1.7)

where a is the core radius. The parameter α determines the index profile. A step-index
profile is approached in the limit of large α . A parabolic-index fiber corresponds to
α = 2.

It is easy to understand qualitatively why intermodal or multipath dispersion is re-
duced for graded-index fibers. Figure 2.3 shows schematically paths for three different
rays. Similar to the case of step-index fibers, the path is longer for more oblique rays.
However, the ray velocity changes along the path because of variations in the refractive
index. More specifically, the ray propagating along the fiber axis takes the shortest path
but travels most slowly as the index is largest along this path. Oblique rays have a large
part of their path in a medium of lower refractive index, where they travel faster. It is
therefore possible for all rays to arrive together at the fiber output by a suitable choice
of the refractive-index profile.
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Figure 2.3: Ray trajectories in a graded-index fiber.

Geometrical optics can be used to show that a parabolic-index profile leads to
nondispersive pulse propagation within the paraxial approximation. The trajectory
of a paraxial ray is obtained by solving [22]

d2ρ
dz2 =

1
n

dn
dρ

, (2.1.8)

where ρ is the radial distance of the ray from the axis. By using Eq. (2.1.7) for ρ <
a with α = 2, Eq. (2.1.8) reduces to an equation of harmonic oscillator and has the
general solution

ρ = ρ0 cos(pz)+ (ρ ′
0/p)sin(pz), (2.1.9)

where p = (2∆/a2)1/2 and ρ0 and ρ ′
0 are the position and the direction of the input

ray, respectively. Equation (2.1.9) shows that all rays recover their initial positions
and directions at distances z = 2mπ/p, where m is an integer (see Fig. 2.3). Such a
complete restoration of the input implies that a parabolic-index fiber does not exhibit
intermodal dispersion.

The conclusion above holds only within the paraxial and the geometrical-optics ap-
proximations, both of which must be relaxed for practical fibers. Intermodal dispersion
in graded-index fibers has been studied extensively by using wave-propagation tech-
niques [13]–[15]. The quantity ∆T/L, where ∆T is the maximum multipath delay in
a fiber of length L, is found to vary considerably with α . Figure 2.4 shows this varia-
tion for n1 = 1.5 and ∆ = 0.01. The minimum dispersion occurs for α = 2(1−∆) and
depends on ∆ as [23]

∆T/L = n1∆2/8c. (2.1.10)

The limiting bit rate–distance product is obtained by using the criterion ∆T < 1/B and
is given by

BL < 8c/n1∆2. (2.1.11)

The right scale in Fig. 2.4 shows the BL product as a function of α . Graded-index fibers
with a suitably optimized index profile can communicate data at a bit rate of 100 Mb/s
over distances up to 100 km. The BL product of such fibers is improved by nearly
three orders of magnitude over that of step-index fibers. Indeed, the first generation
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Figure 2.4: Variation of intermodal dispersion ∆T/L with the profile parameter α for a graded-
index fiber. The scale on the right shows the corresponding bit rate–distance product.

of lightwave systems used graded-index fibers. Further improvement is possible only
by using single-mode fibers whose core radius is comparable to the light wavelength.
Geometrical optics cannot be used for such fibers.

Although graded-index fibers are rarely used for long-haul links, the use of graded-
index plastic optical fibers for data-link applications has attracted considerable atten-
tion during the 1990s [24]–[29]. Such fibers have a relatively large core, resulting in
a high numerical aperture and high coupling efficiency but they exhibit high losses
(typically exceeding 50 dB/km). The BL product of plastic fibers, however, exceeds
2 (Gb/s)-km because of a graded-index profile [24]. As a result, they can be used to
transmit data at bit rates >1 Gb/s over short distances of 1 km or less. In a 1996
demonstration, a 10-Gb/s signal was transmitted over 0.5 km with a bit-error rate of
less than 10−11 [26]. Graded-index plastic optical fibers provide an ideal solution for
transferring data among computers and are becoming increasingly important for Eth-
ernet applications requiring bit rates in excess of 1 Gb/s.

2.2 Wave Propagation

In this section we consider propagation of light in step-index fibers by using Maxwell’s
equations for electromagnetic waves. These equations are introduced in Section 2.2.1.
The concept of fiber modes is discussed in Section 2.2.2, where the fiber is shown to
support a finite number of guided modes. Section 2.2.3 focuses on how a step-index
fiber can be designed to support only a single mode and discusses the properties of
single-mode fibers.
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2.2.1 Maxwell’s Equations

Like all electromagnetic phenomena, propagation of optical fields in fibers is governed
by Maxwell’s equations. For a nonconducting medium without free charges, these
equations take the form [30] (in SI units; see Appendix A)

∇×E = −∂B/∂ t, (2.2.1)

∇×H = ∂D/∂ t, (2.2.2)

∇ ·D = 0, (2.2.3)

∇ ·B = 0, (2.2.4)

where E and H are the electric and magnetic field vectors, respectively, and D and B
are the corresponding flux densities. The flux densities are related to the field vectors
by the constitutive relations [30]

D = ε0E+ P, (2.2.5)

B = µ0H+ M, (2.2.6)

where ε0 is the vacuum permittivity, µ0 is the vacuum permeability, and P and M are
the induced electric and magnetic polarizations, respectively. For optical fibers M = 0
because of the nonmagnetic nature of silica glass.

Evaluation of the electric polarization P requires a microscopic quantum-mechanical
approach. Although such an approach is essential when the optical frequency is near
a medium resonance, a phenomenological relation between P and E can be used far
from medium resonances. This is the case for optical fibers in the wavelength region
0.5–2 µm, a range that covers the low-loss region of optical fibers that is of interest
for fiber-optic communication systems. In general, the relation between P and E can
be nonlinear. Although the nonlinear effects in optical fibers are of considerable in-
terest [31] and are covered in Section 2.6, they can be ignored in a discussion of fiber
modes. P is then related to E by the relation

P(r,t) = ε0

∫ ∞

−∞
χ(r,t − t ′)E(r,t ′)dt ′. (2.2.7)

Linear susceptibility χ is, in general, a second-rank tensor but reduces to a scalar for
an isotropic medium such as silica glass. Optical fibers become slightly birefringent
because of unintentional variations in the core shape or in local strain; such birefrin-
gent effects are considered in Section 2.2.3. Equation (2.2.7) assumes a spatially local
response. However, it includes the delayed nature of the temporal response, a feature
that has important implications for optical fiber communications through chromatic
dispersion.

Equations (2.2.1)–(2.2.7) provide a general formalism for studying wave propaga-
tion in optical fibers. In practice, it is convenient to use a single field variable E. By
taking the curl of Eq. (2.2.1) and using Eqs. (2.2.2), (2.2.5), and (2.2.6), we obtain the
wave equation

∇×∇×E = − 1
c2

∂ 2E
∂ t2 − µ0

∂ 2P
∂ t2 , (2.2.8)
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where the speed of light in vacuum is defined as usual by c = (µ 0ε0)−1/2. By introduc-
ing the Fourier transform of E(r,t) through the relation

Ẽ(r,ω) =
∫ ∞

−∞
E(r,t)exp(iωt)dt, (2.2.9)

as well as a similar relation for P(r,t), and by using Eq. (2.2.7), Eq. (2.2.8) can be
written in the frequency domain as

∇×∇× Ẽ = −ε(r,ω)(ω2/c2)Ẽ, (2.2.10)

where the frequency-dependent dielectric constant is defined as

ε(r,ω) = 1+ χ̃(r,ω), (2.2.11)

and χ̃(r,ω) is the Fourier transform of χ(r,t). In general, ε(r,ω) is complex. Its real
and imaginary parts are related to the refractive index n and the absorption coefficient
α by the definition

ε = (n+ iαc/2ω)2. (2.2.12)

By using Eqs. (2.2.11) and (2.2.12), n and α are related to χ̃ as

n = (1+ Re χ̃)1/2, (2.2.13)

α = (ω/nc) Im χ̃ , (2.2.14)

where Re and Im stand for the real and imaginary parts, respectively. Both n and α
are frequency dependent. The frequency dependence of n is referred to as chromatic
dispersion or simply as material dispersion. In Section 2.3, fiber dispersion is shown
to limit the performance of fiber-optic communication systems in a fundamental way.

Two further simplifications can be made before solving Eq. (2.2.10). First, ε can
be taken to be real and replaced by n2 because of low optical losses in silica fibers.
Second, since n(r,ω) is independent of the spatial coordinate r in both the core and the
cladding of a step-index fiber, one can use the identity

∇×∇× Ẽ ≡ ∇(∇ · Ẽ)−∇2Ẽ = −∇2Ẽ, (2.2.15)

where we used Eq. (2.2.3) and the relation D̃ = εẼ to set ∇ · Ẽ = 0. This simplification
is made even for graded-index fibers. Equation (2.2.15) then holds approximately as
long as the index changes occur over a length scale much longer than the wavelength.
By using Eq. (2.2.15) in Eq. (2.2.10), we obtain

∇2Ẽ+ n2(ω)k2
0Ẽ = 0, (2.2.16)

where the free-space wave number k0 is defined as

k0 = ω/c = 2π/λ , (2.2.17)

and λ is the vacuum wavelength of the optical field oscillating at the frequency ω .
Equation (2.2.16) is solved next to obtain the optical modes of step-index fibers.
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2.2.2 Fiber Modes

The concept of the mode is a general concept in optics occurring also, for example, in
the theory of lasers. An optical mode refers to a specific solution of the wave equation
(2.2.16) that satisfies the appropriate boundary conditions and has the property that its
spatial distribution does not change with propagation. The fiber modes can be classified
as guided modes, leaky modes, and radiation modes [14]. As one might expect, sig-
nal transmission in fiber-optic communication systems takes place through the guided
modes only. The following discussion focuses exclusively on the guided modes of a
step-index fiber.

To take advantage of the cylindrical symmetry, Eq. (2.2.16) is written in the cylin-
drical coordinates ρ , φ , and z as

∂ 2Ez

∂ρ2 +
1
ρ

∂Ez

∂ρ
+

1
ρ2

∂ 2Ez

∂φ2 +
∂ 2Ez

∂ z2 + n2k2
0Ez = 0, (2.2.18)

where for a step-index fiber of core radius a, the refractive index n is of the form

n =
{

n1; ρ ≤ a,
n2; ρ > a.

(2.2.19)

For simplicity of notation, the tilde over Ẽ has been dropped and the frequency de-
pendence of all variables is implicitly understood. Equation (2.2.18) is written for the
axial component Ez of the electric field vector. Similar equations can be written for the
other five components of E and H. However, it is not necessary to solve all six equa-
tions since only two components out of six are independent. It is customary to choose
Ez and Hz as the independent components and obtain E ρ , Eφ , Hρ , and Hφ in terms of
them. Equation (2.2.18) is easily solved by using the method of separation of variables
and writing Ez as

Ez(ρ ,φ ,z) = F(ρ)Φ(φ)Z(z). (2.2.20)

By using Eq. (2.2.20) in Eq. (2.2.18), we obtain the three ordinary differential equa-
tions:

d2Z/dz2 + β 2Z = 0, (2.2.21)

d2Φ/dφ 2 + m2Φ = 0, (2.2.22)

d2F
dρ2 +

1
ρ

dF
dρ

+
(

n2k2
0 −β 2 − m2

ρ2

)
F = 0. (2.2.23)

Equation (2.2.21) has a solution of the form Z = exp(iβ z), where β has the physical
significance of the propagation constant. Similarly, Eq. (2.2.22) has a solution Φ =
exp(imφ), but the constant m is restricted to take only integer values since the field
must be periodic in φ with a period of 2π .

Equation (2.2.23) is the well-known differential equation satisfied by the Bessel
functions [32]. Its general solution in the core and cladding regions can be written as

F(ρ) =
{

AJm(pρ)+ A′Ym(pρ); ρ ≤ a,
CKm(qρ)+C′Im(qρ); ρ > a,

(2.2.24)
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where A, A′, C, and C′ are constants and Jm, Ym, Km, and Im are different kinds of Bessel
functions [32]. The parameters p and q are defined by

p2 = n2
1k2

0 −β 2, (2.2.25)

q2 = β 2 −n2
2k2

0. (2.2.26)

Considerable simplification occurs when we use the boundary condition that the optical
field for a guided mode should be finite at ρ = 0 and decay to zero at ρ = ∞. Since
Ym(pρ) has a singularity at ρ = 0, F(0) can remain finite only if A ′ = 0. Similarly
F(ρ) vanishes at infinity only if C ′ = 0. The general solution of Eq. (2.2.18) is thus of
the form

Ez =
{

AJm(pρ)exp(imφ)exp(iβ z) ; ρ ≤ a,
CKm(qρ)exp(imφ)exp(iβ z); ρ > a.

(2.2.27)

The same method can be used to obtain Hz which also satisfies Eq. (2.2.18). Indeed,
the solution is the same but with different constants B and D, that is,

Hz =
{

BJm(pρ)exp(imφ)exp(iβ z) ; ρ ≤ a,
DKm(qρ)exp(imφ)exp(iβ z); ρ > a.

(2.2.28)

The other four components Eρ , Eφ , Hρ , and Hφ can be expressed in terms of Ez and Hz

by using Maxwell’s equations. In the core region, we obtain

Eρ =
i

p2

(
β

∂Ez

∂ρ
+ µ0

ω
ρ

∂Hz

∂φ

)
, (2.2.29)

Eφ =
i

p2

(
β
ρ

∂Ez

∂φ
− µ0ω

∂Hz

∂ρ

)
, (2.2.30)

Hρ =
i

p2

(
β

∂Hz

∂ρ
− ε0n2 ω

ρ
∂Ez

∂φ

)
, (2.2.31)

Hφ =
i

p2

(
β
ρ

∂Hz

∂φ
+ ε0n2ω

∂Ez

∂ρ

)
. (2.2.32)

These equations can be used in the cladding region after replacing p 2 by −q2.
Equations (2.2.27)–(2.2.32) express the electromagnetic field in the core and clad-

ding regions of an optical fiber in terms of four constants A, B, C, and D. These
constants are determined by applying the boundary condition that the tangential com-
ponents of E and H be continuous across the core–cladding interface. By requiring
the continuity of Ez, Hz, Eφ , and Hφ at ρ = a, we obtain a set of four homogeneous
equations satisfied by A, B, C, and D [19]. These equations have a nontrivial solution
only if the determinant of the coefficient matrix vanishes. After considerable algebraic
details, this condition leads us to the following eigenvalue equation [19]–[21]:[

J′m(pa)
pJm(pa)

+
K′

m(qa)
qKm(qa)

] [
J′m(pa)
pJm(pa)

+
n2

2

n2
1

K′
m(qa)

qKm(qa)

]

=
m2

a2

(
1
p2 +

1
q2

)(
1
p2 +

n2
2

n2
1

1
q2

)
, (2.2.33)
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where a prime indicates differentiation with respect to the argument.
For a given set of the parameters k0, a, n1, and n2, the eigenvalue equation (2.2.33)

can be solved numerically to determine the propagation constant β . In general, it
may have multiple solutions for each integer value of m. It is customary to enumerate
these solutions in descending numerical order and denote them by β mn for a given m
(n = 1,2, . . . .). Each value βmn corresponds to one possible mode of propagation of the
optical field whose spatial distribution is obtained from Eqs. (2.2.27)–(2.2.32). Since
the field distribution does not change with propagation except for a phase factor and sat-
isfies all boundary conditions, it is an optical mode of the fiber. In general, both E z and
Hz are nonzero (except for m = 0), in contrast with the planar waveguides, for which
one of them can be taken to be zero. Fiber modes are therefore referred to as hybrid
modes and are denoted by HEmn or EHmn, depending on whether Hz or Ez dominates.
In the special case m = 0, HE0n and EH0n are also denoted by TE0n and TM0n, respec-
tively, since they correspond to transverse-electric (E z = 0) and transverse-magnetic
(Hz = 0) modes of propagation. A different notation LP mn is sometimes used for
weakly guiding fibers [33] for which both E z and Hz are nearly zero (LP stands for
linearly polarized modes).

A mode is uniquely determined by its propagation constant β . It is useful to in-
troduce a quantity n̄ = β/k0, called the mode index or effective index and having the
physical significance that each fiber mode propagates with an effective refractive in-
dex n̄ whose value lies in the range n1 > n̄ > n2. A mode ceases to be guided when
n̄ ≤ n2. This can be understood by noting that the optical field of guided modes decays
exponentially inside the cladding layer since [32]

Km(qρ) = (π/2qρ)1/2 exp(−qρ) for qρ 
 1. (2.2.34)

When n̄ ≤ n2, q2 ≤ 0 from Eq. (2.2.26) and the exponential decay does not occur. The
mode is said to reach cutoff when q becomes zero or when n̄ = n 2. From Eq. (2.2.25),
p = k0(n2

1−n2
2)

1/2 when q = 0. A parameter that plays an important role in determining
the cutoff condition is defined as

V = k0a(n2
1 −n2

2)
1/2 ≈ (2π/λ )an1

√
2∆. (2.2.35)

It is called the normalized frequency (V ∝ ω) or simply the V parameter. It is also
useful to introduce a normalized propagation constant b as

b =
β/k0 −n2

n1 −n2
=

n̄−n2

n1 −n2
. (2.2.36)

Figure 2.5 shows a plot of b as a function of V for a few low-order fiber modes obtained
by solving the eigenvalue equation (2.2.33). A fiber with a large value of V supports
many modes. A rough estimate of the number of modes for such a multimode fiber
is given by V 2/2 [23]. For example, a typical multimode fiber with a = 25 µm and
∆ = 5×10−3 has V � 18 at λ = 1.3 µm and would support about 162 modes. However,
the number of modes decreases rapidly as V is reduced. As seen in Fig. 2.5, a fiber with
V = 5 supports seven modes. Below a certain value of V all modes except the HE 11

mode reach cutoff. Such fibers support a single mode and are called single-mode fibers.
The properties of single-mode fibers are described next.
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Figure 2.5: Normalized propagation constant b as a function of normalized frequency V for a
few low-order fiber modes. The right scale shows the mode index n̄. (After Ref. [34]; c©1981
Academic Press; reprinted with permission.)

2.2.3 Single-Mode Fibers

Single-mode fibers support only the HE11 mode, also known as the fundamental mode
of the fiber. The fiber is designed such that all higher-order modes are cut off at the
operating wavelength. As seen in Fig. 2.5, the V parameter determines the number of
modes supported by a fiber. The cutoff condition of various modes is also determined
by V . The fundamental mode has no cutoff and is always supported by a fiber.

Single-Mode Condition

The single-mode condition is determined by the value of V at which the TE 01 and TM01

modes reach cutoff (see Fig. 2.5). The eigenvalue equations for these two modes can
be obtained by setting m = 0 in Eq. (2.2.33) and are given by

pJ0(pa)K ′
0(qa)+ qJ ′0(pa)K0(qa) = 0, (2.2.37)

pn2
2J0(pa)K ′

0(qa)+ qn2
1J′0(pa)K0(qa) = 0. (2.2.38)

A mode reaches cutoff when q = 0. Since pa = V when q = 0, the cutoff condition for
both modes is simply given by J0(V ) = 0. The smallest value of V for which J0(V ) = 0
is 2.405. A fiber designed such that V < 2.405 supports only the fundamental HE 11

mode. This is the single-mode condition.
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We can use Eq. (2.2.35) to estimate the core radius of single-mode fibers used
in lightwave systems. For the operating wavelength range 1.3–1.6 µm, the fiber is
generally designed to become single mode for λ > 1.2 µm. By taking λ = 1.2 µm,
n1 = 1.45, and ∆ = 5× 10−3, Eq. (2.2.35) shows that V < 2.405 for a core radius
a < 3.2 µm. The required core radius can be increased to about 4 µm by decreasing ∆
to 3×10−3. Indeed, most telecommunication fibers are designed with a ≈ 4 µm.

The mode index n̄ at the operating wavelength can be obtained by using Eq. (2.2.36),
according to which

n̄ = n2 + b(n1−n2) ≈ n2(1+ b∆) (2.2.39)

and by using Fig. 2.5, which provides b as a function of V for the HE 11 mode. An
analytic approximation for b is [15]

b(V) ≈ (1.1428−0.9960/V)2 (2.2.40)

and is accurate to within 0.2% for V in the range 1.5–2.5.
The field distribution of the fundamental mode is obtained by using Eqs. (2.2.27)–

(2.2.32). The axial components Ez and Hz are quite small for ∆ 
 1. Hence, the HE11

mode is approximately linearly polarized for weakly guiding fibers. It is also denoted
as LP01, following an alternative terminology in which all fiber modes are assumed to
be linearly polarized [33]. One of the transverse components can be taken as zero for
a linearly polarized mode. If we set Ey = 0, the Ex component of the electric field for
the HE11 mode is given by [15]

Ex = E0

{
[J0(pρ)/J0(pa)]exp(iβ z) ; ρ ≤ a,
[K0(qρ)/K0(qa)]exp(iβ z); ρ > a,

(2.2.41)

where E0 is a constant related to the power carried by the mode. The dominant com-
ponent of the corresponding magnetic field is given by H y = n2(ε0/µ0)1/2Ex. This
mode is linearly polarized along the x axis. The same fiber supports another mode lin-
early polarized along the y axis. In this sense a single-mode fiber actually supports two
orthogonally polarized modes that are degenerate and have the same mode index.

Fiber Birefringence

The degenerate nature of the orthogonally polarized modes holds only for an ideal
single-mode fiber with a perfectly cylindrical core of uniform diameter. Real fibers
exhibit considerable variation in the shape of their core along the fiber length. They
may also experience nonuniform stress such that the cylindrical symmetry of the fiber
is broken. Degeneracy between the orthogonally polarized fiber modes is removed
because of these factors, and the fiber acquires birefringence. The degree of modal
birefringence is defined by

Bm = |n̄x − n̄y|, (2.2.42)

where n̄x and n̄y are the mode indices for the orthogonally polarized fiber modes. Bire-
fringence leads to a periodic power exchange between the two polarization compo-
nents. The period, referred to as the beat length, is given by

LB = λ/Bm. (2.2.43)
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Figure 2.6: State of polarization in a birefringent fiber over one beat length. Input beam is
linearly polarized at 45◦ with respect to the slow and fast axes.

Typically, Bm ∼ 10−7, and LB ∼ 10 m for λ ∼ 1 µm. From a physical viewpoint,
linearly polarized light remains linearly polarized only when it is polarized along one
of the principal axes. Otherwise, its state of polarization changes along the fiber length
from linear to elliptical, and then back to linear, in a periodic manner over the length
LB. Figure 2.6 shows schematically such a periodic change in the state of polarization
for a fiber of constant birefringence B. The fast axis in this figure corresponds to the
axis along which the mode index is smaller. The other axis is called the slow axis.

In conventional single-mode fibers, birefringence is not constant along the fiber but
changes randomly, both in magnitude and direction, because of variations in the core
shape (elliptical rather than circular) and the anisotropic stress acting on the core. As
a result, light launched into the fiber with linear polarization quickly reaches a state
of arbitrary polarization. Moreover, different frequency components of a pulse acquire
different polarization states, resulting in pulse broadening. This phenomenon is called
polarization-mode dispersion (PMD) and becomes a limiting factor for optical com-
munication systems operating at high bit rates. It is possible to make fibers for which
random fluctuations in the core shape and size are not the governing factor in determin-
ing the state of polarization. Such fibers are called polarization-maintaining fibers. A
large amount of birefringence is introduced intentionally in these fibers through design
modifications so that small random birefringence fluctuations do not affect the light
polarization significantly. Typically, Bm ∼ 10−4 for such fibers.

Spot Size

Since the field distribution given by Eq. (2.2.41) is cumbersome to use in practice, it is
often approximated by a Gaussian distribution of the form

Ex = Aexp(−ρ2/w2)exp(iβ z), (2.2.44)

where w is the field radius and is referred to as the spot size. It is determined by fitting
the exact distribution to the Gaussian function or by following a variational proce-
dure [35]. Figure 2.7 shows the dependence of w/a on the V parameter. A comparison
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Figure 2.7: (a) Normalized spot size w/a as a function of the V parameter obtained by fitting the
fundamental fiber mode to a Gaussian distribution; (b) quality of fit for V = 2.4. (After Ref. [35];
c©1978 OSA; reprinted with permission.)

of the actual field distribution with the fitted Gaussian is also shown for V = 2.4. The
quality of fit is generally quite good for values of V in the neighborhood of 2. The spot
size w can be determined from Fig. 2.7. It can also be determined from an analytic
approximation accurate to within 1% for 1.2 < V < 2.4 and given by [35]

w/a ≈ 0.65+ 1.619V−3/2 + 2.879V−6. (2.2.45)

The effective core area, defined as Aeff = πw2, is an important parameter for optical
fibers as it determines how tightly light is confined to the core. It will be seen later that
the nonlinear effects are stronger in fibers with smaller values of A eff.

The fraction of the power contained in the core can be obtained by using Eq.
(2.2.44) and is given by the confinement factor

Γ =
Pcore

Ptotal
=

∫ a
0 |Ex|2ρ dρ∫ ∞
0 |Ex|2ρ dρ

= 1− exp

(
−2a2

w2

)
. (2.2.46)

Equations (2.2.45) and (2.2.46) determine the fraction of the mode power contained
inside the core for a given value of V . Although nearly 75% of the mode power resides
in the core for V = 2, this percentage drops down to 20% for V = 1. For this reason most
telecommunication single-mode fibers are designed to operate in the range 2 <V < 2.4.

2.3 Dispersion in Single-Mode Fibers

It was seen in Section 2.1 that intermodal dispersion in multimode fibers leads to con-
siderable broadening of short optical pulses (∼ 10 ns/km). In the geometrical-optics
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description, such broadening was attributed to different paths followed by different
rays. In the modal description it is related to the different mode indices (or group ve-
locities) associated with different modes. The main advantage of single-mode fibers
is that intermodal dispersion is absent simply because the energy of the injected pulse
is transported by a single mode. However, pulse broadening does not disappear al-
together. The group velocity associated with the fundamental mode is frequency de-
pendent because of chromatic dispersion. As a result, different spectral components
of the pulse travel at slightly different group velocities, a phenomenon referred to as
group-velocity dispersion (GVD), intramodal dispersion, or simply fiber dispersion.
Intramodal dispersion has two contributions, material dispersion and waveguide dis-
persion. We consider both of them and discuss how GVD limits the performance of
lightwave systems employing single-mode fibers.

2.3.1 Group-Velocity Dispersion

Consider a single-mode fiber of length L. A specific spectral component at the fre-
quency ω would arrive at the output end of the fiber after a time delay T = L/v g, where
vg is the group velocity, defined as [22]

vg = (dβ/dω)−1. (2.3.1)

By using β = n̄k0 = n̄ω/c in Eq. (2.3.1), one can show that vg = c/n̄g, where n̄g is the
group index given by

n̄g = n̄+ ω(dn̄/dω) . (2.3.2)

The frequency dependence of the group velocity leads to pulse broadening simply be-
cause different spectral components of the pulse disperse during propagation and do
not arrive simultaneously at the fiber output. If ∆ω is the spectral width of the pulse,
the extent of pulse broadening for a fiber of length L is governed by

∆T =
dT
dω

∆ω =
d

dω

(
L
vg

)
∆ω = L

d2β
dω2 ∆ω = Lβ2∆ω , (2.3.3)

where Eq. (2.3.1) was used. The parameter β 2 = d2β/dω2 is known as the GVD
parameter. It determines how much an optical pulse would broaden on propagation
inside the fiber.

In some optical communication systems, the frequency spread ∆ω is determined
by the range of wavelengths ∆λ emitted by the optical source. It is customary to use
∆λ in place of ∆ω . By using ω = 2πc/λ and ∆ω = (−2πc/λ 2)∆λ , Eq. (2.3.3) can be
written as

∆T =
d

dλ

(
L
vg

)
∆λ = DL∆λ , (2.3.4)

where

D =
d

dλ

(
1
vg

)
= −2πc

λ 2 β2. (2.3.5)

D is called the dispersion parameter and is expressed in units of ps/(km-nm).
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The effect of dispersion on the bit rate B can be estimated by using the criterion
B∆T < 1 in a manner similar to that used in Section 2.1. By using ∆T from Eq. (2.3.4)
this condition becomes

BL|D|∆λ < 1. (2.3.6)

Equation (2.3.6) provides an order-of-magnitude estimate of the BL product offered
by single-mode fibers. The wavelength dependence of D is studied in the next two
subsections. For standard silica fibers, D is relatively small in the wavelength region
near 1.3 µm [D ∼ 1 ps/(km-nm)]. For a semiconductor laser, the spectral width ∆λ is
2–4 nm even when the laser operates in several longitudinal modes. The BL product
of such lightwave systems can exceed 100 (Gb/s)-km. Indeed, 1.3-µm telecommu-
nication systems typically operate at a bit rate of 2 Gb/s with a repeater spacing of
40–50 km. The BL product of single-mode fibers can exceed 1 (Tb/s)-km when single-
mode semiconductor lasers (see Section 3.3) are used to reduce ∆λ below 1 nm.

The dispersion parameter D can vary considerably when the operating wavelength
is shifted from 1.3 µm. The wavelength dependence of D is governed by the frequency
dependence of the mode index n̄. From Eq. (2.3.5), D can be written as

D = −2πc
λ 2

d
dω

(
1
vg

)
= −2π

λ 2

(
2

dn̄
dω

+ ω
d2n̄
dω2

)
, (2.3.7)

where Eq. (2.3.2) was used. If we substitute n̄ from Eq. (2.2.39) and use Eq. (2.2.35),
D can be written as the sum of two terms,

D = DM + DW , (2.3.8)

where the material dispersion DM and the waveguide dispersion DW are given by

DM = −2π
λ 2

dn2g

dω
=

1
c

dn2g

dλ
, (2.3.9)

DW = −2π∆
λ 2

[
n2

2g

n2ω
Vd2(Vb)

dV 2 +
dn2g

dω
d(Vb)

dV

]
. (2.3.10)

Here n2g is the group index of the cladding material and the parameters V and b are
given by Eqs. (2.2.35) and (2.2.36), respectively. In obtaining Eqs. (2.3.8)–(2.3.10)
the parameter ∆ was assumed to be frequency independent. A third term known as
differential material dispersion should be added to Eq. (2.3.8) when d∆/dω �= 0. Its
contribution is, however, negligible in practice.

2.3.2 Material Dispersion

Material dispersion occurs because the refractive index of silica, the material used for
fiber fabrication, changes with the optical frequency ω . On a fundamental level, the
origin of material dispersion is related to the characteristic resonance frequencies at
which the material absorbs the electromagnetic radiation. Far from the medium reso-
nances, the refractive index n(ω) is well approximated by the Sellmeier equation [36]

n2(ω) = 1+
M

∑
j=1

B jω2
j

ω2
j −ω2

, (2.3.11)
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Figure 2.8: Variation of refractive index n and group index ng with wavelength for fused silica.

where ω j is the resonance frequency and B j is the oscillator strength. Here n stands for
n1 or n2, depending on whether the dispersive properties of the core or the cladding are
considered. The sum in Eq. (2.3.11) extends over all material resonances that contribute
in the frequency range of interest. In the case of optical fibers, the parameters Bj and
ω j are obtained empirically by fitting the measured dispersion curves to Eq. (2.3.11)
with M = 3. They depend on the amount of dopants and have been tabulated for several
kinds of fibers [12]. For pure silica these parameters are found to be B1 = 0.6961663,
B2 = 0.4079426, B3 = 0.8974794, λ1 = 0.0684043 µm, λ2 = 0.1162414 µm, and λ3 =
9.896161 µm, where λ j = 2πc/ω j with j = 1–3 [36]. The group index ng = n +
ω(dn/dω) can be obtained by using these parameter values.

Figure 2.8 shows the wavelength dependence of n and n g in the range 0.5–1.6 µm
for fused silica. Material dispersion DM is related to the slope of ng by the relation
DM = c−1(dng/dλ ) [Eq. (2.3.9)]. It turns out that dng/dλ = 0 at λ = 1.276 µm. This
wavelength is referred to as the zero-dispersion wavelength λZD, since DM = 0 at λ =
λZD. The dispersion parameter DM is negative below λZD and becomes positive above
that. In the wavelength range 1.25–1.66 µm it can be approximated by an empirical
relation

DM ≈ 122(1−λZD/λ ). (2.3.12)

It should be stressed that λZD = 1.276 µm only for pure silica. It can vary in the
range 1.27–1.29 µm for optical fibers whose core and cladding are doped to vary the
refractive index. The zero-dispersion wavelength of optical fibers also depends on the
core radius a and the index step ∆ through the waveguide contribution to the total
dispersion.
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Figure 2.9: Variation of b and its derivatives d(Vb)/dV and V [d2(Vb)/dV 2] with the V param-
eter. (After Ref. [33]; c©1971 OSA; reprinted with permission.)

2.3.3 Waveguide Dispersion

The contribution of waveguide dispersion DW to the dispersion parameter D is given
by Eq. (2.3.10) and depends on the V parameter of the fiber. Figure 2.9 shows how
d(Vb)/dV and Vd2(Vb)/dV 2 change with V . Since both derivatives are positive, DW

is negative in the entire wavelength range 0–1.6 µm. On the other hand, DM is negative
for wavelengths below λZD and becomes positive above that. Figure 2.10 shows DM ,
DW , and their sum D = DM + DW , for a typical single-mode fiber. The main effect of
waveguide dispersion is to shift λZD by an amount 30–40 nm so that the total dispersion
is zero near 1.31 µm. It also reduces D from its material value DM in the wavelength
range 1.3–1.6 µm that is of interest for optical communication systems. Typical values
of D are in the range 15–18 ps/(km-nm) near 1.55 µm. This wavelength region is of
considerable interest for lightwave systems, since, as discussed in Section 2.5, the fiber
loss is minimum near 1.55 µm. High values of D limit the performance of 1.55-µm
lightwave systems.

Since the waveguide contribution DW depends on fiber parameters such as the core
radius a and the index difference ∆, it is possible to design the fiber such that λ ZD

is shifted into the vicinity of 1.55 µm [37], [38]. Such fibers are called dispersion-
shifted fibers. It is also possible to tailor the waveguide contribution such that the
total dispersion D is relatively small over a wide wavelength range extending from
1.3 to 1.6 µm [39]–[41]. Such fibers are called dispersion-flattened fibers. Figure
2.11 shows typical examples of the wavelength dependence of D for standard (conven-
tional), dispersion-shifted, and dispersion-flattened fibers. The design of dispersion-
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Figure 2.10: Total dispersion D and relative contributions of material dispersion DM and wave-
guide dispersion DW for a conventional single-mode fiber. The zero-dispersion wavelength shifts
to a higher value because of the waveguide contribution.

modified fibers involves the use of multiple cladding layers and a tailoring of the
refractive-index profile [37]–[43]. Waveguide dispersion can be used to produce disper-
sion-decreasing fibers in which GVD decreases along the fiber length because of ax-
ial variations in the core radius. In another kind of fibers, known as the dispersion-
compensating fibers, GVD is made normal and has a relatively large magnitude. Ta-
ble 2.1 lists the dispersion characteristics of several commercially available fibers.

2.3.4 Higher-Order Dispersion

It appears from Eq. (2.3.6) that the BL product of a single-mode fiber can be increased
indefinitely by operating at the zero-dispersion wavelength λ ZD where D = 0. The
dispersive effects, however, do not disappear completely at λ = λ ZD. Optical pulses
still experience broadening because of higher-order dispersive effects. This feature
can be understood by noting that D cannot be made zero at all wavelengths contained
within the pulse spectrum centered at λZD. Clearly, the wavelength dependence of D
will play a role in pulse broadening. Higher-order dispersive effects are governed by the
dispersion slope S = dD/dλ . The parameter S is also called a differential-dispersion
parameter. By using Eq. (2.3.5) it can be written as

S = (2πc/λ 2)2β3 +(4πc/λ 3)β2 , (2.3.13)

where β3 = dβ2/dω ≡ d3β/dω3 is the third-order dispersion parameter. At λ = λZD,
β2 = 0, and S is proportional to β3.

The numerical value of the dispersion slope S plays an important role in the design
of modern WDM systems. Since S > 0 for most fibers, different channels have slightly
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Figure 2.11: Typical wavelength dependence of the dispersion parameter D for standard,
dispersion-shifted, and dispersion-flattened fibers.

different GVD values. This feature makes it difficult to compensate dispersion for all
channels simultaneously. To solve this problem, new kind of fibers have been devel-
oped for which S is either small (reduced-slope fibers) or negative (reverse-dispersion
fibers). Table 2.1 lists the values of dispersion slopes for several commercially avail-
able fibers.

It may appear from Eq. (2.3.6) that the limiting bit rate of a channel operating at
λ = λZD will be infinitely large. However, this is not the case since S or β3 becomes
the limiting factor in that case. We can estimate the limiting bit rate by noting that
for a source of spectral width ∆λ , the effective value of dispersion parameter becomes
D = S∆λ . The limiting bit rate–distance product can now be obtained by using Eq.
(2.3.6) with this value of D. The resulting condition becomes

BL|S|(∆λ )2 < 1. (2.3.14)

For a multimode semiconductor laser with ∆λ = 2 nm and a dispersion-shifted fiber
with S = 0.05 ps/(km-nm2) at λ = 1.55 µm, the BL product approaches 5 (Tb/s)-km.
Further improvement is possible by using single-mode semiconductor lasers.

2.3.5 Polarization-Mode Dispersion

A potential source of pulse broadening is related to fiber birefringence. As discussed
in Section 2.2.3, small departures from perfect cylindrical symmetry lead to birefrin-
gence because of different mode indices associated with the orthogonally polarized
components of the fundamental fiber mode. If the input pulse excites both polariza-
tion components, it becomes broader as the two components disperse along the fiber
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Table 2.1 Characteristics of several commercial fibers

Fiber Type and Aeff λZD D (C band) Slope S
Trade Name (µm2) (nm) [ps/(km-nm)] [ps/(km-nm2)]
Corning SMF-28 80 1302–1322 16 to 19 0.090
Lucent AllWave 80 1300–1322 17 to 20 0.088
Alcatel ColorLock 80 1300–1320 16 to 19 0.090
Corning Vascade 101 1300–1310 18 to 20 0.060
Lucent TrueWave-RS 50 1470–1490 2.6 to 6 0.050
Corning LEAF 72 1490–1500 2 to 6 0.060
Lucent TrueWave-XL 72 1570–1580 −1.4 to −4.6 0.112
Alcatel TeraLight 65 1440–1450 5.5 to 10 0.058

because of their different group velocities. This phenomenon is called the PMD and
has been studied extensively because it limits the performance of modern lightwave
systems [44]–[55].

In fibers with constant birefringence (e.g., polarization-maintaining fibers), pulse
broadening can be estimated from the time delay ∆T between the two polarization
components during propagation of the pulse. For a fiber of length L, ∆T is given by

∆T =
∣∣∣∣ L
vgx

− L
vgy

∣∣∣∣ = L|β1x −β1y| = L(∆β1), (2.3.15)

where the subscripts x and y identify the two orthogonally polarized modes and ∆β 1 is
related to the difference in group velocities along the two principal states of polariza-
tion [44]. Equation (2.3.1) was used to relate the group velocity vg to the propagation
constant β . Similar to the case of intermodal dispersion discussed in Section 2.1.1,
the quantity ∆T/L is a measure of PMD. For polarization-maintaining fibers, ∆T/L is
quite large (∼ 1 ns/km) when the two components are equally excited at the fiber input
but can be reduced to zero by launching light along one of the principal axes.

The situation is somewhat different for conventional fibers in which birefringence
varies along the fiber in a random fashion. It is intuitively clear that the polarization
state of light propagating in fibers with randomly varying birefringence will generally
be elliptical and would change randomly along the fiber during propagation. In the
case of optical pulses, the polarization state will also be different for different spectral
components of the pulse. The final polarization state is not of concern for most light-
wave systems as photodetectors used inside optical receivers are insensitive to the state
of polarization unless a coherent detection scheme is employed. What affects such
systems is not the random polarization state but pulse broadening induced by random
changes in the birefringence. This is referred to as PMD-induced pulse broadening.

The analytical treatment of PMD is quite complex in general because of its statis-
tical nature. A simple model divides the fiber into a large number of segments. Both
the degree of birefringence and the orientation of the principal axes remain constant
in each section but change randomly from section to section. In effect, each fiber sec-
tion can be treated as a phase plate using a Jones matrix [44]. Propagation of each
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frequency component associated with an optical pulse through the entire fiber length is
then governed by a composite Jones matrix obtained by multiplying individual Jones
matrices for each fiber section. The composite Jones matrix shows that two principal
states of polarization exist for any fiber such that, when a pulse is polarized along them,
the polarization state at fiber output is frequency independent to first order, in spite of
random changes in fiber birefringence. These states are analogous to the slow and fast
axes associated with polarization-maintaining fibers. An optical pulse not polarized
along these two principal states splits into two parts which travel at different speeds.
The differential group delay ∆T is largest for the two principal states of polarization.

The principal states of polarization provide a convenient basis for calculating the
moments of ∆T . The PMD-induced pulse broadening is characterized by the root-
mean-square (RMS) value of ∆T , obtained after averaging over random birefringence
changes. Several approaches have been used to calculate this average. The variance
σ2

T ≡ 〈(∆T )2〉 turns out to be the same in all cases and is given by [46]

σ2
T (z) = 2(∆β1)2l2

c [exp(−z/lc)+ z/lc −1], (2.3.16)

where lc is the correlation length defined as the length over which two polarization
components remain correlated; its value can vary over a wide range from 1 m to 1 km
for different fibers, typical values being ∼ 10 m.

For short distances such that z 
 lc, σT = (∆β1)z from Eq. (2.3.16), as expected
for a polarization-maintaining fiber. For distances z > 1 km, a good estimate of pulse
broadening is obtained using z 
 lc. For a fiber of length L, σT in this approximation
becomes

σT ≈ (∆β1)
√

2lcL ≡ Dp

√
L, (2.3.17)

where Dp is the PMD parameter. Measured values of Dp vary from fiber to fiber in the
range Dp = 0.01–10 ps/

√
km. Fibers installed during the 1980s have relatively large

PMD such that Dp > 0.1 ps/
√

km. In contrast, modern fibers are designed to have low
PMD, and typically Dp < 0.1 ps/

√
km for them. Because of the

√
L dependence, PMD-

induced pulse broadening is relatively small compared with the GVD effects. Indeed,
σT ∼ 1 ps for fiber lengths ∼100 km and can be ignored for pulse widths >10 ps.
However, PMD becomes a limiting factor for lightwave systems designed to operate
over long distances at high bit rates [48]–[55]. Several schemes have been developed
for compensating the PMD effects (see Section 7.9).

Several other factors need to be considered in practice. The derivation of Eq.
(2.3.16) assumes that the fiber link has no elements exhibiting polarization-dependent
loss or gain. The presence of polarization-dependent losses can induce additional
broadening [50]. Also, the effects of second and higher-order PMD become impor-
tant at high bit rates (40 Gb/s or more) or for systems in which the first-order effects
are eliminated using a PMD compensator [54].

2.4 Dispersion-Induced Limitations

The discussion of pulse broadening in Section 2.3.1 is based on an intuitive phe-
nomenological approach. It provides a first-order estimate for pulses whose spectral
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width is dominated by the spectrum of the optical source. In general, the extent of
pulse broadening depends on the width and the shape of input pulses [56]. In this
section we discuss pulse broadening by using the wave equation (2.2.16).

2.4.1 Basic Propagation Equation

The analysis of fiber modes in Section 2.2.2 showed that each frequency component of
the optical field propagates in a single-mode fiber as

Ẽ(r,ω) = x̂F(x,y)B̃(0,ω)exp(iβ z), (2.4.1)

where x̂ is the polarization unit vector, B̃(0,ω) is the initial amplitude, and β is the
propagation constant. The field distribution F(x,y) of the fundamental fiber mode can
be approximated by the Gaussian distribution given in Eq. (2.2.44). In general, F(x,y)
also depends on ω , but this dependence can be ignored for pulses whose spectral width
∆ω is much smaller than ω0—a condition satisfied by pulses used in lightwave systems.
Here ω0 is the frequency at which the pulse spectrum is centered; it is referred to as the
carrier frequency.

Different spectral components of an optical pulse propagate inside the fiber accord-
ing to the simple relation

B̃(z,ω) = B̃(0,ω)exp(iβ z). (2.4.2)

The amplitude in the time domain is obtained by taking the inverse Fourier transform
and is given by

B(z,t) =
1

2π

∫ ∞

−∞
B̃(z,ω)exp(−iωt)dω . (2.4.3)

The initial spectral amplitude B̃(0,ω) is just the Fourier transform of the input ampli-
tude B(0,t).

Pulse broadening results from the frequency dependence of β . For pulses for which
∆ω 
 ω0, it is useful to expand β (ω) in a Taylor series around the carrier frequency
ω0 and retain terms up to third order. In this quasi-monochromatic approximation,

β (ω) = n̄(ω)
ω
c
≈ β0 + β1(∆ω)+

β2

2
(∆ω)2 +

β3

6
(∆ω)3, (2.4.4)

where ∆ω = ω −ω0 and βm = (dmβ/dωm)ω=ω0 . From Eq. (2.3.1) β1 = 1/vg, where
vg is the group velocity. The GVD coefficient β2 is related to the dispersion parameter
D by Eq. (2.3.5), whereas β3 is related to the dispersion slope S through Eq. (2.3.13).
We substitute Eqs. (2.4.2) and (2.4.4) in Eq. (2.4.3) and introduce a slowly varying
amplitude A(z,t) of the pulse envelope as

B(z,t) = A(z,t)exp[i(β0z−ω0t)]. (2.4.5)

The amplitude A(z,t) is found to be given by

A(z,t) =
1

2π

∫ ∞

−∞
d(∆ω)Ã(0,∆ω)

×exp

[
iβ1z∆ω +

i
2

β2z(∆ω)2 +
i
6

β3z(∆ω)3 − i(∆ω)t
]
, (2.4.6)
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where Ã(0,∆ω) ≡ B̃(0,ω) is the Fourier transform of A(0,t).
By calculating ∂A/∂ z and noting that ∆ω is replaced by i(∂A/∂ t) in the time do-

main, Eq. (2.4.6) can be written as [31]

∂A
∂ z

+ β1
∂A
∂ t

+
iβ2

2
∂ 2A
∂ t2 − β3

6
∂ 3A
∂ t3 = 0. (2.4.7)

This is the basic propagation equation that governs pulse evolution inside a single-mode
fiber. In the absence of dispersion (β2 = β3 = 0), the optical pulse propagates without
change in its shape such that A(z,t) = A(0,t −β1z). Transforming to a reference frame
moving with the pulse and introducing the new coordinates

t ′ = t −β1z and z′ = z, (2.4.8)

the β1 term can be eliminated in Eq. (2.4.7) to yield

∂A
∂ z′

+
iβ2

2
∂ 2A
∂ t ′2

− β3

6
∂ 3A
∂ t ′3

= 0. (2.4.9)

For simplicity of notation, we drop the primes over z ′ and t ′ in this and the following
chapters whenever no confusion is likely to arise.

2.4.2 Chirped Gaussian Pulses

As a simple application of Eq. (2.4.9), let us consider the propagation of chirped Gaus-
sian pulses inside optical fibers by choosing the initial field as

A(0,t) = A0 exp

[
−1+ iC

2

(
t

T0

)2
]

, (2.4.10)

where A0 is the peak amplitude. The parameter T0 represents the half-width at 1/e
intensity point. It is related to the full-width at half-maximum (FWHM) of the pulse
by the relation

TFWHM = 2(ln2)1/2T0 ≈ 1.665T0. (2.4.11)

The parameter C governs the frequency chirp imposed on the pulse. A pulse is said to
be chirped if its carrier frequency changes with time. The frequency change is related
to the phase derivative and is given by

δω(t) = −∂φ
∂ t

=
C

T 2
0

t, (2.4.12)

where φ is the phase of A(0,t). The time-dependent frequency shift δω is called the
chirp. The spectrum of a chirped pulse is broader than that of the unchirped pulse. This
can be seen by taking the Fourier transform of Eq. (2.4.10) so that

Ã(0,ω) = A0

(
2πT 2

0

1+ iC

)1/2

exp

[
− ω2T 2

0

2(1+ iC)

]
. (2.4.13)
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The spectral half-width (at 1/e intensity point) is given by

∆ω0 = (1+C2)1/2T−1
0 . (2.4.14)

In the absence of frequency chirp (C = 0), the spectral width satisfies the relation
∆ω0T0 = 1. Such a pulse has the narrowest spectrum and is called transform-limited.
The spectral width is enhanced by a factor of (1+C 2)1/2 in the presence of linear chirp,
as seen in Eq. (2.4.14).

The pulse-propagation equation (2.4.9) can be easily solved in the Fourier domain.
Its solution is [see Eq. (2.4.6)]

A(z,t) =
1

2π

∫ ∞

−∞
Ã(0,ω)exp

(
i
2

β2zω2 +
i
6

β3zω3 − iωt

)
dω , (2.4.15)

where Ã(0,ω) is given by Eq. (2.4.13) for the Gaussian input pulse. Let us first con-
sider the case in which the carrier wavelength is far away from the zero-dispersion
wavelength so that the contribution of the β3 term is negligible. The integration in Eq.
(2.4.15) can be performed analytically with the result

A(z,t) =
A0√
Q(z)

exp

[
− (1+ iC)t2

2T 2
0 Q(z)

]
, (2.4.16)

where Q(z) = 1 +(C− i)β2z/T 2
0 . This equation shows that a Gaussian pulse remains

Gaussian on propagation but its width, chirp, and amplitude change as dictated by the
factor Q(z). For example, the chirp at a distance z changes from its initial value C to
become C1(z) = C +(1+C2)β2z/T 2

0 .
Changes in the pulse width with z are quantified through the broadening factor

given by

T1

T0
=

[(
1+

Cβ2z

T 2
0

)2

+
(

β2z

T 2
0

)2
]1/2

, (2.4.17)

where T1 is the half-width defined similar to T0. Figure 2.12 shows the broadening
factor T1/T0 as a function of the propagation distance z/LD, where LD = T 2

0 /|β2| is
the dispersion length. An unchirped pulse (C = 0) broadens as [1 +(z/L D)2]1/2 and
its width increases by a factor of

√
2 at z = LD. The chirped pulse, on the other hand,

may broaden or compress depending on whether β 2 and C have the same or opposite
signs. For β2C > 0 the chirped Gaussian pulse broadens monotonically at a rate faster
than the unchirped pulse. For β2C < 0, the pulse width initially decreases and becomes
minimum at a distance

zmin =
[|C|/(1+C2)

]
LD. (2.4.18)

The minimum value depends on the chirp parameter as

T min
1 = T0/(1+C2)1/2. (2.4.19)

Physically, when β2C < 0, the GVD-induced chirp counteracts the initial chirp, and the
effective chirp decreases until it vanishes at z = zmin.
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Figure 2.12: Variation of broadening factor with propagated distance for a chirped Gaussian
input pulse. Dashed curve corresponds to the case of an unchirped Gaussian pulse. For β2 < 0
the same curves are obtained if the sign of the chirp parameter C is reversed.

Equation (2.4.17) can be generalized to include higher-order dispersion governed
by β3 in Eq. (2.4.15). The integral can still be performed in closed form in terms of
an Airy function [57]. However, the pulse no longer remains Gaussian on propagation
and develops a tail with an oscillatory structure. Such pulses cannot be properly char-
acterized by their FWHM. A proper measure of the pulse width is the RMS width of
the pulse defined as

σ =
[〈t2〉− 〈t〉2]1/2

, (2.4.20)

where the angle brackets denote averaging with respect to the intensity profile, i.e.,

〈tm〉 =
∫ ∞
−∞ tm|A(z,t)|2 dt∫ ∞
−∞ |A(z,t)|2 dt

. (2.4.21)

The broadening factor defined as σ/σ0, where σ0 is the RMS width of the input Gaus-
sian pulse (σ0 = T0/

√
2) can be calculated following the analysis of Appendix C and

is given by [56]

σ2

σ2
0

=
(

1+
Cβ2L

2σ 2
0

)2

+
(

β2L

2σ 2
0

)2

+(1+C2)2

(
β3L

4
√

2σ 3
0

)2

, (2.4.22)

where L is the fiber length.
The foregoing discussion assumes that the optical source used to produce the in-

put pulses is nearly monochromatic such that its spectral width satisfies ∆ωL 
 ∆ω0

(under continuous-wave, or CW, operation), where ∆ω 0 is given by Eq. (2.4.14). This
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condition is not always satisfied in practice. To account for the source spectral width,
we must treat the optical field as a stochastic process and consider the coherence prop-
erties of the source through the mutual coherence function [22]. Appendix C shows
how the broadening factor can be calculated in this case. When the source spectrum is
Gaussian with the RMS spectral width σω , the broadening factor is obtained from [56]

σ2

σ2
0

=
(

1+
Cβ2L

2σ 2
0

)2

+(1+V2
ω)

(
β2L

2σ 2
0

)2

+(1+C2 +V 2
ω)2

(
β3L

4
√

2σ 3
0

)2

, (2.4.23)

where Vω is defined as Vω = 2σωσ0. Equation (2.4.23) provides an expression for
dispersion-induced broadening of Gaussian input pulses under quite general condi-
tions. We use it in the next section to find the limiting bit rate of optical communication
systems.

2.4.3 Limitations on the Bit Rate

The limitation imposed on the bit rate by fiber dispersion can be quite different depend-
ing on the source spectral width. It is instructive to consider the following two cases
separately.

Optical Sources with a Large Spectral Width

This case corresponds to Vω 
 1 in Eq. (2.4.23). Consider first the case of a lightwave
system operating away from the zero-dispersion wavelength so that the β 3 term can
be neglected. The effects of frequency chirp are negligible for sources with a large
spectral width. By setting C = 0 in Eq. (2.4.23), we obtain

σ2 = σ2
0 +(β2Lσω )2 ≡ σ2

0 +(DLσλ )2, (2.4.24)

where σλ is the RMS source spectral width in wavelength units. The output pulse
width is thus given by

σ = (σ2
0 + σ2

D)1/2, (2.4.25)

where σD ≡ |D|Lσλ provides a measure of dispersion-induced broadening.
We can relate σ to the bit rate by using the criterion that the broadened pulse should

remain inside the allocated bit slot, TB = 1/B, where B is the bit rate. A commonly used
criterion is σ ≤ TB/4; for Gaussian pulses at least 95% of the pulse energy then remains
within the bit slot. The limiting bit rate is given by 4Bσ ≤ 1. In the limit σ D 
 σ0,
σ ≈ σD = |D|Lσλ , and the condition becomes

BL|D|σλ ≤ 1
4 . (2.4.26)

This condition should be compared with Eq. (2.3.6) obtained heuristically; the two
become identical if we interpret ∆λ as 4σλ in Eq. (2.3.6).

For a lightwave system operating exactly at the zero-dispersion wavelength, β 2 = 0
in Eq. (2.4.23). By setting C = 0 as before and assuming Vω 
 1, Eq. (2.4.23) can be
approximated by

σ2 = σ2
0 + 1

2 (β3Lσ2
ω )2 ≡ σ2

0 + 1
2(SLσ 2

λ )2, (2.4.27)
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where Eq. (2.3.13) was used to relate β3 to the dispersion slope S. The output pulse
width is thus given by Eq. (2.4.25) but now σ D ≡ |S|Lσ 2

λ /
√

2. As before, we can relate
σ to the limiting bit rate by the condition 4Bσ ≤ 1. When σD 
 σ0, the limitation on
the bit rate is governed by

BL|S|σ 2
λ ≤ 1/

√
8 . (2.4.28)

This condition should be compared with Eq. (2.3.14) obtained heuristically by using
simple physical arguments.

As an example, consider the case of a light-emitting diode (see Section 3.2) for
which σλ ≈ 15 nm. By using D = 17 ps/(km-nm) at 1.55 µm, Eq. (2.4.26) yields
BL < 1 (Gb/s)-km. However, if the system is designed to operate at the zero-dispersion
wavelength, BL can be increased to 20 (Gb/s)-km for a typical value S = 0.08 ps/(km-
nm2).

Optical Sources with a Small Spectral Width

This case corresponds to Vω 
 1 in Eq. (2.4.23). As before, if we neglect the β 3 term
and set C = 0, Eq. (2.4.23) can be approximated by

σ2 = σ2
0 +(β2L/2σ0)2 ≡ σ2

0 + σ2
D. (2.4.29)

A comparison with Eq. (2.4.25) reveals a major difference between the two cases. In
the case of a narrow source spectrum, dispersion-induced broadening depends on the
initial width σ0, whereas it is independent of σ0 when the spectral width of the optical
source dominates. In fact, σ can be minimized by choosing an optimum value of σ 0.
The minimum value of σ is found to occur for σ 0 = σD = (|β2|L/2)1/2 and is given
by σ = (|β2|L)1/2. The limiting bit rate is obtained by using 4Bσ ≤ 1 and leads to the
condition

B
√
|β2|L ≤ 1

4 . (2.4.30)

The main difference from Eq. (2.4.26) is that B scales as L−1/2 rather than L−1. Figure
2.13 compares the decrease in the bit rate with increasing for σ λ = 0, 1, and 5 nm L
using D = 16 ps/(km-nm). Equation (2.4.30) was used in the case σ λ = 0.

For a lightwave system operating close to the zero-dispersion wavelength, β 2 ≈ 0
in Eq. (2.4.23). Using Vω 
 1 and C = 0, the pulse width is then given by

σ2 = σ2
0 +(β3L/4σ 2

0 )2/2 ≡ σ 2
0 + σ2

D. (2.4.31)

Similar to the case of Eq. (2.4.29), σ can be minimized by optimizing the input pulse
width σ0. The minimum value of σ occurs for σ0 = (|β3|L/4)1/3 and is given by

σ = ( 3
2 )1/2(|β3|L/4)1/3. (2.4.32)

The limiting bit rate is obtained by using the condition 4Bσ ≤ 1, or

B(|β3|L)1/3 ≤ 0.324. (2.4.33)

The dispersive effects are most forgiving in this case. When β 3 = 0.1 ps3/km, the bit
rate can be as large as 150 Gb/s for L = 100 km. It decreases to only about 70 Gb/s
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Figure 2.13: Limiting bit rate of single-mode fibers as a function of the fiber length for σλ = 0,
1, and 5 nm. The case σλ = 0 corresponds to the case of an optical source whose spectral width
is much smaller than the bit rate.

even when L increases by a factor of 10 because of the L−1/3 dependence of the bit rate
on the fiber length. The dashed line in Fig. 2.13 shows this dependence by using Eq.
(2.4.33) with β3 = 0.1 ps3/km. Clearly, the performance of a lightwave system can be
improved considerably by operating it near the zero-dispersion wavelength of the fiber
and using optical sources with a relatively narrow spectral width.

Effect of Frequency Chirp

The input pulse in all preceding cases has been assumed to be an unchirped Gaussian
pulse. In practice, optical pulses are often non-Gaussian and may exhibit considerable
chirp. A super-Gaussian model has been used to study the bit-rate limitation imposed
by fiber dispersion for a NRZ-format bit stream [58]. In this model, Eq. (2.4.10) is
replaced by

A(0,T ) = A0 exp

[
−1+ iC

2

(
t

T0

)2m
]

, (2.4.34)

where the parameter m controls the pulse shape. Chirped Gaussian pulses correspond
to m = 1. For large value of m the pulse becomes nearly rectangular with sharp leading
and trailing edges. The output pulse shape can be obtained by solving Eq. (2.4.9)
numerically. The limiting bit rate–distance product BL is found by requiring that the
RMS pulse width does not increase above a tolerable value. Figure 2.14 shows the BL
product as a function of the chirp parameter C for Gaussian (m = 1) and super-Gaussian
(m = 3) input pulses. In both cases the fiber length L at which the pulse broadens
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Figure 2.14: Dispersion-limited BL product as a function of the chirp parameter for Gaussian
(solid curve) and super-Gaussian (dashed curve) input pulses. (After Ref. [58]; c©1986 OSA;
reprinted with permission.)

by 20% was obtained for T0 = 125 ps and β2 = −20 ps2/km. As expected, the BL
product is smaller for super-Gaussian pulses because such pulses broaden more rapidly
than Gaussian pulses. The BL product is reduced dramatically for negative values of
the chirp parameter C. This is due to enhanced broadening occurring when β 2C is
positive (see Fig. 2.12). Unfortunately, C is generally negative for directly modulated
semiconductor lasers with a typical value of −6 at 1.55 µm. Since BL < 100 (Gb/s)-km
under such conditions, fiber dispersion limits the bit rate to about 2 Gb/s for L = 50 km.
This problem can be overcome by using dispersion-shifted fibers or by using dispersion
management (see Chapter 7).

2.4.4 Fiber Bandwidth

The concept of fiber bandwidth originates from the general theory of time-invariant
linear systems [59]. If the optical fiber can be treated as a linear system, its input and
output powers should be related by a general relation

Pout(t) =
∫ ∞

−∞
h(t − t ′)Pin(t ′)dt ′. (2.4.35)

For an impulse Pin(t) = δ (t), where δ (t) is the delta function, and Pout(t) = h(t). For
this reason, h(t) is called the impulse response of the linear system. Its Fourier trans-
form,

H( f ) =
∫ ∞

−∞
h(t)exp(2π i f t)dt, (2.4.36)
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provides the frequency response and is called the transfer function. In general, |H( f )|
falls off with increasing f , indicating that the high-frequency components of the input
signal are attenuated by the fiber. In effect, the optical fiber acts as a bandpass filter.
The fiber bandwidth f3dB corresponds to the frequency f = f3dB at which |H( f )| is
reduced by a factor of 2 or by 3 dB:

|H( f3dB)/H(0)| = 1
2 . (2.4.37)

Note that f3dB is the optical bandwidth of the fiber as the optical power drops by 3 dB
at this frequency compared with the zero-frequency response. In the field of electrical
communications, the bandwidth of a linear system is defined as the frequency at which
electrical power drops by 3 dB.

Optical fibers cannot generally be treated as linear with respect to power, and Eq.
(2.4.35) does not hold for them [60]. However, this equation is approximately valid
when the source spectral width is much larger than the signal spectral width (Vω 
 1).
In that case, we can consider propagation of different spectral components indepen-
dently and add the power carried by them linearly to obtain the output power. For a
Gaussian spectrum, the transfer function H( f ) is found to be given by [61]

H( f ) =
(

1+
i f
f2

)−1/2

exp

[
− ( f/ f1)2

2(1+ i f/ f2)

]
, (2.4.38)

where the parameters f1 and f2 are given by

f1 = (2πβ2Lσω )−1 = (2π |D|Lσλ )−1, (2.4.39)

f2 = (2πβ3Lσ2
ω )−1 = [2π(S+ 2|D|/λ )Lσ 2

λ ]−1, (2.4.40)

and we used Eqs. (2.3.5) and (2.3.13) to introduce the dispersion parameters D and S.
For lightwave systems operating far away from the zero-dispersion wavelength

( f1 
 f2), the transfer function is approximately Gaussian. By using Eqs. (2.4.37)
and (2.4.38) with f 
 f2, the fiber bandwidth is given by

f3dB = (2 ln2)1/2 f1 ≈ 0.188(|D|Lσλ )−1. (2.4.41)

If we use σD = |D|Lσλ from Eq. (2.4.25), we obtain the relation f 3dBσD ≈ 0.188
between the fiber bandwidth and dispersion-induced pulse broadening. We can also get
a relation between the bandwidth and the bit rate B by using Eqs. (2.4.26) and (2.4.41).
The relation is B ≤ 1.33 f3dB and shows that the fiber bandwidth is an approximate
measure of the maximum possible bit rate of dispersion-limited lightwave systems. In
fact, Fig. 2.13 can be used to estimate f3dB and its variation with the fiber length under
different operating conditions.

For lightwave systems operating at the zero-dispersion wavelength, the transfer
function is obtained from Eq. (2.4.38) by setting D = 0. The use of Eq. (2.4.37) then
provides the following expression for the fiber bandwidth

f3dB =
√

15 f2 ≈ 0.616(SLσ 2
λ)−1. (2.4.42)
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The limiting bit rate can be related to f3dB by using Eq. (2.4.28) and is given by
B ≤ 0.574 f3dB. Again, the fiber bandwidth provides a measure of the dispersion-
limited bit rate. As a numerical estimate, consider a 1.55-µm lightwave system em-
ploying dispersion-shifted fibers and multimode semiconductor lasers. By using S =
0.05 ps/(km-nm2) and σλ = 1 nm as typical values, f3dBL ≈ 32 THz-km. By con-
trast, the bandwidth–distance product is reduced to 0.1 THz-km for standard fibers
with D = 18 ps/(km-nm).

2.5 Fiber Losses

Section 2.4 shows that fiber dispersion limits the performance of optical communi-
cation systems by broadening optical pulses as they propagate inside the fiber. Fiber
losses represent another limiting factor because they reduce the signal power reaching
the receiver. As optical receivers need a certain minimum amount of power for re-
covering the signal accurately, the transmission distance is inherently limited by fiber
losses. In fact, the use of silica fibers for optical communications became practical only
when losses were reduced to an acceptable level during the 1970s. With the advent of
optical amplifiers in the 1990s, transmission distances can exceed several thousands
kilometers by compensating accumulated losses periodically. However, low-loss fibers
are still required since spacing among amplifiers is set by fiber losses. This section is
devoted to a discussion of various loss mechanisms in optical fibers.

2.5.1 Attenuation Coefficient

Under quite general conditions, changes in the average optical power P of a bit stream
propagating inside an optical fiber are governed by Beer’s law:

dP/dz = −αP, (2.5.1)

where α is the attenuation coefficient. Although denoted by the same symbol as the
absorption coefficient in Eq. (2.2.12), α in Eq. (2.5.1) includes not only material ab-
sorption but also other sources of power attenuation. If Pin is the power launched at the
input end of a fiber of length L, the output power Pout from Eq. (2.5.1) is given by

Pout = Pin exp(−αL). (2.5.2)

It is customary to express α in units of dB/km by using the relation

α (dB/km) = −10
L

log10

(
Pout

Pin

)
≈ 4.343α, (2.5.3)

and refer to it as the fiber-loss parameter.
Fiber losses depend on the wavelength of transmitted light. Figure 2.15 shows the

loss spectrum α(λ ) of a single-mode fiber made in 1979 with 9.4-µm core diameter,
∆ = 1.9× 10−3, and 1.1-µm cutoff wavelength [11]. The fiber exhibited a loss of
only about 0.2 dB/km in the wavelength region near 1.55 µm, the lowest value first
realized in 1979. This value is close to the fundamental limit of about 0.16 dB/km for
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Figure 2.15: Loss spectrum of a single-mode fiber produced in 1979. Wavelength dependence
of several fundamental loss mechanisms is also shown. (After Ref. [11]; c©1979 IEE; reprinted
with permission.)

silica fibers. The loss spectrum exhibits a strong peak near 1.39 µm and several other
smaller peaks. A secondary minimum is found to occur near 1.3 µm, where the fiber
loss is below 0.5 dB/km. Since fiber dispersion is also minimum near 1.3 µm, this
low-loss window was used for second-generation lightwave systems. Fiber losses are
considerably higher for shorter wavelengths and exceed 5 dB/km in the visible region,
making it unsuitable for long-haul transmission. Several factors contribute to overall
losses; their relative contributions are also shown in Fig. 2.15. The two most important
among them are material absorption and Rayleigh scattering.

2.5.2 Material Absorption

Material absorption can be divided into two categories. Intrinsic absorption losses cor-
respond to absorption by fused silica (material used to make fibers) whereas extrinsic
absorption is related to losses caused by impurities within silica. Any material absorbs
at certain wavelengths corresponding to the electronic and vibrational resonances as-
sociated with specific molecules. For silica (SiO2) molecules, electronic resonances
occur in the ultraviolet region (λ < 0.4 µm), whereas vibrational resonances occur in
the infrared region (λ > 7 µm). Because of the amorphous nature of fused silica, these
resonances are in the form of absorption bands whose tails extend into the visible re-
gion. Figure 2.15 shows that intrinsic material absorption for silica in the wavelength
range 0.8–1.6 µm is below 0.1 dB/km. In fact, it is less than 0.03 dB/km in the 1.3- to
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Dispersion

Conventional Fiber

Dry Fiber

Figure 2.16: Loss and dispersion of the AllWave fiber. Loss of a conventional fiber is shown by
the gray line for comparison. (Courtesy Lucent Technologies.)

1.6-µm wavelength window commonly used for lightwave systems.
Extrinsic absorption results from the presence of impurities. Transition-metal im-

purities such as Fe, Cu, Co, Ni, Mn, and Cr absorb strongly in the wavelength range
0.6–1.6 µm. Their amount should be reduced to below 1 part per billion to obtain a loss
level below 1 dB/km. Such high-purity silica can be obtained by using modern tech-
niques. The main source of extrinsic absorption in state-of-the-art silica fibers is the
presence of water vapors. A vibrational resonance of the OH ion occurs near 2.73 µm.
Its harmonic and combination tones with silica produce absorption at the 1.39-, 1.24-,
and 0.95-µm wavelengths. The three spectral peaks seen in Fig. 2.15 occur near these
wavelengths and are due to the presence of residual water vapor in silica. Even a con-
centration of 1 part per million can cause a loss of about 50 dB/km at 1.39 µm. The
OH ion concentration is reduced to below 10−8 in modern fibers to lower the 1.39-µm
peak below 1 dB. In a new kind of fiber, known as the dry fiber, the OH ion concentra-
tion is reduced to such low levels that the 1.39-µm peak almost disappears [62]. Figure
2.16 shows the loss and dispersion profiles of such a fiber (marketed under the trade
name AllWave). Such fibers can be used to transmit WDM signals over the entire 1.30-
to1.65-µm wavelength range.

2.5.3 Rayleigh Scattering

Rayleigh scattering is a fundamental loss mechanism arising from local microscopic
fluctuations in density. Silica molecules move randomly in the molten state and freeze
in place during fiber fabrication. Density fluctuations lead to random fluctuations of
the refractive index on a scale smaller than the optical wavelength λ . Light scattering
in such a medium is known as Rayleigh scattering [22]. The scattering cross section
varies as λ−4. As a result, the intrinsic loss of silica fibers from Rayleigh scattering
can be written as

αR = C/λ 4, (2.5.4)
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where the constant C is in the range 0.7–0.9 (dB/km)-µm 4, depending on the con-
stituents of the fiber core. These values of C correspond to αR = 0.12–0.16 dB/km at
λ = 1.55 µm, indicating that fiber loss in Fig. 2.15 is dominated by Rayleigh scattering
near this wavelength.

The contribution of Rayleigh scattering can be reduced to below 0.01 dB/km for
wavelengths longer than 3 µm. Silica fibers cannot be used in this wavelength region,
since infrared absorption begins to dominate the fiber loss beyond 1.6 µm. Consider-
able effort has been directed toward finding other suitable materials with low absorption
beyond 2 µm [63]–[66]. Fluorozirconate (ZrF 4) fibers have an intrinsic material ab-
sorption of about 0.01 dB/km near 2.55 µm and have the potential for exhibiting loss
much smaller than that of silica fibers. State-of-the-art fluoride fibers, however, exhibit
a loss of about 1 dB/km because of extrinsic losses. Chalcogenide and polycrystalline
fibers exhibit minimum loss in the far-infrared region near 10 µm. The theoretically
predicted minimum value of fiber loss for such fibers is below 10−3 dB/km because of
reduced Rayleigh scattering. However, practical loss levels remain higher than those
of silica fibers [66].

2.5.4 Waveguide Imperfections

An ideal single-mode fiber with a perfect cylindrical geometry guides the optical mode
without energy leakage into the cladding layer. In practice, imperfections at the core–
cladding interface (e.g., random core-radius variations) can lead to additional losses
which contribute to the net fiber loss. The physical process behind such losses is Mie
scattering [22], occurring because of index inhomogeneities on a scale longer than the
optical wavelength. Care is generally taken to ensure that the core radius does not vary
significantly along the fiber length during manufacture. Such variations can be kept
below 1%, and the resulting scattering loss is typically below 0.03 dB/km.

Bends in the fiber constitute another source of scattering loss [67]. The reason
can be understood by using the ray picture. Normally, a guided ray hits the core–
cladding interface at an angle greater than the critical angle to experience total internal
reflection. However, the angle decreases near a bend and may become smaller than the
critical angle for tight bends. The ray would then escape out of the fiber. In the mode
description, a part of the mode energy is scattered into the cladding layer. The bending
loss is proportional to exp(−R/Rc), where R is the radius of curvature of the fiber
bend and Rc = a/(n2

1 − n2
2). For single-mode fibers, Rc = 0.2–0.4 µm typically, and

the bending loss is negligible (< 0.01 dB/km) for bend radius R > 5 mm. Since most
macroscopic bends exceed R = 5 mm, macrobending losses are negligible in practice.

A major source of fiber loss, particularly in cable form, is related to the random
axial distortions that invariably occur during cabling when the fiber is pressed against a
surface that is not perfectly smooth. Such losses are referred to as microbending losses
and have been studied extensively [68]–[72]. Microbends cause an increase in the fiber
loss for both multimode and single-mode fibers and can result in an excessively large
loss (∼ 100 dB/km) if precautions are not taken to minimize them. For single-mode
fibers, microbending losses can be minimized by choosing the V parameter as close to
the cutoff value of 2.405 as possible so that mode energy is confined primarily to the
core. In practice, the fiber is designed to have V in the range 2.0–2.4 at the operating



2.6. NONLINEAR OPTICAL EFFECTS 59

wavelength. Many other sources of optical loss exist in a fiber cable. These are related
to splices and connectors used in forming the fiber link and are often treated as a part
of the cable loss; microbending losses can also be included in the total cable loss.

2.6 Nonlinear Optical Effects

The response of any dielectric to light becomes nonlinear for intense electromagnetic
fields, and optical fibers are no exception. Even though silica is intrinsically not a
highly nonlinear material, the waveguide geometry that confines light to a small cross
section over long fiber lengths makes nonlinear effects quite important in the design of
modern lightwave systems [31]. We discuss in this section the nonlinear phenomena
that are most relevant for fiber-optic communications.

2.6.1 Stimulated Light Scattering

Rayleigh scattering, discussed in Section 2.5.3, is an example of elastic scattering for
which the frequency (or the photon energy) of scattered light remains unchanged. By
contrast, the frequency of scattered light is shifted downward during inelastic scatter-
ing. Two examples of inelastic scattering are Raman scattering and Brillouin scatter-
ing [73]. Both of them can be understood as scattering of a photon to a lower energy
photon such that the energy difference appears in the form of a phonon. The main
difference between the two is that optical phonons participate in Raman scattering,
whereas acoustic phonons participate in Brillouin scattering. Both scattering processes
result in a loss of power at the incident frequency. However, their scattering cross
sections are sufficiently small that loss is negligible at low power levels.

At high power levels, the nonlinear phenomena of stimulated Raman scattering
(SRS) and stimulated Brillouin scattering (SBS) become important. The intensity of
the scattered light in both cases grows exponentially once the incident power exceeds
a threshold value [74]. SRS and SBS were first observed in optical fibers during the
1970s [75]–[78]. Even though SRS and SBS are quite similar in their origin, different
dispersion relations for acoustic and optical phonons lead to the following differences
between the two in single-mode fibers [31]: (i) SBS occurs only in the backward di-
rection whereas SRS can occur in both directions; (ii) The scattered light is shifted
in frequency by about 10 GHz for SBS but by 13 THz for SRS (this shift is called
the Stokes shift); and (iii) the Brillouin gain spectrum is extremely narrow (bandwidth
< 100 MHz) compared with the Raman-gain spectrum that extends over 20–30 THz.
The origin of these differences lies in a relatively small value of the ratio v A/c (∼ 10−5),
where vA is the acoustic velocity in silica and c is the velocity of light.

Stimulated Brillouin Scattering

The physical process behind Brillouin scattering is the tendency of materials to become
compressed in the presence of an electric field—a phenomenon termed electrostric-
tion [73]. For an oscillating electric field at the pump frequency Ω p, this process gen-
erates an acoustic wave at some frequency Ω. Spontaneous Brillouin scattering can be
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viewed as scattering of the pump wave from this acoustic wave, resulting in creation
of a new wave at the pump frequency Ω s. The scattering process must conserve both
the energy and the momentum. The energy conservation requires that the Stokes shift
Ω equals ωp −ωs. The momentum conservation requires that the wave vectors sat-
isfy kA = kp −ks. Using the dispersion relation |kA| = Ω/vA, where vA is the acoustic
velocity, this condition determines the acoustic frequency as [31]

Ω = |kA|vA = 2vA|kp|sin(θ/2), (2.6.1)

where |kp| ≈ |ks| was used and θ represents the angle between the pump and scattered
waves. Note that Ω vanishes in the forward direction (θ = 0) and is maximum in the
backward direction (θ = π). In single-mode fibers, light can travel only in the forward
and backward directions. As a result, SBS occurs in the backward direction with a
frequency shift ΩB = 2vA|kp|. Using kp = 2π n̄/λp, where λp is the pump wavelength,
the Brillouin shift is given by

νB = ΩB/2π = 2n̄vA/λp, (2.6.2)

where n̄ is the mode index. Using vA = 5.96 km/s and n̄ = 1.45 as typical values for
silica fibers, νB = 11.1 GHz at λp = 1.55 µm. Equation (2.6.2) shows that νB scales
inversely with the pump wavelength.

Once the scattered wave is generated spontaneously, it beats with the pump and
creates a frequency component at the beat frequency ω p −ωs, which is automatically
equal to the acoustic frequency Ω. As a result, the beating term acts as source that
increases the amplitude of the sound wave, which in turn increases the amplitude of the
scattered wave, resulting in a positive feedback loop. SBS has its origin in this positive
feedback, which ultimately can transfer all power from the pump to the scattered wave.
The feedback process is governed by the following set of two coupled equations [73]:

dIp

dz
= −gBIpIs −αpIp. (2.6.3)

−dIs

dz
= +gBIpIs −αsIs, (2.6.4)

where Ip and Is are the intensities of the pump and Stokes fields, gB is the SBS gain,
and αp and αp account for fiber losses.

The SBS gain gB is frequency dependent because of a finite damping time TB of
acoustic waves (the lifetime of acoustic phonons). If the acoustic waves decay as
exp(−t/TB), the Brillouin gain has a Lorentzian spectral profile given by [77]

gB(Ω) =
gB(ΩB)

1+(Ω−ΩB)2T 2
B

. (2.6.5)

Figure 2.17 shows the Brillouin gain spectra at λ p = 1.525 µm for three different kinds
of single-mode silica fibers. Both the Brillouin shift νB and the gain bandwidth ∆νB

can vary from fiber to fiber because of the guided nature of light and the presence
of dopants in the fiber core. The fiber labeled (a) in Fig. 2.17 has a core of nearly
pure silica (germania concentration of about 0.3% per mole). The measured Brillouin
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Figure 2.17: Brillouin-gain spectra measured using a 1.525-µm pump for three fibers with dif-
ferent germania doping: (a) silica-core fiber; (b) depressed-cladding fiber; (c) dispersion-shifted
fiber. Vertical scale is arbitrary. (After Ref. [78]; c©1986 IEE; reprinted with permission.)

shift νB = 11.25 GHz is in agreement with Eq. (2.6.2). The Brillouin shift is reduced
for fibers (b) and (c) of a higher germania concentration in the fiber core. The double-
peak structure for fiber (b) results from inhomogeneous distribution of germania within
the core. The gain bandwidth in Fig. 2.17 is larger than that expected for bulk silica
(∆νB ≈ 17 MHz at λp = 1.525 µm). A part of the increase is due to the guided nature
of acoustic modes in optical fibers. However, most of the increase in bandwidth can
be attributed to variations in the core diameter along the fiber length. Because such
variations are specific to each fiber, the SBS gain bandwidth is generally different for
different fibers and can exceed 100 MHz; typical values are ∼50 MHz for λ p near
1.55 µm.

The peak value of the Brillouin gain in Eq. (2.6.5) occurs for Ω = Ω B and depends
on various material parameters such as the density and the elasto-optic coefficient [73].
For silica fibers gB ≈ 5×10−11 m/W. The threshold power level for SBS can be esti-
mated by solving Eqs. (2.6.3) and (2.6.4) and finding at what value of I p, Is grows from
noise to a significant level. The threshold power Pth = IpAeff, where Aeff is the effective
core area, satisfies the condition [74]

gBPthLeff/Aeff ≈ 21, (2.6.6)

where Leff is the effective interaction length defined as

Leff = [1− exp(−αL)]/α, (2.6.7)

and α represents fiber losses. For optical communication systems L eff can be approx-
imated by 1/α as αL 
 1 in practice. Using Aeff = πw2, where w is the spot size,
Pth can be as low as 1 mW depending on the values of w and α [77]. Once the power
launched into an optical fiber exceeds the threshold level, most of the light is reflected
backward through SBS. Clearly, SBS limits the launched power to a few milliwatts
because of its low threshold.

The preceding estimate of Pth applies to a narrowband CW beam as it neglects the
temporal and spectral characteristics of the incident light. In a lightwave system, the
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(a)

(b)

Figure 2.18: (a) Raman gain spectrum of fused silica at λp = 1 µm and (b) energy levels partic-
ipating in the SRS process. (After Ref. [75]; c©1972 AIP; reprinted with permission.)

signal is in the form of a bit stream. For a single short pulse whose width is much
smaller than the phonon lifetime, no SBS is expected to occur. However, for a high-
speed bit stream, pulses come at such a fast rate that successive pulses build up the
acoustic wave, similar to the case of a CW beam, although the SBS threshold increases.
The exact value of the average threshold power depends on the modulation format (RZ
versus NRZ) and is typically ∼5 mW. It can be increased to 10 mW or more by in-
creasing the bandwidth of the optical carrier to >200 MHz through phase modulation.
SBS does not produce interchannel crosstalk in WDM systems because the 10-GHz
frequency shift is much smaller than typical channel spacing.

Stimulated Raman Scattering

Spontaneous Raman scattering occurs in optical fibers when a pump wave is scattered
by the silica molecules. It can be understood using the energy-level diagram shown
in Fig. 2.18(b). Some pump photons give up their energy to create other photons
of reduced energy at a lower frequency; the remaining energy is absorbed by silica
molecules, which end up in an excited vibrational state. An important difference from
Brillouin scattering is that the vibrational energy levels of silica dictate the value of the
Raman shift ΩR = ωp −ωs. As an acoustic wave is not involved, spontaneous Raman
scattering is an isotropic process and occurs in all directions.

Similar to the SBS case, the Raman scattering process becomes stimulated if the
pump power exceeds a threshold value. SRS can occur in both the forward and back-
ward directions in optical fibers. Physically speaking, the beating of the pump and with
the scattered light in these two directions creates a frequency component at the beat fre-
quency ωp −ωs, which acts as a source that derives molecular oscillations. Since the
amplitude of the scattered wave increases in response to these oscillations, a positive
feedback loop sets in. In the case of forward SRS, the feedback process is governed by
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the following set of two coupled equations [31]:

dIp

dz
= −gRIpIs −αpIp, (2.6.8)

dIs

dz
= gRIpIs −αsIs, (2.6.9)

where gR is the SRS gain. In the case of backward SRS, a minus sign is added in front
of the derivative in Eq. (2.6.9), and this set of equations becomes identical to the SBS
case.

The spectrum of the Raman gain depends on the decay time associated with the
excited vibrational state. In the case of a molecular gas or liquid, the decay time is
relatively long (∼1 ns), resulting in a Raman-gain bandwidth of ∼1 GHz. In the case
for optical fibers, the bandwidth exceeds 10 THz. Figure 2.18 shows the Raman-gain
spectrum of silica fibers. The broadband and multipeak nature of the spectrum is due
to the amorphous nature of glass. More specifically, vibrational energy levels of silica
molecules merge together to form a band. As a result, the Stokes frequency ω s can
differ from the pump frequency ω p over a wide range. The maximum gain occurs
when the Raman shift ΩR ≡ ωp −ωs is about 13 THz. Another major peak occurs
near 15 THz while minor peaks persist for values of Ω R as large as 35 THz. The peak
value of the Raman gain gR is about 1× 10−13 m/W at a wavelength of 1 µm. This
value scales linearly with ωp (or inversely with the pump wavelength λ p), resulting in
gR ≈ 6×10−13 m/W at 1.55 µm.

Similar to the case of SBS, the threshold power Pth is defined as the incident power
at which half of the pump power is transferred to the Stokes field at the output end of a
fiber of length L. It is estimated from [74]

gRPthLeff/Aeff ≈ 16, (2.6.10)

where gR is the peak value of the Raman gain. As before, Leff can be approximated by
1/α . If we replace Aeff by πw2, where w is the spot size, Pth for SRS is given by

Pth ≈ 16α(πw2)/gR. (2.6.11)

If we use πw2 = 50 µm2 and α = 0.2 dB/km as the representative values, Pth is about
570 mW near 1.55 µm. It is important to emphasize that Eq. (2.6.11) provides an
order-of-magnitude estimate only as many approximations are made in its derivation.
As channel powers in optical communication systems are typically below 10 mW, SRS
is not a limiting factor for single-channel lightwave systems. However, it affects the
performance of WDM systems considerably; this aspect is covered in Chapter 8.

Both SRS and SBS can be used to advantage while designing optical communi-
cation systems because they can amplify an optical signal by transferring energy to
it from a pump beam whose wavelength is suitably chosen. SRS is especially useful
because of its extremely large bandwidth. Indeed, the Raman gain is used routinely for
compensating fiber losses in modern lightwave systems (see Chapter 6).
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2.6.2 Nonlinear Phase Modulation

The refractive index of silica was assumed to be power independent in the discussion of
fiber modes in Section 2.2. In reality, all materials behave nonlinearly at high intensities
and their refractive index increases with intensity. The physical origin of this effect
lies in the anharmonic response of electrons to optical fields, resulting in a nonlinear
susceptibility [73]. To include nonlinear refraction, we modify the core and cladding
indices of a silica fiber as [31]

n′j = n j + n̄2(P/Aeff), j = 1, 2, (2.6.12)

where n̄2 is the nonlinear-index coefficient, P is the optical power, and A eff is the effec-
tive mode area introduced earlier. The numerical value of n̄ 2 is about 2.6×10−20 m2/W
for silica fibers and varies somewhat with dopants used inside the core. Because of this
relatively small value, the nonlinear part of the refractive index is quite small (< 10 −12

at a power level of 1 mW). Nevertheless, it affects modern lightwave systems consider-
ably because of long fiber lengths. In particular, it leads to the phenomena of self- and
cross-phase modulations.

Self-Phase Modulation

If we use first-order perturbation theory to see how fiber modes are affected by the
nonlinear term in Eq. (2.6.12), we find that the mode shape does not change but the
propagation constant becomes power dependent. It can be written as [31]

β ′ = β + k0n̄2P/Aeff ≡ β + γP, (2.6.13)

where γ = 2π n̄2/(Aeffλ ) is an important nonlinear parameter with values ranging from
1 to 5 W−1/km depending on the values of Aeff and the wavelength. Noting that the
optical phase increases linearly with z as seen in Eq. (2.4.1), the γ term produces a
nonlinear phase shift given by

φNL =
∫ L

0
(β ′ −β )dz =

∫ L

0
γP(z)dz = γPinLeff, (2.6.14)

where P(z) = Pin exp(−αz) accounts for fiber losses and Leff is defined in Eq. (2.6.7).
In deriving Eq. (2.6.14) Pin was assumed to be constant. In practice, time depen-

dence of Pin makes φNL to vary with time. In fact, the optical phase changes with time
in exactly the same fashion as the optical signal. Since this nonlinear phase modula-
tion is self-induced, the nonlinear phenomenon responsible for it is called self-phase
modulation (SPM). It should be clear from Eq. (2.4.12) that SPM leads to frequency
chirping of optical pulses. In contrast with the linear chirp considered in Section 2.4,
the frequency chirp is proportional to the derivative dPin/dt and depends on the pulse
shape. Figure 2.19 shows how chirp varies with time for Gaussian (m = 1) and super-
Gaussian pulses (m = 3). The SPM-induced chirp affects the pulse shape through GVD
and often leads to additional pulse broadening [31]. In general, spectral broadening of
the pulse induced by SPM [79] increases the signal bandwidth considerably and limits
the performance of lightwave systems.
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Figure 2.19: SPM-induced frequency chirp for Gaussian (dashed curve) and super-Gaussian
(solid curve) pulses.

If fiber losses are compensated periodically using optical amplifiers, φ NL in Eq.
(2.6.14) should be multiplied by the number of amplifiers N A because the SPM-induced
phase accumulates over multiple amplifiers. To reduce the impact of SPM in lightwave
systems, it is necessary that φNL 
 1. If we use φNL = 0.1 as the maximum tolerable
value and replace Leff by 1/α for long fibers, this condition can be written as a limit on
the input peak power as

Pin < 0.1α/(γNA). (2.6.15)

For example, if γ = 2 W−1/km, NA = 10, and α = 0.2 dB/km, the input peak power is
limited to below 2.2 mW. Clearly, SPM can be a major limiting factor for long-haul
lightwave systems.

Cross-Phase Modulation

The intensity dependence of the refractive index in Eq. (2.6.12) can also lead to another
nonlinear phenomenon known as cross-phase modulation (XPM). It occurs when two
or more optical channels are transmitted simultaneously inside an optical fiber using
the WDM technique. In such systems, the nonlinear phase shift for a specific channel
depends not only on the power of that channel but also on the power of other chan-
nels [80]. The phase shift for the jth channel becomes

φNL
j = γLeff

(
Pj + 2 ∑

m�= j

Pm

)
, (2.6.16)

where the sum extends over the number of channels. The factor of 2 in Eq. (2.6.16)
has its origin in the form of the nonlinear susceptibility [31] and indicates that XPM is
twice as effective as SPM for the same amount of power. The total phase shift depends
on the powers in all channels and would vary from bit to bit depending on the bit pattern
of the neighboring channels. If we assume equal channel powers, the phase shift in the
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worst case in which all channels simultaneously carry 1 bits and all pulses overlap is
given by

φNL
j = (γ/α)(2M−1)Pj. (2.6.17)

It is difficult to estimate the impact of XPM on the performance of multichannel
lightwave systems. The reason is that the preceding discussion has implicitly assumed
that XPM acts in isolation without dispersive effects and is valid only for CW opti-
cal beams. In practice, pulses in different channels travel at different speeds. The
XPM-induced phase shift can occur only when two pulses overlap in time. For widely
separated channels they overlap for such a short time that XPM effects are virtually
negligible. On the other hand, pulses in neighboring channels will overlap long enough
for XPM effects to accumulate. These arguments show that Eq. (2.6.17) cannot be used
to estimate the limiting input power.

A common method for studying the impact of SPM and XPM uses a numerical
approach. Equation (2.4.9) can be generalized to include the SPM and XPM effects by
adding a nonlinear term. The resulting equation is known as the nonlinear Schrödinger
equation and has the form [31]

∂A
∂ z

+
iβ2

2
∂ 2A
∂ t2 = −α

2
A+ iγ|A|2A, (2.6.18)

where we neglected the third-order dispersion and added the term containing α to ac-
count for fiber losses. This equation is quite useful for designing lightwave systems
and will be used in later chapters.

Since the nonlinear parameter γ depends inversely on the effective core area, the
impact of fiber nonlinearities can be reduced considerably by enlarging A eff. As seen in
Table 2.1, Aeff is about 80 µm2 for standard fibers but reduces to 50 µm2 for dispersion-
shifted fibers. A new kind of fiber known as large effective-area fiber (LEAF) has been
developed for reducing the impact of fiber nonlinearities. The nonlinear effects are not
always detrimental for lightwave systems. Numerical solutions of Eq. (2.6.18) show
that dispersion-induced broadening of optical pulses is considerably reduced in the case
of anomalous dispersion [81]. In fact, an optical pulse can propagate without distortion
if the peak power of the pulse is chosen to correspond to a fundamental soliton. Solitons
and their use for communication systems are discussed in Chapter 9.

2.6.3 Four-Wave Mixing

The power dependence of the refractive index seen in Eq. (2.6.12) has its origin in the
third-order nonlinear susceptibility denoted by χ (3) [73]. The nonlinear phenomenon,
known as four-wave mixing (FWM), also originates from χ (3). If three optical fields
with carrier frequencies ω1, ω2, and ω3 copropagate inside the fiber simultaneously,
χ (3) generates a fourth field whose frequency ω4 is related to other frequencies by a
relation ω4 = ω1 ±ω2 ±ω3. Several frequencies corresponding to different plus and
minus sign combinations are possible in principle. In practice, most of these com-
binations do not build up because of a phase-matching requirement [31]. Frequency
combinations of the form ω4 = ω1 + ω2 −ω3 are often troublesome for multichannel
communication systems since they can become nearly phase-matched when channel
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wavelengths lie close to the zero-dispersion wavelength. In fact, the degenerate FWM
process for which ω1 = ω2 is often the dominant process and impacts the system per-
formance most.

On a fundamental level, a FWM process can be viewed as a scattering process in
which two photons of energies h̄ω1 and h̄ω2 are destroyed, and their energy appears in
the form of two new photons of energies h̄ω 3 and h̄ω4. The phase-matching condition
then stems from the requirement of momentum conservation. Since all four waves
propagate in the same direction, the phase mismatch can be written as

∆ = β (ω3)+ β (ω4)−β (ω1)−β (ω2), (2.6.19)

where β (ω) is the propagation constant for an optical field with frequency ω . In the
degenerate case, ω2 = ω1, ω3 = ω1 + Ω, and ω3 = ω1 −Ω, where Ω represents the
channel spacing. Using the Taylor expansion in Eq. (2.4.4), we find that the β 0 and
β1 terms cancel, and the phase mismatch is simply ∆ = β2Ω2. The FWM process is
completely phase matched when β2 = 0. When β2 is small (<1 ps2/km) and channel
spacing is also small (Ω < 100 GHz), this process can still occur and transfer power
from each channel to its nearest neighbors. Such a power transfer not only results in
the power loss for the channel but also induces interchannel crosstalk that degrades
the system performance severely. Modern WDM systems avoid FWM by using the
technique of dispersion management in which GVD is kept locally high in each fiber
section even though it is low on average (see Chapter 7). Commercial dispersion-
shifted fibers are designed with a dispersion of about 4 ps/(km-nm), a value found
large enough to suppress FWM.

FWM can also be useful in designing lightwave systems. It is often used for de-
multiplexing individual channels when time-division multiplexing is used in the optical
domain. It can also be used for wavelength conversion. FWM in optical fibers is some-
times used for generating a spectrally inverted signal through the process of optical
phase conjugation. As discussed in Chapter 7, this technique is useful for dispersion
compensation.

2.7 Fiber Manufacturing

The final section is devoted to the engineering aspects of optical fibers. Manufactur-
ing of fiber cables, suitable for installation in an actual lightwave system, involves
sophisticated technology with attention to many practical details. Since such details
are available in several texts [12]–[17], the discussion here is intentionally brief.

2.7.1 Design Issues

In its simplest form, a step-index fiber consists of a cylindrical core surrounded by a
cladding layer whose index is slightly lower than the core. Both core and cladding
use silica as the base material; the difference in the refractive indices is realized by
doping the core, or the cladding, or both. Dopants such as GeO2 and P2O5 increase
the refractive index of silica and are suitable for the core. On the other hand, dopants
such as B2O3 and fluorine decrease the refractive index of silica and are suitable for
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Figure 2.20: Several index profiles used in the design of single-mode fibers. Upper and lower
rows correspond to standard and dispersion-shifted fibers, respectively.

the cladding. The major design issues are related to the refractive-index profile, the
amount of dopants, and the core and cladding dimensions [82]–[86]. The diameter of
the outermost cladding layer has the standard value of 125 µm for all communication-
grade fibers.

Figure 2.20 shows typical index profiles that have been used for different kinds of
fibers. The top row corresponds to standard fibers which are designed to have minimum
dispersion near 1.3 µm with a cutoff wavelength in the range 1.1–1.2 µm. The simplest
design [Fig. 2.20(a)] consists of a pure-silica cladding and a core doped with GeO2 to
obtain ∆ ≈ 3× 10−3. A commonly used variation [Fig. 2.20(b)] lowers the cladding
index over a region adjacent to the core by doping it with fluorine. It is also possible to
have an undoped core by using a design shown in Fig 2.20(c). The fibers of this kind
are referred to as doubly clad or depressed-cladding fibers [82]. They are also called
W fibers, reflecting the shape of the index profile. The bottom row in Fig. 2.20 shows
three index profiles used for dispersion-shifted fibers for which the zero-dispersion
wavelength is chosen in the range 1.45–1.60 µm (see Table 2.1). A triangular index
profile with a depressed or raised cladding is often used for this purpose [83]–[85]. The
refractive indices and the thickness of different layers are optimized to design a fiber
with desirable dispersion characteristics [86]. Sometimes as many as four cladding
layers are used for dispersion-flattened fibers (see Fig. 2.11).

2.7.2 Fabrication Methods

Fabrication of telecommunication-grade silica fibers involves two stages. In the first
stage a vapor-deposition method is used to make a cylindrical preform with the desired
refractive-index profile. The preform is typically 1 m long and 2 cm in diameter and
contains core and cladding layers with correct relative dimensions. In the second stage,
the preform is drawn into a fiber by using a precision-feed mechanism that feeds the
preform into a furnace at the proper speed.
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Figure 2.21: MCVD process commonly used for fiber fabrication. (After Ref. [87]; c©1985
Academic Press; reprinted with permission.)

Several methods can be used to make the preform. The three commonly used meth-
ods [87]–[89] are modified chemical-vapor deposition (MCVD), outside-vapor deposi-
tion (OVD), and vapor-axial deposition (VAD). Figure 2.21 shows a schematic diagram
of the MCVD process. In this process, successive layers of SiO2 are deposited on the
inside of a fused silica tube by mixing the vapors of SiCl4 and O2 at a temperature
of about 1800◦C. To ensure uniformity, a multiburner torch is moved back and forth
across the tube length using an automatic translation stage. The refractive index of the
cladding layers is controlled by adding fluorine to the tube. When a sufficient cladding
thickness has been deposited, the core is formed by adding the vapors of GeCl 4 or
POCl3. These vapors react with oxygen to form the dopants GeO 2 and P2O5:

GeCl4 + O2 → GeO2 + 2Cl2,

4POCl3 + 3O2 → 2P2O5 + 6Cl2.

The flow rate of GeCl4 or POCl3 determines the amount of dopant and the correspond-
ing increase in the refractive index of the core. A triangular-index core can be fabri-
cated simply by varying the flow rate from layer to layer. When all layers forming the
core have been deposited, the torch temperature is raised to collapse the tube into a
solid rod of preform.

The MCVD process is also known as the inner-vapor-deposition method, as the
core and cladding layers are deposited inside a silica tube. In a related process, known
as the plasma-activated chemical vapor deposition process [90], the chemical reaction
is initiated by a microwave plasma. By contrast, in the OVD and VAD processes the
core and cladding layers are deposited on the outside of a rotating mandrel by using the
technique of flame hydrolysis. The mandrel is removed prior to sintering. The porous
soot boule is then placed in a sintering furnace to form a glass boule. The central hole
allows an efficient way of reducing water vapors through dehydration in a controlled
atmosphere of Cl2–He mixture, although it results in a central dip in the index profile.
The dip can be minimized by closing the hole during sintering.

The fiber drawing step is essentially the same irrespective of the process used to
make the preform [91]. Figure 2.22 shows the drawing apparatus schematically. The
preform is fed into a furnace in a controlled manner where it is heated to a temperature
of about 2000◦C. The melted preform is drawn into a fiber by using a precision-feed
mechanism. The fiber diameter is monitored optically by diffracting light emitted by
a laser from the fiber. A change in the diameter changes the diffraction pattern, which
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Figure 2.22: Apparatus used for fiber drawing.

in turn changes the photodiode current. This current change acts as a signal for a
servocontrol mechanism that adjusts the winding rate of the fiber. The fiber diameter
can be kept constant to within 0.1% by this technique. A polymer coating is applied to
the fiber during the drawing step. It serves a dual purpose, as it provides mechanical
protection and preserves the transmission properties of the fiber. The diameter of the
coated fiber is typically 250 µm, although it can be as large as 900 µm when multiple
coatings are used. The tensile strength of the fiber is monitored during its winding
on the drum. The winding rate is typically 0.2–0.5 m/s. Several hours are required
to convert a single preform into a fiber of about 5 km length. This brief discussion
is intended to give a general idea. The fabrication of optical fiber generally requires
attention to a large number of engineering details discussed in several texts [17].

2.7.3 Cables and Connectors

Cabling of fibers is necessary to protect them from deterioration during transportation
and installation [92]. Cable design depends on the type of application. For some
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Figure 2.23: Typical designs for light-duty fiber cables.

applications it may be enough to buffer the fiber by placing it inside a plastic jacket.
For others the cable must be made mechanically strong by using strengthening elements
such as steel rods.

A light-duty cable is made by surrounding the fiber by a buffer jacket of hard plas-
tic. Figure 2.23 shows three simple cable designs. A tight jacket can be provided by
applying a buffer plastic coating of 0.5–1 mm thickness on top of the primary coating
applied during the drawing process. In an alternative approach the fiber lies loosely
inside a plastic tube. Microbending losses are nearly eliminated in this loose-tube con-
struction, since the fiber can adjust itself within the tube. This construction can also
be used to make multifiber cables by using a slotted tube with a different slot for each
fiber.

Heavy-duty cables use steel or a strong polymer such as Kevlar to provide the
mechanical strength. Figure 2.24 shows schematically three kinds of cables. In the
loose-tube construction, fiberglass rods embedded in polyurethane and a Kevlar jacket
provide the necessary mechanical strength (left drawing). The same design can be
extended to multifiber cables by placing several loose-tube fibers around a central steel
core (middle drawing). When a large number of fibers need to be placed inside a single
cable, a ribbon cable is used (right drawing). The ribbon is manufactured by packaging
typically 12 fibers between two polyester tapes. Several ribbons are then stacked into a

Figure 2.24: Typical designs for heavy-duty fiber cables.
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rectangular array which is placed inside a polyethylene tube. The mechanical strength
is provided by using steel rods in the two outermost polyethylene jackets. The outer
diameter of such fiber cables is about 1–1.5 cm.

Connectors are needed to use optical fibers in an actual communication system.
They can be divided into two categories. A permanent joint between two fibers is
known as a fiber splice, and a detachable connection between them is realized by using
a fiber connector. Connectors are used to link fiber cable with the transmitter (or the
receiver), while splices are used to join fiber segments (usually 5–10 km long). The
main issue in the use of splices and connectors is related to the loss. Some power is
always lost, as the two fiber ends are never perfectly aligned in practice. Splice losses
below 0.1 dB are routinely realized by using the technique of fusion splicing [93].
Connector losses are generally larger. State-of-the-art connectors provide an average
loss of about 0.3 dB [94]. The technology behind the design of splices and connectors
is quite sophisticated. For details, the reader is referred to Ref. [95], a book devoted
entirely to this issue.

Problems

2.1 A multimode fiber with a 50-µm core diameter is designed to limit the inter-
modal dispersion to 10 ns/km. What is the numerical aperture of this fiber?
What is the limiting bit rate for transmission over 10 km at 0.88 µm? Use 1.45
for the refractive index of the cladding.

2.2 Use the ray equation in the paraxial approximation [Eq. (2.1.8)] to prove that
intermodal dispersion is zero for a graded-index fiber with a quadratic index
profile.

2.3 Use Maxwell’s equations to express the field components E ρ , Eφ , Hρ , and Hφ in
terms of Ez and Hz and obtain Eqs. (2.2.29)–(2.2.32).

2.4 Derive the eigenvalue equation (2.2.33) by matching the boundary conditions at
the core–cladding interface of a step-index fiber.

2.5 A single-mode fiber has an index step n1−n2 = 0.005. Calculate the core radius
if the fiber has a cutoff wavelength of 1 µm. Estimate the spot size (FWHM) of
the fiber mode and the fraction of the mode power inside the core when this fiber
is used at 1.3 µm. Use n1 = 1.45.

2.6 A 1.55-µm unchirped Gaussian pulse of 100-ps width (FWHM) is launched into
a single-mode fiber. Calculate its FWHM after 50 km if the fiber has a dispersion
of 16 ps/(km-nm). Neglect the source spectral width.

2.7 Derive an expression for the confinement factor Γ of single-mode fibers defined
as the fraction of the total mode power contained inside the core. Use the Gaus-
sian approximation for the fundamental fiber mode. Estimate Γ for V = 2.

2.8 A single-mode fiber is measured to have λ 2(d2n/dλ 2) = 0.02 at 0.8 µm. Cal-
culate the dispersion parameters β2 and D.
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2.9 Show that a chirped Gaussian pulse is compressed initially inside a single-mode
fiber when β2C < 0. Derive expressions for the minimum width and the fiber
length at which the minimum occurs.

2.10 Estimate the limiting bit rate for a 60-km single-mode fiber link at 1.3- and 1.55-
µm wavelengths assuming transform-limited, 50-ps (FWHM) input pulses. As-
sume that β2 = 0 and −20 ps2/km and β3 = 0.1 ps3/km and 0 at 1.3- and 1.55-µm
wavelengths, respectively. Also assume that Vω 
 1.

2.11 A 0.88-µm communication system transmits data over a 10-km single-mode
fiber by using 10-ns (FWHM) pulses. Determine the maximum bit rate if the
LED has a spectral FWHM of 30 nm. Use D = −80 ps/(km-nm).

2.12 Use Eq. (2.4.23) to prove that the bit rate of an optical communication system op-
erating at the zero-dispersion wavelength is limited by BL|S|σ 2

λ < 1/
√

8, where
S = dD/dλ and σλ is the RMS spectral width of the Gaussian source spectrum.
Assume that C = 0 and Vω 
 1 in the general expression of the output pulse
width.

2.13 Repeat Problem 2.12 for the case of a single-mode semiconductor laser for which
Vω 
 1 and show that the bit rate is limited by B(|β3|L)1/3 < 0.324. What is the
limiting bit rate for L = 100 km if β3 = 0.1 ps3/km?

2.14 An optical communication system is operating with chirped Gaussian input pulses.
Assume that β3 = 0 and Vω 
 1 in Eq. (2.4.23) and obtain a condition on the bit
rate in terms of the parameters C, β2, and L.

2.15 A 1.55-µm optical communication system operating at 5 Gb/s is using Gaus-
sian pulses of width 100 ps (FWHM) chirped such that C = −6. What is the
dispersion-limited maximum fiber length? How much will it change if the pulses
were unchirped? Neglect laser linewidth and assume that β2 = −20 ps2/km.

2.16 A 1.3-µm lightwave system uses a 50-km fiber link and requires at least 0.3 µW
at the receiver. The fiber loss is 0.5 dB/km. Fiber is spliced every 5 km and has
two connectors of 1-dB loss at both ends. Splice loss is only 0.2 dB. Determine
the minimum power that must be launched into the fiber.

2.17 A 1.55-µm continuous-wave signal with 6-dBm power is launched into a fiber
with 50-µm2 effective mode area. After what fiber length would the nonlinear
phase shift induced by SPM become 2π? Assume n̄2 = 2.6× 10−20 m2/W and
neglect fiber losses.

2.18 Calculate the threshold power for stimulated Brillouin scattering for a 50-km
fiber link operating at 1.3 µm and having a loss of 0.5 dB/km. How much does
the threshold power change if the operating wavelength is changed to 1.55 µm,
where the fiber loss is only 0.2 dB/km? Assume that Aeff = 50 µm2 and gB =
5×10−11 m/W at both wavelengths.

2.19 Calculate the power launched into a 40-km-long single-mode fiber for which
the SPM-induced nonlinear phase shift becomes 180 ◦. Assume λ = 1.55 µm,
Aeff = 40 µm2, α = 0.2 dB/km, and n̄2 = 2.6×10−20 m2/W.
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2.20 Find the maximum frequency shift occurring because of the SPM-induced chirp
imposed on a Gaussian pulse of 20-ps width (FWHM) and 5-mW peak power af-
ter it has propagated 100 km. Use the fiber parameters of the preceding problem
but assume α = 0.
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Chapter 3

Optical Transmitters

The role of the optical transmitter is to convert an electrical input signal into the cor-
responding optical signal and then launch it into the optical fiber serving as a commu-
nication channel. The major component of optical transmitters is an optical source.
Fiber-optic communication systems often use semiconductor optical sources such as
light-emitting diodes (LEDs) and semiconductor lasers because of several inherent ad-
vantages offered by them. Some of these advantages are compact size, high efficiency,
good reliability, right wavelength range, small emissive area compatible with fiber-
core dimensions, and possibility of direct modulation at relatively high frequencies.
Although the operation of semiconductor lasers was demonstrated as early as 1962,
their use became practical only after 1970, when semiconductor lasers operating con-
tinuously at room temperature became available [1]. Since then, semiconductor lasers
have been developed extensively because of their importance for optical communica-
tions. They are also known as laser diodes or injection lasers, and their properties have
been discussed in several recent books [2]–[16]. This chapter is devoted to LEDs and
semiconductor lasers and their applications in lightwave systems. After introducing
the basic concepts in Section 3.1, LEDs are covered in Section 3.2, while Section 3.3
focuses on semiconductor lasers. We describe single-mode semiconductor lasers in
Section 3.4 and discuss their operating characteristics in Section 3.5. The design issues
related to optical transmitters are covered in Section 3.6.

3.1 Basic Concepts

Under normal conditions, all materials absorb light rather than emit it. The absorption
process can be understood by referring to Fig. 3.1, where the energy levels E 1 and E2

correspond to the ground state and the excited state of atoms of the absorbing medium.
If the photon energy hν of the incident light of frequency ν is about the same as the
energy difference Eg = E2 −E1, the photon is absorbed by the atom, which ends up in
the excited state. Incident light is attenuated as a result of many such absorption events
occurring inside the medium.
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Figure 3.1: Three fundamental processes occurring between the two energy states of an atom:
(a) absorption; (b) spontaneous emission; and (c) stimulated emission.

The excited atoms eventually return to their normal “ground” state and emit light
in the process. Light emission can occur through two fundamental processes known as
spontaneous emission and stimulated emission. Both are shown schematically in Fig.
3.1. In the case of spontaneous emission, photons are emitted in random directions with
no phase relationship among them. Stimulated emission, by contrast, is initiated by an
existing photon. The remarkable feature of stimulated emission is that the emitted
photon matches the original photon not only in energy (or in frequency), but also in
its other characteristics, such as the direction of propagation. All lasers, including
semiconductor lasers, emit light through the process of stimulated emission and are
said to emit coherent light. In contrast, LEDs emit light through the incoherent process
of spontaneous emission.

3.1.1 Emission and Absorption Rates

Before discussing the emission and absorption rates in semiconductors, it is instructive
to consider a two-level atomic system interacting with an electromagnetic field through
transitions shown in Fig. 3.1. If N1 and N2 are the atomic densities in the ground and
the excited states, respectively, and ρ ph(ν) is the spectral density of the electromagnetic
energy, the rates of spontaneous emission, stimulated emission, and absorption can be
written as [17]

Rspon = AN2, Rstim = BN2ρem, Rabs = B′N1ρem, (3.1.1)

where A, B, and B′ are constants. In thermal equilibrium, the atomic densities are
distributed according to the Boltzmann statistics [18], i.e.,

N2/N1 = exp(−Eg/kBT ) ≡ exp(−hν/kBT ), (3.1.2)

where kB is the Boltzmann constant and T is the absolute temperature. Since N1 and N2

do not change with time in thermal equilibrium, the upward and downward transition
rates should be equal, or

AN2 + BN2ρem = B′N1ρem. (3.1.3)

By using Eq. (3.1.2) in Eq. (3.1.3), the spectral density ρ em becomes

ρem =
A/B

(B′/B)exp(hν/kBT )−1
. (3.1.4)
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In thermal equilibrium, ρem should be identical with the spectral density of blackbody
radiation given by Planck’s formula [18]

ρem =
8πhν3/c3

exp(hν/kBT )−1
. (3.1.5)

A comparison of Eqs. (3.1.4) and (3.1.5) provides the relations

A = (8πhν3/c3)B; B′ = B. (3.1.6)

These relations were first obtained by Einstein [17]. For this reason, A and B are called
Einstein’s coefficients.

Two important conclusions can be drawn from Eqs. (3.1.1)–(3.1.6). First, R spon can
exceed both Rstim and Rabs considerably if kBT > hν . Thermal sources operate in this
regime. Second, for radiation in the visible or near-infrared region (hν ∼ 1 eV), spon-
taneous emission always dominates over stimulated emission in thermal equilibrium at
room temperature (kBT ≈ 25 meV) because

Rstim/Rspon = [exp(hν/kBT )−1]−1 � 1. (3.1.7)

Thus, all lasers must operate away from thermal equilibrium. This is achieved by
pumping lasers with an external energy source.

Even for an atomic system pumped externally, stimulated emission may not be
the dominant process since it has to compete with the absorption process. R stim can
exceed Rabs only when N2 > N1. This condition is referred to as population inversion
and is never realized for systems in thermal equilibrium [see Eq. (3.1.2)]. Population
inversion is a prerequisite for laser operation. In atomic systems, it is achieved by using
three- and four-level pumping schemes [18] such that an external energy source raises
the atomic population from the ground state to an excited state lying above the energy
state E2 in Fig. 3.1.

The emission and absorption rates in semiconductors should take into account the
energy bands associated with a semiconductor [5]. Figure 3.2 shows the emission pro-
cess schematically using the simplest band structure, consisting of parabolic conduc-
tion and valence bands in the energy–wave-vector space (E–k diagram). Spontaneous
emission can occur only if the energy state E2 is occupied by an electron and the energy
state E1 is empty (i.e., occupied by a hole). The occupation probability for electrons in
the conduction and valence bands is given by the Fermi–Dirac distributions [5]

fc(E2) = {1+ exp[(E2 −E f c)/kBT ]}−1, (3.1.8)

fv(E1) = {1+ exp[(E1 −E f v)/kBT ]}−1, (3.1.9)

where E f c and E f v are the Fermi levels. The total spontaneous emission rate at a
frequency ω is obtained by summing over all possible transitions between the two
bands such that E2 − E1 = Eem = h̄ω , where ω = 2πν , h̄ = h/2π , and Eem is the
energy of the emitted photon. The result is

Rspon(ω) =
∫ ∞

Ec

A(E1,E2) fc(E2)[1− fv(E1)]ρcv dE2, (3.1.10)
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Figure 3.2: Conduction and valence bands of a semiconductor. Electrons in the conduction band
and holes in the valence band can recombine and emit a photon through spontaneous emission
as well as through stimulated emission.

where ρcv is the joint density of states, defined as the number of states per unit volume
per unit energy range, and is given by [18]

ρcv =
(2mr)3/2

2π2h̄3 (h̄ω −Eg)1/2. (3.1.11)

In this equation, Eg is the bandgap and mr is the reduced mass, defined as mr =
mcmv/(mc + mv), where mc and mv are the effective masses of electrons and holes in
the conduction and valence bands, respectively. Since ρ cv is independent of E2 in Eq.
(3.1.10), it can be taken outside the integral. By contrast, A(E 1,E2) generally depends
on E2 and is related to the momentum matrix element in a semiclassical perturbation
approach commonly used to calculate it [2].

The stimulated emission and absorption rates can be obtained in a similar manner
and are given by

Rstim(ω) =
∫ ∞

Ec

B(E1,E2) fc(E2)[1− fv(E1)]ρcvρem dE2, (3.1.12)

Rabs(ω) =
∫ ∞

Ec

B(E1,E2) fv(E1)[1− fc(E2)]ρcvρem dE2, (3.1.13)

where ρem(ω) is the spectral density of photons introduced in a manner similar to Eq.
(3.1.1). The population-inversion condition R stim > Rabs is obtained by comparing Eqs.
(3.1.12) and (3.1.13), resulting in f c(E2) > fv(E1). If we use Eqs. (3.1.8) and (3.1.9),
this condition is satisfied when

E f c −E f v > E2 −E1 > Eg. (3.1.14)
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Since the minimum value of E2−E1 equals Eg, the separation between the Fermi levels
must exceed the bandgap for population inversion to occur [19]. In thermal equilib-
rium, the two Fermi levels coincide (E f c = E f v). They can be separated by pumping
energy into the semiconductor from an external energy source. The most convenient
way for pumping a semiconductor is to use a forward-biased p–n junction.

3.1.2 p–n Junctions

At the heart of a semiconductor optical source is the p–n junction, formed by bringing a
p-type and an n-type semiconductor into contact. Recall that a semiconductor is made
n-type or p-type by doping it with impurities whose atoms have an excess valence
electron or one less electron compared with the semiconductor atoms. In the case of n-
type semiconductor, the excess electrons occupy the conduction-band states, normally
empty in undoped (intrinsic) semiconductors. The Fermi level, lying in the middle of
the bandgap for intrinsic semiconductors, moves toward the conduction band as the
dopant concentration increases. In a heavily doped n-type semiconductor, the Fermi
level E f c lies inside the conduction band; such semiconductors are said to be degen-
erate. Similarly, the Fermi level E f v moves toward the valence band for p-type semi-
conductors and lies inside it under heavy doping. In thermal equilibrium, the Fermi
level must be continuous across the p–n junction. This is achieved through diffusion
of electrons and holes across the junction. The charged impurities left behind set up
an electric field strong enough to prevent further diffusion of electrons and holds under
equilibrium conditions. This field is referred to as the built-in electric field. Figure
3.3(a) shows the energy-band diagram of a p–n junction in thermal equilibrium and
under forward bias.

When a p–n junction is forward biased by applying an external voltage, the built-
in electric field is reduced. This reduction results in diffusion of electrons and holes
across the junction. An electric current begins to flow as a result of carrier diffusion.
The current I increases exponentially with the applied voltage V according to the well-
known relation [5]

I = Is[exp(qV/kBT )−1], (3.1.15)

where Is is the saturation current and depends on the diffusion coefficients associated
with electrons and holes. As seen in Fig. 3.3(a), in a region surrounding the junc-
tion (known as the depletion width), electrons and holes are present simultaneously
when the p–n junction is forward biased. These electrons and holes can recombine
through spontaneous or stimulated emission and generate light in a semiconductor op-
tical source.

The p–n junction shown in Fig. 3.3(a) is called the homojunction, since the same
semiconductor material is used on both sides of the junction. A problem with the ho-
mojunction is that electron–hole recombination occurs over a relatively wide region
(∼1–10 µm) determined by the diffusion length of electrons and holes. Since the car-
riers are not confined to the immediate vicinity of the junction, it is difficult to realize
high carrier densities. This carrier-confinement problem can be solved by sandwiching
a thin layer between the p-type and n-type layers such that the bandgap of the sand-
wiched layer is smaller than the layers surrounding it. The middle layer may or may
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(a) (b)

Figure 3.3: Energy-band diagram of (a) homostructure and (b) double-heterostructure p–n junc-
tions in thermal equilibrium (top) and under forward bias (bottom).

not be doped, depending on the device design; its role is to confine the carriers injected
inside it under forward bias. The carrier confinement occurs as a result of bandgap
discontinuity at the junction between two semiconductors which have the same crys-
talline structure (the same lattice constant) but different bandgaps. Such junctions are
called heterojunctions, and such devices are called double heterostructures. Since the
thickness of the sandwiched layer can be controlled externally (typically, ∼0.1 µm),
high carrier densities can be realized at a given injection current. Figure 3.3(b) shows
the energy-band diagram of a double heterostructure with and without forward bias.

The use of a heterostructure geometry for semiconductor optical sources is doubly
beneficial. As already mentioned, the bandgap difference between the two semicon-
ductors helps to confine electrons and holes to the middle layer, also called the active
layer since light is generated inside it as a result of electron–hole recombination. How-
ever, the active layer also has a slightly larger refractive index than the surrounding
p-type and n-type cladding layers simply because its bandgap is smaller. As a result
of the refractive-index difference, the active layer acts as a dielectric waveguide and
supports optical modes whose number can be controlled by changing the active-layer
thickness (similar to the modes supported by a fiber core). The main point is that a
heterostructure confines the generated light to the active layer because of its higher
refractive index. Figure 3.4 illustrates schematically the simultaneous confinement of
charge carriers and the optical field to the active region through a heterostructure de-
sign. It is this feature that has made semiconductor lasers practical for a wide variety
of applications.
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Figure 3.4: Simultaneous confinement of charge carriers and optical field in a double-
heterostructure design. The active layer has a lower bandgap and a higher refractive index than
those of p-type and n-type cladding layers.

3.1.3 Nonradiative Recombination

When a p–n junction is forward-biased, electrons and holes are injected into the ac-
tive region, where they recombine to produce light. In any semiconductor, electrons
and holes can also recombine nonradiatively. Nonradiative recombination mechanisms
include recombination at traps or defects, surface recombination, and the Auger recom-
bination [5]. The last mechanism is especially important for semiconductor lasers emit-
ting light in the wavelength range 1.3–1.6 µm because of a relatively small bandgap
of the active layer [2]. In the Auger recombination process, the energy released dur-
ing electron–hole recombination is given to another electron or hole as kinetic energy
rather than producing light.

From the standpoint of device operation, all nonradiative processes are harmful, as
they reduce the number of electron–hole pairs that emit light. Their effect is quantified
through the internal quantum efficiency, defined as

ηint =
Rrr

Rtot
=

Rrr

Rrr + Rnr
, (3.1.16)

where Rrr is the radiative recombination rate, Rnr is the nonradiative recombination
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rate, and Rtot ≡ Rrr + Rnr is the total recombination rate. It is customary to introduce
the recombination times τrr and τnr using Rrr = N/τrr and Rnr = N/τnr, where N is the
carrier density. The internal quantum efficiency is then given by

ηint =
τnr

τrr + τnr
. (3.1.17)

The radiative and nonradiative recombination times vary from semiconductor to
semiconductor. In general, τrr and τnr are comparable for direct-bandgap semicon-
ductors, whereas τnr is a small fraction (∼ 10−5) of τrr for semiconductors with an
indirect bandgap. A semiconductor is said to have a direct bandgap if the conduction-
band minimum and the valence-band maximum occur for the same value of the elec-
tron wave vector (see Fig. 3.2). The probability of radiative recombination is large in
such semiconductors, since it is easy to conserve both energy and momentum during
electron–hole recombination. By contrast, indirect-bandgap semiconductors require
the assistance of a phonon for conserving momentum during electron–hole recombina-
tion. This feature reduces the probability of radiative recombination and increases τ rr

considerably compared with τnr in such semiconductors. As evident from Eq. (3.1.17),
ηint � 1 under such conditions. Typically, η int ∼ 10−5 for Si and Ge, the two semicon-
ductors commonly used for electronic devices. Both are not suitable for optical sources
because of their indirect bandgap. For direct-bandgap semiconductors such as GaAs
and InP, ηint ≈ 0.5 and approaches 1 when stimulated emission dominates.

The radiative recombination rate can be written as R rr = Rspon + Rstim when radia-
tive recombination occurs through spontaneous as well as stimulated emission. For
LEDs, Rstim is negligible compared with Rspon, and Rrr in Eq. (3.1.16) is replaced with
Rspon. Typically, Rspon and Rnr are comparable in magnitude, resulting in an internal
quantum efficiency of about 50%. However, η int approaches 100% for semiconductor
lasers as stimulated emission begins to dominate with an increase in the output power.

It is useful to define a quantity known as the carrier lifetime τc such that it rep-
resents the total recombination time of charged carriers in the absence of stimulated
recombination. It is defined by the relation

Rspon + Rnr = N/τc, (3.1.18)

where N is the carrier density. If Rspon and Rnr vary linearly with N, τc becomes a
constant. In practice, both of them increase nonlinearly with N such that R spon +Rnr =
AnrN + BN2 +CN3, where Anr is the nonradiative coefficient due to recombination at
defects or traps, B is the spontaneous radiative recombination coefficient, and C is the
Auger coefficient. The carrier lifetime then becomes N dependent and is obtained by
using τ−1

c = Anr + BN +CN2. In spite of its N dependence, the concept of carrier
lifetime τc is quite useful in practice.

3.1.4 Semiconductor Materials

Almost any semiconductor with a direct bandgap can be used to make a p–n homojunc-
tion capable of emitting light through spontaneous emission. The choice is, however,
considerably limited in the case of heterostructure devices because their performance
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Figure 3.5: Lattice constants and bandgap energies of ternary and quaternary compounds formed
by using nine group III–V semiconductors. Shaded area corresponds to possible InGaAsP and
AlGaAs structures. Horizontal lines passing through InP and GaAs show the lattice-matched
designs. (After Ref. [18]; c©1991 Wiley; reprinted with permission.)

depends on the quality of the heterojunction interface between two semiconductors of
different bandgaps. To reduce the formation of lattice defects, the lattice constant of the
two materials should match to better than 0.1%. Nature does not provide semiconduc-
tors whose lattice constants match to such precision. However, they can be fabricated
artificially by forming ternary and quaternary compounds in which a fraction of the
lattice sites in a naturally occurring binary semiconductor (e.g., GaAs) is replaced by
other elements. In the case of GaAs, a ternary compound Al xGa1−xAs can be made
by replacing a fraction x of Ga atoms by Al atoms. The resulting semiconductor has
nearly the same lattice constant, but its bandgap increases. The bandgap depends on
the fraction x and can be approximated by a simple linear relation [2]

Eg(x) = 1.424+ 1.247x (0 < x < 0.45), (3.1.19)

where Eg is expressed in electron-volt (eV) units.
Figure 3.5 shows the interrelationship between the bandgap Eg and the lattice con-

stant a for several ternary and quaternary compounds. Solid dots represent the binary
semiconductors, and lines connecting them corresponds to ternary compounds. The
dashed portion of the line indicates that the resulting ternary compound has an indirect
bandgap. The area of a closed polygon corresponds to quaternary compounds. The
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bandgap is not necessarily direct for such semiconductors. The shaded area in Fig.
3.5 represents the ternary and quaternary compounds with a direct bandgap formed by
using the elements indium (In), gallium (Ga), arsenic (As), and phosphorus (P).

The horizontal line connecting GaAs and AlAs corresponds to the ternary com-
pound AlxGa1−xAs, whose bandgap is direct for values of x up to about 0.45 and is
given by Eq. (3.1.19). The active and cladding layers are formed such that x is larger for
the cladding layers compared with the value of x for the active layer. The wavelength
of the emitted light is determined by the bandgap since the photon energy is approxi-
mately equal to the bandgap. By using Eg ≈ hν = hc/λ , one finds that λ ≈ 0.87 µm
for an active layer made of GaAs (Eg = 1.424 eV). The wavelength can be reduced to
about 0.81 µm by using an active layer with x = 0.1. Optical sources based on GaAs
typically operate in the range 0.81–0.87 µm and were used in the first generation of
fiber-optic communication systems.

As discussed in Chapter 2, it is beneficial to operate lightwave systems in the wave-
length range 1.3–1.6 µm, where both dispersion and loss of optical fibers are consider-
ably reduced compared with the 0.85-µm region. InP is the base material for semicon-
ductor optical sources emitting light in this wavelength region. As seen in Fig. 3.5 by
the horizontal line passing through InP, the bandgap of InP can be reduced consider-
ably by making the quaternary compound In 1−xGaxAsyP1−y while the lattice constant
remains matched to InP. The fractions x and y cannot be chosen arbitrarily but are re-
lated by x/y = 0.45 to ensure matching of the lattice constant. The bandgap of the
quaternary compound can be expressed in terms of y only and is well approximated
by [2]

Eg(y) = 1.35−0.72y+ 0.12y2, (3.1.20)

where 0 ≤ y ≤ 1. The smallest bandgap occurs for y = 1. The corresponding ternary
compound In0.55Ga0.45As emits light near 1.65 µm (Eg = 0.75 eV). By a suitable
choice of the mixing fractions x and y, In1−xGaxAsyP1−y sources can be designed to
operate in the wide wavelength range 1.0–1.65 µm that includes the region 1.3–1.6 µm
important for optical communication systems.

The fabrication of semiconductor optical sources requires epitaxial growth of mul-
tiple layers on a base substrate (GaAs or InP). The thickness and composition of each
layer need to be controlled precisely. Several epitaxial growth techniques can be used
for this purpose. The three primary techniques are known as liquid-phase epitaxy
(LPE), vapor-phase epitaxy (VPE), and molecular-beam epitaxy (MBE) depending
on whether the constituents of various layers are in the liquid form, vapor form, or
in the form of a molecular beam. The VPE technique is also called chemical-vapor
deposition. A variant of this technique is metal-organic chemical-vapor deposition
(MOCVD), in which metal alkalis are used as the mixing compounds. Details of these
techniques are available in the literature [2].

Both the MOCVD and MBE techniques provide an ability to control layer thick-
ness to within 1 nm. In some lasers, the thickness of the active layer is small enough
that electrons and holes act as if they are confined to a quantum well. Such confinement
leads to quantization of the energy bands into subbands. The main consequence is that
the joint density of states ρcv acquires a staircase-like structure [5]. Such a modifica-
tion of the density of states affects the gain characteristics considerably and improves
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the laser performance. Such quantum-well lasers have been studied extensively [14].
Often, multiple active layers of thickness 5–10 nm, separated by transparent barrier
layers of about 10 nm thickness, are used to improve the device performance. Such
lasers are called multiquantum-well (MQW) lasers. Another feature that has improved
the performance of MQW lasers is the introduction of intentional, but controlled strain
within active layers. The use of thin active layers permits a slight mismatch between
lattice constants without introducing defects. The resulting strain changes the band
structure and improves the laser performance [5]. Such semiconductor lasers are called
strained MQW lasers. The concept of quantum-well lasers has also been extended to
make quantum-wire and quantum-dot lasers in which electrons are confined in more
than one dimension [14]. However, such devices were at the research stage in 2001.
Most semiconductor lasers deployed in lightwave systems use the MQW design.

3.2 Light-Emitting Diodes

A forward-biased p–n junction emits light through spontaneous emission, a pheno-
menon referred to as electroluminescence. In its simplest form, an LED is a forward-
biased p–n homojunction. Radiative recombination of electron–hole pairs in the deple-
tion region generates light; some of it escapes from the device and can be coupled into
an optical fiber. The emitted light is incoherent with a relatively wide spectral width
(30–60 nm) and a relatively large angular spread. In this section we discuss the char-
acteristics and the design of LEDs from the standpoint of their application in optical
communication systems [20].

3.2.1 Power–Current Characteristics

It is easy to estimate the internal power generated by spontaneous emission. At a given
current I the carrier-injection rate is I/q. In the steady state, the rate of electron–hole
pairs recombining through radiative and nonradiative processes is equal to the carrier-
injection rate I/q. Since the internal quantum efficiency η int determines the fraction of
electron–hole pairs that recombine through spontaneous emission, the rate of photon
generation is simply ηintI/q. The internal optical power is thus given by

Pint = ηint(h̄ω/q)I, (3.2.1)

where h̄ω is the photon energy, assumed to be nearly the same for all photons. If η ext

is the fraction of photons escaping from the device, the emitted power is given by

Pe = ηextPint = ηextηint(h̄ω/q)I. (3.2.2)

The quantity ηext is called the external quantum efficiency. It can be calculated by
taking into account internal absorption and the total internal reflection at the semicon-
ductor–air interface. As seen in Fig. 3.6, only light emitted within a cone of angle
θc, where θc = sin−1(1/n) is the critical angle and n is the refractive index of the
semiconductor material, escapes from the LED surface. Internal absorption can be
avoided by using heterostructure LEDs in which the cladding layers surrounding the
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Figure 3.6: Total internal reflection at the output facet of an LED. Only light emitted within a
cone of angle θc is transmitted, where θc is the critical angle for the semiconductor–air interface.

active layer are transparent to the radiation generated. The external quantum efficiency
can then be written as

ηext =
1

4π

∫ θc

0
Tf (θ )(2π sinθ )dθ , (3.2.3)

where we have assumed that the radiation is emitted uniformly in all directions over a
solid angle of 4π . The Fresnel transmissivity Tf depends on the incidence angle θ . In
the case of normal incidence (θ = 0), T f (0) = 4n/(n+1)2. If we replace for simplicity
Tf (θ ) by Tf (0) in Eq. (3.2.3), ηext is given approximately by

ηext = n−1(n+ 1)−2. (3.2.4)

By using Eq. (3.2.4) in Eq. (3.2.2) we obtain the power emitted from one facet (see
Fig. 3.6). If we use n = 3.5 as a typical value, ηext = 1.4%, indicating that only a small
fraction of the internal power becomes the useful output power. A further loss in useful
power occurs when the emitted light is coupled into an optical fiber. Because of the
incoherent nature of the emitted light, an LED acts as a Lambertian source with an
angular distribution S(θ ) = S0 cosθ , where S0 is the intensity in the direction θ = 0.
The coupling efficiency for such a source [20] is η c = (NA)2. Since the numerical
aperture (NA) for optical fibers is typically in the range 0.1–0.3, only a few percent of
the emitted power is coupled into the fiber. Normally, the launched power for LEDs is
100 µW or less, even though the internal power can easily exceed 10 mW.

A measure of the LED performance is the total quantum efficiency η tot, defined as
the ratio of the emitted optical power Pe to the applied electrical power, Pelec = V0I,
where V0 is the voltage drop across the device. By using Eq. (3.2.2), η tot is given by

ηtot = ηextηint(h̄ω/qV0). (3.2.5)

Typically, h̄ω ≈ qV0, and ηtot ≈ ηextηint. The total quantum efficiency η tot, also called
the power-conversion efficiency or the wall-plug efficiency, is a measure of the overall
performance of the device.
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Figure 3.7: (a) Power–current curves at several temperatures; (b) spectrum of the emitted light
for a typical 1.3-µm LED. The dashed curve shows the theoretically calculated spectrum. (After
Ref. [21]; c©1983 AT&T; reprinted with permission.)

Another quantity sometimes used to characterize the LED performance is the re-
sponsivity defined as the ratio RLED = Pe/I. From Eq. (3.2.2),

RLED = ηextηint(h̄ω/q). (3.2.6)

A comparison of Eqs. (3.2.5) and (3.2.6) shows that R LED = ηtotV0. Typical values
of RLED are ∼ 0.01 W/A. The responsivity remains constant as long as the linear re-
lation between Pe and I holds. In practice, this linear relationship holds only over a
limited current range [21]. Figure 3.7(a) shows the power–current (P–I) curves at sev-
eral temperatures for a typical 1.3-µm LED. The responsivity of the device decreases
at high currents above 80 mA because of bending of the P–I curve. One reason for
this decrease is related to the increase in the active-region temperature. The internal
quantum efficiency ηint is generally temperature dependent because of an increase in
the nonradiative recombination rates at high temperatures.

3.2.2 LED Spectrum

As seen in Section 2.3, the spectrum of a light source affects the performance of op-
tical communication systems through fiber dispersion. The LED spectrum is related
to the spectrum of spontaneous emission, R spon(ω), given in Eq. (3.1.10). In general,
Rspon(ω) is calculated numerically and depends on many material parameters. How-
ever, an approximate expression can be obtained if A(E 1,E2) is assumed to be nonzero
only over a narrow energy range in the vicinity of the photon energy, and the Fermi
functions are approximated by their exponential tails under the assumption of weak
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injection [5]. The result is

Rspon(ω) = A0(h̄ω −Eg)1/2 exp[−(h̄ω −Eg)/kBT ], (3.2.7)

where A0 is a constant and Eg is the bandgap. It is easy to deduce that Rspon(ω)
peaks when h̄ω = Eg + kBT/2 and has a full-width at half-maximum (FWHM) ∆ν ≈
1.8kBT/h. At room temperature (T = 300 K) the FWHM is about 11 THz. In practice,
the spectral width is expressed in nanometers by using ∆ν = (c/λ 2)∆λ and increases
as λ 2 with an increase in the emission wavelength λ . As a result, ∆λ is larger for In-
GaAsP LEDs emitting at 1.3 µm by about a factor of 1.7 compared with GaAs LEDs.
Figure 3.7(b) shows the output spectrum of a typical 1.3-µm LED and compares it
with the theoretical curve obtained by using Eq. (3.2.7). Because of a large spectral
width (∆λ = 50–60 nm), the bit rate–distance product is limited considerably by fiber
dispersion when LEDs are used in optical communication systems. LEDs are suit-
able primarily for local-area-network applications with bit rates of 10–100 Mb/s and
transmission distances of a few kilometers.

3.2.3 Modulation Response

The modulation response of LEDs depends on carrier dynamics and is limited by the
carrier lifetime τc defined by Eq. (3.1.18). It can be determined by using a rate equation
for the carrier density N. Since electrons and holes are injected in pairs and recombine
in pairs, it is enough to consider the rate equation for only one type of charge carrier.
The rate equation should include all mechanisms through which electrons appear and
disappear inside the active region. For LEDs it takes the simple form (since stimulated
emission is negligible)

dN
dt

=
I

qV
− N

τc
, (3.2.8)

where the last term includes both radiative and nonradiative recombination processes
through the carrier lifetime τc. Consider sinusoidal modulation of the injected current
in the form (the use of complex notation simplifies the math)

I(t) = Ib + Im exp(iωmt), (3.2.9)

where Ib is the bias current, Im is the modulation current, and ωm is the modulation
frequency. Since Eq. (3.2.8) is linear, its general solution can be written as

N(t) = Nb + Nm exp(iωmt), (3.2.10)

where Nb = τcIb/qV , V is the volume of active region and Nm is given by

Nm(ωm) =
τcIm/qV

1+ iωmτc
. (3.2.11)

The modulated power Pm is related to |Nm| linearly. One can define the LED transfer
function H(ωm) as

H(ωm) =
Nm(ωm)
Nm(0)

=
1

1+ iωmτc
. (3.2.12)
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Figure 3.8: Schematic of a surface-emitting LED with a double-heterostructure geometry.

In analogy with the case of optical fibers (see Section 2.4.4), the 3-dB modulation
bandwidth f3dB is defined as the modulation frequency at which |H(ωm)| is reduced
by 3 dB or by a factor of 2. The result is

f3dB =
√

3(2πτc)−1. (3.2.13)

Typically, τc is in the range 2–5 ns for InGaAsP LEDs. The corresponding LED mod-
ulation bandwidth is in the range 50–140 MHz. Note that Eq. (3.2.13) provides the
optical bandwidth because f3dB is defined as the frequency at which optical power is
reduced by 3 dB. The corresponding electrical bandwidth is the frequency at which
|H(ωm)|2 is reduced by 3 dB and is given by (2πτc)−1.

3.2.4 LED Structures

The LED structures can be classified as surface-emitting or edge-emitting, depending
on whether the LED emits light from a surface that is parallel to the junction plane or
from the edge of the junction region. Both types can be made using either a p–n homo-
junction or a heterostructure design in which the active region is surrounded by p- and
n-type cladding layers. The heterostructure design leads to superior performance, as it
provides a control over the emissive area and eliminates internal absorption because of
the transparent cladding layers.

Figure 3.8 shows schematically a surface-emitting LED design referred to as the
Burrus-type LED [22]. The emissive area of the device is limited to a small region
whose lateral dimension is comparable to the fiber-core diameter. The use of a gold
stud avoids power loss from the back surface. The coupling efficiency is improved by
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etching a well and bringing the fiber close to the emissive area. The power coupled into
the fiber depends on many parameters, such as the numerical aperture of the fiber and
the distance between fiber and LED. The addition of epoxy in the etched well tends
to increase the external quantum efficiency as it reduces the refractive-index mismatch.
Several variations of the basic design exist in the literature. In one variation, a truncated
spherical microlens fabricated inside the etched well is used to couple light into the
fiber [23]. In another variation, the fiber end is itself formed in the form of a spherical
lens [24]. With a proper design, surface-emitting LEDs can couple up to 1% of the
internally generated power into an optical fiber.

The edge-emitting LEDs employ a design commonly used for stripe-geometry
semiconductor lasers (see Section 3.3.3). In fact, a semiconductor laser is converted
into an LED by depositing an antireflection coating on its output facet to suppress lasing
action. Beam divergence of edge-emitting LEDs differs from surface-emitting LEDs
because of waveguiding in the plane perpendicular to the junction. Surface-emitting
LEDs operate as a Lambertian source with angular distribution S e(θ ) = S0 cosθ in
both directions. The resulting beam divergence has a FWHM of 120 ◦ in each direction.
In contrast, edge-emitting LEDs have a divergence of only about 30 ◦ in the direction
perpendicular to the junction plane. Considerable light can be coupled into a fiber of
even low numerical aperture (< 0.3) because of reduced divergence and high radiance
at the emitting facet [25]. The modulation bandwidth of edge-emitting LEDs is gen-
erally larger (∼ 200 MHz) than that of surface-emitting LEDs because of a reduced
carrier lifetime at the same applied current [26]. The choice between the two designs
is dictated, in practice, by a compromise between cost and performance.

In spite of a relatively low output power and a low bandwidth of LEDs compared
with those of lasers, LEDs are useful for low-cost applications requiring data transmis-
sion at a bit rate of 100 Mb/s or less over a few kilometers. For this reason, several
new LED structures were developed during the 1990s [27]–[32]. In one design, known
as resonant-cavity LED [27], two metal mirrors are fabricated around the epitaxially
grown layers, and the device is bonded to a silicon substrate. In a variant of this idea,
the bottom mirror is fabricated epitaxially by using a stack of alternating layers of two
different semiconductors, while the top mirror consists of a deformable membrane sus-
pended by an air gap [28]. The operating wavelength of such an LED can be tuned over
40 nm by changing the air-gap thickness. In another scheme, several quantum wells
with different compositions and bandgaps are grown to form a MQW structure [29].
Since each quantum well emits light at a different wavelength, such LEDs can have an
extremely broad spectrum (extending over a 500-nm wavelength range) and are useful
for local-area WDM networks.

3.3 Semiconductor Lasers

Semiconductor lasers emit light through stimulated emission. As a result of the fun-
damental differences between spontaneous and stimulated emission, they are not only
capable of emitting high powers (∼ 100 mW), but also have other advantages related
to the coherent nature of emitted light. A relatively narrow angular spread of the output
beam compared with LEDs permits high coupling efficiency (∼ 50%) into single-mode
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fibers. A relatively narrow spectral width of emitted light allows operation at high bit
rates (∼ 10 Gb/s), since fiber dispersion becomes less critical for such an optical source.
Furthermore, semiconductor lasers can be modulated directly at high frequencies (up
to 25 GHz) because of a short recombination time associated with stimulated emission.
Most fiber-optic communication systems use semiconductor lasers as an optical source
because of their superior performance compared with LEDs. In this section the out-
put characteristics of semiconductor lasers are described from the standpoint of their
applications in lightwave systems. More details can be found in Refs. [2]–[14], books
devoted entirely to semiconductor lasers.

3.3.1 Optical Gain

As discussed in Section 3.1.1, stimulated emission can dominate only if the condition
of population inversion is satisfied. For semiconductor lasers this condition is real-
ized by doping the p-type and n-type cladding layers so heavily that the Fermi-level
separation exceeds the bandgap [see Eq. (3.1.14)] under forward biasing of the p–n
junction. When the injected carrier density in the active layer exceeds a certain value,
known as the transparency value, population inversion is realized and the active region
exhibits optical gain. An input signal propagating inside the active layer would then
amplify as exp(gz), where g is the gain coefficient. One can calculate g by noting that
it is proportional to Rstim −Rabs, where Rstim and Rabs are given by Eqs. (3.1.12) and
(3.1.13), respectively. In general, g is calculated numerically. Figure 3.9(a) shows the
gain calculated for a 1.3-µm InGaAsP active layer at different values of the injected
carrier density N. For N = 1× 1018 cm−3, g < 0, as population inversion has not yet
occurred. As N increases, g becomes positive over a spectral range that increases with
N. The peak value of the gain, gp, also increases with N, together with a shift of the
peak toward higher photon energies. The variation of gp with N is shown in Fig. 3.9(b).
For N > 1.5×1018 cm−3, gp varies almost linearly with N. Figure 3.9 shows that the
optical gain in semiconductors increases rapidly once population inversion is realized.
It is because of such a high gain that semiconductor lasers can be made with physical
dimensions of less than 1 mm.

The nearly linear dependence of gp on N suggests an empirical approach in which
the peak gain is approximated by

gp(N) = σg(N −NT ), (3.3.1)

where NT is the transparency value of the carrier density and σ g is the gain cross sec-
tion; σg is also called the differential gain. Typical values of NT and σg for InGaAsP
lasers are in the range 1.0–1.5×1018 cm−3 and 2–3×10−16 cm2, respectively [2]. As
seen in Fig. 3.9(b), the approximation (3.3.1) is reasonable in the high-gain region
where gp exceeds 100 cm−1; most semiconductor lasers operate in this region. The use
of Eq. (3.3.1) simplifies the analysis considerably, as band-structure details do not ap-
pear directly. The parameters σg and NT can be estimated from numerical calculations
such as those shown in Fig. 3.9(b) or can be measured experimentally.

Semiconductor lasers with a larger value of σg generally perform better, since the
same amount of gain can be realized at a lower carrier density or, equivalently, at a
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Figure 3.9: (a) Gain spectrum of a 1.3-µm InGaAsP laser at several carrier densities N. (b)
Variation of peak gain gp with N. The dashed line shows the quality of a linear fit in the high-
gain region. (After Ref. [2]; c©1993 Van Nostrand Reinhold; reprinted with permission.)

lower injected current. In quantum-well semiconductor lasers, σ g is typically larger
by about a factor of two. The linear approximation in Eq. (3.3.1) for the peak gain
can still be used in a limited range. A better approximation replaces Eq. (3.3.1) with
gp(N) = g0[1+ ln(N/N0)], where gp = g0 at N = N0 and N0 = eNT ≈ 2.718NT by using
the definition gp = 0 at N = NT [5].

3.3.2 Feedback and Laser Threshold

The optical gain alone is not enough for laser operation. The other necessary ingre-
dient is optical feedback—it converts an amplifier into an oscillator. In most lasers
the feedback is provided by placing the gain medium inside a Fabry–Perot (FP) cavity
formed by using two mirrors. In the case of semiconductor lasers, external mirrors are
not required as the two cleaved laser facets act as mirrors whose reflectivity is given by

Rm =
(

n−1
n+ 1

)2

, (3.3.2)

where n is the refractive index of the gain medium. Typically, n = 3.5, resulting in 30%
facet reflectivity. Even though the FP cavity formed by two cleaved facets is relatively
lossy, the gain is large enough that high losses can be tolerated. Figure 3.10 shows the
basic structure of a semiconductor laser and the FP cavity associated with it.

The concept of laser threshold can be understood by noting that a certain fraction
of photons generated by stimulated emission is lost because of cavity losses and needs
to be replenished on a continuous basis. If the optical gain is not large enough to com-
pensate for the cavity losses, the photon population cannot build up. Thus, a minimum
amount of gain is necessary for the operation of a laser. This amount can be realized
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Figure 3.10: Structure of a semiconductor laser and the Fabry–Perot cavity associated with it.
The cleaved facets act as partially reflecting mirrors.

only when the laser is pumped above a threshold level. The current needed to reach the
threshold is called the threshold current.

A simple way to obtain the threshold condition is to study how the amplitude of
a plane wave changes during one round trip. Consider a plane wave of amplitude
E0, frequency ω , and wave number k = nω/c. During one round trip, its amplitude
increases by exp[(g/2)(2L)] because of gain (g is the power gain) and its phase changes
by 2kL, where L is the length of the laser cavity. At the same time, its amplitude
changes by

√
R1R2 exp(−αintL) because of reflection at the laser facets and because of

an internal loss αint that includes free-carrier absorption, scattering, and other possible
mechanisms. Here R1 and R2 are the reflectivities of the laser facets. Even though
R1 = R2 in most cases, the two reflectivities can be different if laser facets are coated
to change their natural reflectivity. In the steady state, the plane wave should remain
unchanged after one round trip, i.e.,

E0 exp(gL)
√

R1R2 exp(−αintL)exp(2ikL) = E0. (3.3.3)

By equating the amplitude and the phase on two sides, we obtain

g = αint +
1

2L
ln

(
1

R1R2

)
= αint + αmir = αcav, (3.3.4)

2kL = 2mπ or ν = νm = mc/2nL, (3.3.5)

where k = 2πnν/c and m is an integer. Equation (3.3.4) shows that the gain g equals
total cavity loss αcav at threshold and beyond. It is important to note that g is not the
same as the material gain gm shown in Fig. 3.9. As discussed in Section 3.3.3, the
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Figure 3.11: Gain and loss profiles in semiconductor lasers. Vertical bars show the location
of longitudinal modes. The laser threshold is reached when the gain of the longitudinal mode
closest to the gain peak equals loss.

optical mode extends beyond the active layer while the gain exists only inside it. As
a result, g = Γgm, where Γ is the confinement factor of the active region with typical
values <0.4.

The phase condition in Eq. (3.3.5) shows that the laser frequency ν must match one
of the frequencies in the set νm, where m is an integer. These frequencies correspond to
the longitudinal modes and are determined by the optical length nL. The spacing ∆ν L

between the longitudinal modes is constant (∆νL = c/2nL) if the frequency dependence
of n is ignored. It is given by ∆νL = c/2ngL when material dispersion is included [2].
Here the group index ng is defined as ng = n + ω(dn/dω). Typically, ∆νL = 100–
200 GHz for L = 200–400 µm.

A FP semiconductor laser generally emits light in several longitudinal modes of
the cavity. As seen in Fig. 3.11, the gain spectrum g(ω) of semiconductor lasers is
wide enough (bandwidth ∼ 10 THz) that many longitudinal modes of the FP cavity
experience gain simultaneously. The mode closest to the gain peak becomes the dom-
inant mode. Under ideal conditions, the other modes should not reach threshold since
their gain always remains less than that of the main mode. In practice, the difference is
extremely small (∼ 0.1 cm−1) and one or two neighboring modes on each side of the
main mode carry a significant portion of the laser power together with the main mode.
Such lasers are called multimode semiconductor lasers. Since each mode propagates
inside the fiber at a slightly different speed because of group-velocity dispersion, the
multimode nature of semiconductor lasers limits the bit-rate–distance product BL to
values below 10 (Gb/s)-km for systems operating near 1.55 µm (see Fig. 2.13). The
BL product can be increased by designing lasers oscillating in a single longitudinal
mode. Such lasers are discussed in Section 3.4.

3.3.3 Laser Structures

The simplest structure of a semiconductor laser consists of a thin active layer (thickness
∼ 0.1 µm) sandwiched between p-type and n-type cladding layers of another semi-
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Figure 3.12: A broad-area semiconductor laser. The active layer (hatched region) is sandwiched
between p-type and n-type cladding layers of a higher-bandgap material.

conductor with a higher bandgap. The resulting p–n heterojunction is forward-biased
through metallic contacts. Such lasers are called broad-area semiconductor lasers since
the current is injected over a relatively broad area covering the entire width of the laser
chip (∼ 100 µm). Figure 3.12 shows such a structure. The laser light is emitted from
the two cleaved facets in the form of an elliptic spot of dimensions ∼ 1×100 µm 2. In
the direction perpendicular to the junction plane, the spot size is ∼ 1 µm because of
the heterostructure design of the laser. As discussed in Section 3.1.2, the active layer
acts as a planar waveguide because its refractive index is larger than that of the sur-
rounding cladding layers (∆n ≈ 0.3). Similar to the case of optical fibers, it supports
a certain number of modes, known as the transverse modes. In practice, the active
layer is thin enough (∼ 0.1 µm) that the planar waveguide supports a single transverse
mode. However, there is no such light-confinement mechanism in the lateral direction
parallel to the junction plane. Consequently, the light generated spreads over the entire
width of the laser. Broad-area semiconductor lasers suffer from a number of deficien-
cies and are rarely used in optical communication systems. The major drawbacks are
a relatively high threshold current and a spatial pattern that is highly elliptical and that
changes in an uncontrollable manner with the current. These problems can be solved
by introducing a mechanism for light confinement in the lateral direction. The resulting
semiconductor lasers are classified into two broad categories

Gain-guided semiconductor lasers solve the light-confinement problem by limit-
ing current injection over a narrow stripe. Such lasers are also called stripe-geometry
semiconductor lasers. Figure 3.13 shows two laser structures schematically. In one
approach, a dielectric (SiO2) layer is deposited on top of the p-layer with a central
opening through which the current is injected [33]. In another, an n-type layer is de-
posited on top of the p-layer [34]. Diffusion of Zn over the central region converts
the n-region into p-type. Current flows only through the central region and is blocked
elsewhere because of the reverse-biased nature of the p–n junction. Many other vari-
ations exist [2]. In all designs, current injection over a narrow central stripe (∼5 µm
width) leads to a spatially varying distribution of the carrier density (governed by car-
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Figure 3.13: Cross section of two stripe-geometry laser structures used to design gain-guided
semiconductor lasers and referred to as (a) oxide stripe and (b) junction stripe.

rier diffusion) in the lateral direction. The optical gain also peaks at the center of the
stripe. Since the active layer exhibits large absorption losses in the region beyond the
central stripe, light is confined to the stripe region. As the confinement of light is aided
by gain, such lasers are called gain-guided. Their threshold current is typically in the
range 50–100 mA, and light is emitted in the form of an elliptic spot of dimensions
∼ 1×5 µm2. The major drawback is that the spot size is not stable as the laser power
is increased [2]. Such lasers are rarely used in optical communication systems because
of mode-stability problems.

The light-confinement problem is solved in the index-guided semiconductor lasers
by introducing an index step ∆nL in the lateral direction so that a waveguide is formed in
a way similar to the waveguide formed in the transverse direction by the heterostructure
design. Such lasers can be subclassified as weakly and strongly index-guided semicon-
ductor lasers, depending on the magnitude of ∆n L. Figure 3.14 shows examples of the
two kinds of lasers. In a specific design known as the ridge-waveguide laser, a ridge is
formed by etching parts of the p-layer [2]. A SiO 2 layer is then deposited to block the
current flow and to induce weak index guiding. Since the refractive index of SiO 2 is
considerably lower than the central p-region, the effective index of the transverse mode
is different in the two regions [35], resulting in an index step ∆n L ∼ 0.01. This index
step confines the generated light to the ridge region. The magnitude of the index step is
sensitive to many fabrication details, such as the ridge width and the proximity of the
SiO2 layer to the active layer. However, the relative simplicity of the ridge-waveguide
design and the resulting low cost make such lasers attractive for some applications.

In strongly index-guided semiconductor lasers, the active region of dimensions ∼
0.1× 1 µm2 is buried on all sides by several layers of lower refractive index. For
this reason, such lasers are called buried heterostructure (BH) lasers. Several different
kinds of BH lasers have been developed. They are known under names such as etched-
mesa BH, planar BH, double-channel planar BH, and V-grooved or channeled substrate
BH lasers, depending on the fabrication method used to realize the laser structure [2].
They all allow a relatively large index step (∆nL ∼ 0.1) in the lateral direction and, as
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Figure 3.14: Cross section of two index-guided semiconductor lasers: (a) ridge-waveguide struc-
ture for weak index guiding; (b) etched-mesa buried heterostructure for strong index guiding.

a result, permit strong mode confinement. Because of a large built-in index step, the
spatial distribution of the emitted light is inherently stable, provided that the laser is
designed to support a single spatial mode.

As the active region of a BH laser is in the form of a rectangular waveguide, spatial
modes can be obtained by following a method similar to that used in Section 2.2 for
optical fibers [2]. In practice, a BH laser operates in a single mode if the active-region
width is reduced to below 2 µm. The spot size is elliptical with typical dimensions
2× 1 µm2. Because of small spot-size dimensions, the beam diffracts widely in both
the lateral and transverse directions. The elliptic spot size and a large divergence angle
make it difficult to couple light into the fiber efficiently. Typical coupling efficien-
cies are in the range 30–50% for most optical transmitters. A spot-size converter is
sometimes used to improve the coupling efficiency (see Section 3.6).

3.4 Control of Longitudinal Modes

We have seen that BH semiconductor lasers can be designed to emit light into a single
spatial mode by controlling the width and the thickness of the active layer. However,
as discussed in Section 3.3.2, such lasers oscillate in several longitudinal modes simul-
taneously because of a relatively small gain difference (∼ 0.1 cm−1) between neigh-
boring modes of the FP cavity. The resulting spectral width (2–4 nm) is acceptable for
lightwave systems operating near 1.3 µm at bit rates of up to 1 Gb/s. However, such
multimode lasers cannot be used for systems designed to operate near 1.55 µm at high
bit rates. The only solution is to design semiconductor lasers [36]–[41] such that they
emit light predominantly in a single longitudinal mode (SLM).

The SLM semiconductor lasers are designed such that cavity losses are different
for different longitudinal modes of the cavity, in contrast with FP lasers whose losses
are mode independent. Figure 3.15 shows the gain and loss profiles schematically for
such a laser. The longitudinal mode with the smallest cavity loss reaches threshold first
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Figure 3.15: Gain and loss profiles for semiconductor lasers oscillating predominantly in a single
longitudinal mode.

and becomes the dominant mode. Other neighboring modes are discriminated by their
higher losses, which prevent their buildup from spontaneous emission. The power
carried by these side modes is usually a small fraction (< 1%) of the total emitted
power. The performance of a SLM laser is often characterized by the mode-suppression
ratio (MSR), defined as [39]

MSR = Pmm/Psm, (3.4.1)

where Pmm is the main-mode power and Psm is the power of the most dominant side
mode. The MSR should exceed 1000 (or 30 dB) for a good SLM laser.

3.4.1 Distributed Feedback Lasers

Distributed feedback (DFB) semiconductor lasers were developed during the 1980s
and are used routinely for WDM lightwave systems [10]–[12]. The feedback in DFB
lasers, as the name implies, is not localized at the facets but is distributed throughout
the cavity length [41]. This is achieved through an internal built-in grating that leads
to a periodic variation of the mode index. Feedback occurs by means of Bragg diffrac-
tion, a phenomenon that couples the waves propagating in the forward and backward
directions. Mode selectivity of the DFB mechanism results from the Bragg condition:
the coupling occurs only for wavelengths λ B satisfying

Λ = m(λB/2n̄), (3.4.2)

where Λ is the grating period, n̄ is the average mode index, and the integer m represents
the order of Bragg diffraction. The coupling between the forward and backward waves
is strongest for the first-order Bragg diffraction (m = 1). For a DFB laser operating at
λB = 1.55 µm, Λ is about 235 nm if we use m = 1 and n̄ = 3.3 in Eq. (3.4.2). Such
gratings can be made by using a holographic technique [2].

From the standpoint of device operation, semiconductor lasers employing the DFB
mechanism can be classified into two broad categories: DFB lasers and distributed
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Figure 3.16: DFB and DBR laser structures. The shaded area shows the active region and the
wavy line indicates the presence of a Bragg gratin.

Bragg reflector (DBR) lasers. Figure 3.16 shows two kinds of laser structures. Though
the feedback occurs throughout the cavity length in DFB lasers, it does not take place
inside the active region of a DBR laser. In effect, the end regions of a DBR laser act
as mirrors whose reflectivity is maximum for a wavelength λ B satisfying Eq. (3.4.2).
The cavity losses are therefore minimum for the longitudinal mode closest to λ B and
increase substantially for other longitudinal modes (see Fig. 3.15). The MSR is deter-
mined by the gain margin defined as the excess gain required by the most dominant
side mode to reach threshold. A gain margin of 3–5 cm−1 is generally enough to re-
alize an MSR > 30 dB for DFB lasers operating continuously [39]. However, a larger
gain margin is needed (> 10 cm−1) when DFB lasers are modulated directly. Phase-
shifted DFB lasers [38], in which the grating is shifted by λB/4 in the middle of the
laser to produce a π/2 phase shift, are often used, since they are capable of provid-
ing much larger gain margin than that of conventional DFB lasers. Another design
that has led to improvements in the device performance is known as the gain-coupled
DFB laser [42]–[44]. In these lasers, both the optical gain and the mode index vary
periodically along the cavity length.

Fabrication of DFB semiconductor lasers requires advanced technology with mul-
tiple epitaxial growths [41]. The principal difference from FP lasers is that a grating
is etched onto one of the cladding layers surrounding the active layer. A thin n-type
waveguide layer with a refractive index intermediate to that of active layer and the
substrate acts as a grating. The periodic variation of the thickness of the waveguide
layer translates into a periodic variation of the mode index n̄ along the cavity length
and leads to a coupling between the forward and backward propagating waves through
Bragg diffraction.
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Figure 3.17: Longitudinal-mode selectivity in a coupled-cavity laser. Phase shift in the external
cavity makes the effective mirror reflectivity wavelength dependent and results in a periodic loss
profile for the laser cavity.

A holographic technique is often used to form a grating with a ∼0.2-µm periodic-
ity. It works by forming a fringe pattern on a photoresist (deposited on the wafer sur-
face) through interference between two optical beams. In the alternative electron-beam
lithographic technique, an electron beam writes the desired pattern on the electron-
beam resist. Both methods use chemical etching to form grating corrugations, with the
patterned resist acting as a mask. Once the grating has been etched onto the substrate,
multiple layers are grown by using an epitaxial growth technique. A second epitaxial
regrowth is needed to make a BH device such as that shown in Fig. 3.14(b). Despite
the technological complexities, DFB lasers are routinely produced commercially. They
are used in nearly all 1.55-µm optical communication systems operating at bit rates of
2.5 Gb/s or more. DFB lasers are reliable enough that they have been used since 1992
in all transoceanic lightwave systems.

3.4.2 Coupled-Cavity Semiconductor Lasers

In a coupled-cavity semiconductor laser [2], the SLM operation is realized by coupling
the light to an external cavity (see Fig. 3.17). A portion of the reflected light is fed
back into the laser cavity. The feedback from the external cavity is not necessarily in



3.4. CONTROL OF LONGITUDINAL MODES 103

phase with the optical field inside the laser cavity because of the phase shift occurring
in the external cavity. The in-phase feedback occurs only for those laser modes whose
wavelength nearly coincides with one of the longitudinal modes of the external cavity.
In effect, the effective reflectivity of the laser facet facing the external cavity becomes
wavelength dependent and leads to the loss profile shown in Fig. 3.17. The longitu-
dinal mode that is closest to the gain peak and has the lowest cavity loss becomes the
dominant mode.

Several kinds of coupled-cavity schemes have been developed for making SLM
laser; Fig. 3.18 shows three among them. A simple scheme couples the light from a
semiconductor laser to an external grating [Fig. 3.18(a)]. It is necessary to reduce the
natural reflectivity of the cleaved facet facing the grating through an antireflection coat-
ing to provide a strong coupling. Such lasers are called external-cavity semiconductor
lasers and have attracted considerable attention because of their tunability [36]. The
wavelength of the SLM selected by the coupled-cavity mechanism can be tuned over a
wide range (typically 50 nm) simply by rotating the grating. Wavelength tunability is a
desirable feature for lasers used in WDM lightwave systems. A drawback of the laser
shown in Fig. 3.18(a) from the system standpoint is its nonmonolithic nature, which
makes it difficult to realize the mechanical stability required of optical transmitters.

A monolithic design for coupled-cavity lasers is offered by the cleaved-coupled-
cavity laser [37] shown in Fig. 3.18(b). Such lasers are made by cleaving a conven-
tional multimode semiconductor laser in the middle so that the laser is divided into two
sections of about the same length but separated by a narrow air gap (width ∼ 1 µm).
The reflectivity of cleaved facets (∼ 30%) allows enough coupling between the two
sections as long as the gap is not too wide. It is even possible to tune the wavelength
of such a laser over a tuning range ∼ 20 nm by varying the current injected into one
of the cavity sections acting as a mode controller. However, tuning is not continuous,
since it corresponds to successive mode hops of about 2 nm.

3.4.3 Tunable Semiconductor Lasers

Modern WDM lightwave systems require single-mode, narrow-linewidth lasers whose
wavelength remains fixed over time. DFB lasers satisfy this requirement but their
wavelength stability comes at the expense of tunability [9]. The large number of DFB
lasers used inside a WDM transmitter make the design and maintenance of such a
lightwave system expensive and impractical. The availability of semiconductor lasers
whose wavelength can be tuned over a wide range would solve this problem [13].

Multisection DFB and DBR lasers were developed during the 1990s to meet the
somewhat conflicting requirements of stability and tunability [45]–[52] and were reach-
ing the commercial stage in 2001. Figure 3.18(c) shows a typical laser structure. It
consists of three sections, referred to as the active section, the phase-control section,
and the Bragg section. Each section can be biased independently by injecting different
amounts of currents. The current injected into the Bragg section is used to change the
Bragg wavelength (λB = 2nΛ) through carrier-induced changes in the refractive index
n. The current injected into the phase-control section is used to change the phase of
the feedback from the DBR through carrier-induced index changes in that section. The
laser wavelength can be tuned almost continuously over the range 10–15 nm by con-
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Figure 3.18: Coupled-cavity laser structures: (a) external-cavity laser; (b) cleaved-coupled-
cavity laser; (c) multisection DBR laser.

trolling the currents in the phase and Bragg sections. By 1997, such lasers exhibited a
tuning range of 17 nm and output powers of up to 100 mW with high reliability [51].

Several other designs of tunable DFB lasers have been developed in recent years. In
one scheme, the built-in grating inside a DBR laser is chirped by varying the grating pe-
riod Λ or the mode index n̄ along the cavity length. As seen from Eq. (3.4.2), the Bragg
wavelength itself then changes along the cavity length. Since the laser wavelength is
determined by the Bragg condition, such a laser can be tuned over a wavelength range
determined by the grating chirp. In a simple implementation of the basic idea, the grat-
ing period remains uniform, but the waveguide is bent to change the effective mode
index n̄. Such multisection DFB lasers can be tuned over 5–6 nm while maintaining a
single longitudinal mode with high side-mode suppression [47].

In another scheme, a superstructure grating is used for the DBR section of a mul-
tisection laser [48]–[50]. A superstructure grating consists of an array of gratings (uni-
form or chirped) separated by a constant distance. As a result, its reflectivity peaks at
several wavelengths whose interval is determined by the spacing between the individ-
ual gratings forming the array. Such multisection DBR lasers can be tuned discretely
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over a wavelength range exceeding 100 nm. By controlling the current in the phase-
control section, a quasicontinuous tuning range of 40 nm was realized in 1995 with a
superstructure grating [48]. The tuning range can be extended considerably by using a
four-section device in which another DBR section is added to the left side of the device
shown in Fig. 3.18(c). Each DBR section supports its own comb of wavelengths but
the spacing in each comb is not the same. The coinciding wavelength in the two combs
becomes the output wavelength that can be tuned over a wide range (analogous to the
Vernier effect).

In a related approach, the fourth section in Fig. 3.18(c) is added between the gain
and phase sections: It consist of a grating-assisted codirectional coupler with a super-
structure grating. The coupler has two vertically separated waveguides and selects a
single wavelength from the wavelength comb supported by the DBR section with a su-
perstructure grating. The largest tuning range of 114 nm was produced in 1995 by this
kind of device [49]. Such widely tunable DBR lasers are likely to find applications in
many WDM lightwave systems.

3.4.4 Vertical-Cavity Surface-Emitting Lasers

A new class of semiconductor lasers, known as vertical-cavity surface-emitting lasers
(VCSELs), has emerged during the 1990s with many potential applications [53]–[60].
VCSELs operate in a single longitudinal mode by virtue of an extremely small cav-
ity length (∼ 1 µm), for which the mode spacing exceeds the gain bandwidth (see
Fig. 3.11). They emit light in a direction normal to the active-layer plane in a manner
analogous to that of a surface-emitting LED (see Fig. 3.8). Moreover, the emitted light
is in the form of a circular beam that can be coupled into a single-node fiber with high
efficiency. These properties result in a number of advantages that are leading to rapid
adoption of VCSELs for lightwave communications.

As seen in Fig. 3.19, fabrication of VCSELs requires growth of multiple thin lay-
ers on a substrate. The active region, in the form of one or several quantum wells, is
surrounded by two high-reflectivity (> 99.5%) DBR mirrors that are grown epitaxi-
ally on both sides of the active region to form a high-Q microcavity [55]. Each DBR
mirror is made by growing many pairs of alternating GaAs and AlAs layers, each λ /4
thick, where λ is the wavelength emitted by the VCSEL. A wafer-bonding technique is
sometimes used for VCSELs operating in the 1.55-µm wavelength region to accommo-
date the InGaAsP active region [58]. Chemical etching or a related technique is used
to form individual circular disks (each corresponding to one VCSEL) whose diameter
can be varied over a wide range (typically 5–20 µm). The entire two-dimensional array
of VCSELs can be tested without requiring separation of lasers because of the vertical
nature of light emission. As a result, the cost of a VCSEL can be much lower than that
of an edge-emitting laser. VCSELs also exhibit a relatively low threshold (∼1 mA or
less). Their only disadvantage is that they cannot emit more than a few milliwatts of
power because of a small active volume. For this reason, they are mostly used in local-
area and metropolitan-area networks and have virtually replaced LEDs. Early VCSELs
were designed to emit near 0.8 µm and operated in multiple transverse modes because
of their relatively large diameters (∼ 10 µm).
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Figure 3.19: Schematic of a 1.55-µm VCSEL made by using the wafer-bonding technique.
(After Ref. [58]; c©2000 IEEE; reprinted with permission.)

In recent years, the VCSEL technology have advanced enough that VCSELs can be
designed to operate in a wide wavelength range extending from 650 to 1600 nm [55].
Their applications in the 1.3- and 1.55-µm wavelength windows require that VCSELs
operate in a single transverse mode. By 2001, several techniques had emerged for
controlling the transverse modes of a VCSEL, the most common being the oxide-
confinement technique in which an insulating aluminum-oxide layer, acting as a di-
electric aperture, confines both the current and the optical mode to a < 3-µm-diameter
region. Such VCSELs operate in a single mode with narrow linewidth and can replace
a DFB laser in many lightwave applications as long as their low output power is accept-
able. They are especially useful for data transfer and local-loop applications because
of their low-cost packaging. VCSELs are also well suited for WDM applications for
two reasons. First, their wavelengths can be tuned over a wide range (>50 nm) using
the micro-electro-mechanical system (MEMS) technology [56]. Second, one can make
two-dimensional VCSELS arrays such that each laser operates at a different wave-
length [60]. WDM sources, containing multiple monolithically integrated lasers, are
required for modern lightwave systems.

3.5 Laser Characteristics

The operating characteristics of semiconductor lasers are well described by a set of
rate equations that govern the interaction of photons and electrons inside the active re-
gion. In this section we use the rate equations to discuss first both the continuous-wave
(CW) properties. We then consider small- and large-signal modulation characteristics
of single-mode semiconductor lasers. The last two subsections focus on the intensity
noise and spectral bandwidth of semiconductor lasers.
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3.5.1 CW Characteristics

A rigorous derivation of the rate equations generally starts from Maxwell’s equations
together with a quantum-mechanical approach for the induced polarization (see Section
2.2). The rate equations can also be written heuristically by considering various physi-
cal phenomena through which the number of photons, P, and the number of electrons,
N, change with time inside the active region. For a single-mode laser, these equations
take the form [2]

dP
dt

= GP+ Rsp − P
τp

, (3.5.1)

dN
dt

=
I
q
− N

τc
−GP, (3.5.2)

where
G = Γvggm = GN(N −N0). (3.5.3)

G is the net rate of stimulated emission and Rsp is the rate of spontaneous emission into
the lasing mode. Note that Rsp is much smaller than the total spontaneous-emission rate
in Eq. (3.1.10). The reason is that spontaneous emission occurs in all directions over a
wide spectral range (∼30–40 nm) but only a small fraction of it, propagating along the
cavity axis and emitted at the laser frequency, actually contributes to Eq. (3.5.1). In fact,
Rsp and G are related by Rsp = nspG, where nsp is known as the spontaneous-emission
factor and is about 2 for semiconductor lasers [2]. Although the same notation is used
for convenience, the variable N in the rate equations represents the number of electrons
rather than the carrier density; the two are related by the active volumeV . In Eq. (3.5.3),
vg is the group velocity, Γ is the confinement factor, and g m is the material gain at the
mode frequency. By using Eq. (3.3.1), G varies linearly with N with G N = Γvgσg/V
and N0 = NTV .

The last term in Eq. (3.5.1) takes into account the loss of photons inside the cavity.
The parameter τp is referred to as the photon lifetime. It is related to the cavity loss
αcav introduced in Eq. (3.3.4) as

τ−1
p = vgαcav = vg(αmir + αint). (3.5.4)

The three terms in Eq. (3.5.2) indicate the rates at which electrons are created or de-
stroyed inside the active region. This equation is similar to Eq. (3.2.8) except for the ad-
dition of the last term, which governs the rate of electron–hole recombination through
stimulated emission. The carrier lifetime τc includes the loss of electrons due to both
spontaneous emission and nonradiative recombination, as indicated in Eq. (3.1.18).

The P–I curve characterizes the emission properties of a semiconductor laser, as
it indicates not only the threshold level but also the current that needs to be applied
to obtain a certain amount of power. Figure 3.20 shows the P–I curves of a 1.3-µm
InGaAsP laser at temperatures in the range 10–130◦C. At room temperature, the thresh-
old is reached near 20 mA, and the laser can emit 10 mW of output power from each
facet at 100 mA of applied current. The laser performance degrades at high tempera-
tures. The threshold current is found to increase exponentially with temperature, i.e.,

Ith(T ) = I0 exp(T/T0), (3.5.5)
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Figure 3.20: P–I curves at several temperatures for a 1.3-µm buried heterostructure laser. (After
Ref. [2]; c©1993 Van Nostrand Reinhold; reprinted with permission.)

where I0 is a constant and T0 is a characteristic temperature often used to express
the temperature sensitivity of threshold current. For InGaAsP lasers T0 is typically
in the range 50–70 K. By contrast, T0 exceeds 120 K for GaAs lasers. Because of
the temperature sensitivity of InGaAsP lasers, it is often necessary to control their
temperature through a built-in thermoelectric cooler.

The rate equations can be used to understand most of the features seen in Fig.
3.20. In the case of CW operation at a constant current I, the time derivatives in Eqs.
(3.5.1) and (3.5.2) can be set to zero. The solution takes a particularly simple form if
spontaneous emission is neglected by setting Rsp = 0. For currents such that Gτp < 1,
P = 0 and N = τcI/q. The threshold is reached at a current for which Gτ p = 1. The
carrier population is then clamped to the threshold value N th = N0 + (GNτp)−1. The
threshold current is given by

Ith =
qNth

τc
=

q
τc

(
N0 +

1
GNτp

)
. (3.5.6)

For I > Ith, the photon number P increases linearly with I as

P = (τp/q)(I− Ith). (3.5.7)

The emitted power Pe is related to P by the relation

Pe = 1
2 (vgαmir)h̄ωP. (3.5.8)

The derivation of Eq. (3.5.8) is intuitively obvious if we note that v gαmir is the rate
at which photons of energy h̄ω escape from the two facets. The factor of 1

2 makes Pe
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the power emitted from each facet for a FP laser with equal facet reflectivities. For FP
lasers with coated facets or for DFB lasers, Eq. (3.5.8) needs to be suitably modified [2].
By using Eqs. (3.5.4) and (3.5.7) in Eq. (3.5.8), the emitted power is given by

Pe =
h̄ω
2q

ηintαmir

αmir + αint
(I − Ith), (3.5.9)

where the internal quantum efficiency η int is introduced phenomenologically to indi-
cate the fraction of injected electrons that is converted into photons through stimulated
emission. In the above-threshold regime, η int is almost 100% for most semiconductor
lasers. Equation (3.5.9) should be compared with Eq. (3.2.2) obtained for an LED.

A quantity of practical interest is the slope of the P–I curve for I > I th; it is called
the slope efficiency and is defined as

dPe

dI
=

h̄ω
2q

ηd with ηd =
ηintαmir

αmir + αint
. (3.5.10)

The quantity ηd is called the differential quantum efficiency, as it is a measure of the
efficiency with which light output increases with an increase in the injected current.
One can define the external quantum efficiency η ext as

ηext =
photon-emission rate
electron-injection rate

=
2Pe/h̄ω

I/q
=

2q
h̄ω

Pe

I
. (3.5.11)

By using Eqs. (3.5.9)–(3.5.11), η ext and ηd are found to be related by

ηext = ηd(1− Ith/I). (3.5.12)

Generally, ηext < ηd but becomes nearly the same for I � Ith. Similar to the case of
LEDs, one can define the total quantum efficiency (or wall-plug efficiency) as η tot =
2Pe/(V0I), where V0 is the applied voltage. It is related to ηext as

ηtot =
h̄ω
qV0

ηext ≈ Eg

qV0
ηext, (3.5.13)

where Eg is the bandgap energy. Generally, η tot < ηext as the applied voltage exceeds
Eg/q. For GaAs lasers, ηd can exceed 80% and ηtot can approach 50%. The InGaAsP
lasers are less efficient with ηd ∼ 50% and ηtot ∼ 20%.

The exponential increase in the threshold current with temperature can be under-
stood from Eq. (3.5.6). The carrier lifetime τ c is generally N dependent because of
Auger recombination and decreases with N as N 2. The rate of Auger recombination
increases exponentially with temperature and is responsible for the temperature sen-
sitivity of InGaAsP lasers. Figure 3.20 also shows that the slope efficiency decreases
with an increase in the output power (bending of the P–I curves). This decrease can
be attributed to junction heating occurring under CW operation. It can also result
from an increase in internal losses or current leakage at high operating powers. De-
spite these problems, the performance of DFB lasers improved substantially during the
1990s [10]–[12]. DFB lasers emitting >100 mW of power at room temperature in the
1.55 µm spectral region were fabricated by 1996 using a strained MQW design [61].
Such lasers exhibited < 10 mA threshold current at 20 ◦C and emitted ∼20 mW of
power at 100◦C while maintaining a MSR of >40 dB. By 2001, DFB lasers capable of
delivering more than 200 mW of power were available commercially.
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3.5.2 Small-Signal Modulation

The modulation response of semiconductor lasers is studied by solving the rate equa-
tions (3.5.1) and (3.5.2) with a time-dependent current of the form

I(t) = Ib + Im fp(t), (3.5.14)

where Ib is the bias current, Im is the current, and f p(t) represents the shape of the
current pulse. Two changes are necessary for a realistic description. First, Eq. (3.5.3)
for the gain G must be modified to become [2]

G = GN(N −N0)(1− εNLP), (3.5.15)

where εNL is a nonlinear-gain parameter that leads to a slight reduction in G as P in-
creases. The physical mechanism behind this reduction can be attributed to several
phenomena, such as spatial hole burning, spectral hole burning, carrier heating, and
two-photon absorption [62]–[65]. Typical values of ε NL are ∼ 10−7. Equation (3.5.15)
is valid for εNLP � 1. The factor 1− εNLP should be replaced by (1+P/Ps)−b, where
Ps is a material parameter, when the laser power exceeds far above 10 mW. The expo-
nent b equals 1

2 for spectral hole burning [63] but can vary over the range 0.2–1 because
of the contribution of carrier heating [65].

The second change is related to an important property of semiconductor lasers. It
turns out that whenever the optical gain changes as a result of changes in the carrier
population N, the refractive index also changes. From a physical standpoint, ampli-
tude modulation in semiconductor lasers is always accompanied by phase modulation
because of carrier-induced changes in the mode index n̄. Phase modulation can be
included through the equation [2]

dφ
dt

=
1
2

βc

[
GN(N −N0)− 1

τp

]
, (3.5.16)

where βc is the amplitude-phase coupling parameter, commonly called the linewidth
enhancement factor, as it leads to an enhancement of the spectral width associated
with a single longitudinal mode (see Section 3.5.5). Typical values of β c for InGaAsP
lasers are in the range 4–8, depending on the operating wavelength [66]. Lower values
of βc occur in MQW lasers, especially for strained quantum wells [5].

In general, the nonlinear nature of the rate equations makes it necessary to solve
them numerically. A useful analytic solution can be obtained for the case of small-
signal modulation in which the laser is biased above threshold (Ib > Ith) and modulated
such that Im � Ib − Ith. The rate equations can be linearized in that case and solved
analytically, using the Fourier-transform technique, for an arbitrary form of f p(t). The
small-signal modulation bandwidth can be obtained by considering the response of
semiconductor lasers to sinusoidal modulation at the frequency ω m so that fp(t) =
sin(ωmt). The laser output is also modulated sinusoidally. The general solution of Eqs.
(3.5.1) and (3.5.2) is given by

P(t) = Pb + |pm|sin(ωmt + θm), (3.5.17)

N(t) = Nb + |nm|sin(ωmt + ψm), (3.5.18)
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Figure 3.21: Measured (solid curves) and fitted (dashed curves) modulation response of a 1.55-
µm DFB laser as a function of modulation frequency at several bias levels. (After Ref. [70];
c©1997 IEEE; reprinted with permission.)

where Pb and Nb are the steady-state values at the bias current Ib, |pm| and |nm| are small
changes occurring because of current modulation, and θ m and ψm govern the phase lag
associated with the small-signal modulation. In particular, p m ≡ |pm|exp(iθm) is given
by [2]

pm(ωm) =
PbGNIm/q

(ΩR + ωm − iΓR)(ΩR −ωm + iΓR)
, (3.5.19)

where

ΩR = [GGNPb − (ΓP −ΓN)2/4]1/2, ΓR = (ΓP + ΓN)/2, (3.5.20)

ΓP = Rsp/Pb + εNLGPb, ΓN = τ−1
c + GNPb. (3.5.21)

ΩR and ΓR are the frequency and the damping rate of relaxation oscillations. These two
parameters play an important role in governing the dynamic response of semiconductor
lasers. In particular, the efficiency is reduced when the modulation frequency exceeds
ΩR by a large amount.

Similar to the case of LEDs, one can introduce the transfer function as

H(ωm) =
pm(ωm)
pm(0)

=
Ω2

R + Γ2
R

(ΩR + ωm − iΓR)(ΩR −ωm + iΓR)
. (3.5.22)

The modulation response is flat [H(ωm)≈ 1] for frequencies such that ωm �ΩR, peaks
at ωm = ΩR, and then drops sharply for ωm � ΩR. These features are observed exper-
imentally for all semiconductor lasers [67]–[70]. Figure 3.21 shows the modulation
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response of a 1.55-µm DFB laser at several bias levels [70]. The 3-dB modulation
bandwidth, f3dB, is defined as the frequency at which |H(ωm)| is reduced by 3 dB (by
a factor of 2) compared with its direct-current (dc) value. Equation (3.5.22) provides
the following analytic expression for f3dB:

f3dB =
1

2π

[
Ω2

R + Γ2
R + 2(Ω4

R + Ω2
RΓ2

R + Γ4
R)1/2

]1/2
. (3.5.23)

For most lasers, ΓR � ΩR, and f3dB can be approximated by

f3dB ≈
√

3ΩR

2π
≈

(
3GNPb

4π2τp

)1/2

=
[

3GN

4π2q
(Ib − Ith)

]1/2

, (3.5.24)

where ΩR was approximated by (GGNPb)1/2 in Eq. (3.5.21) and G was replaced by
1/τp since gain equals loss in the above-threshold regime. The last expression was
obtained by using Eq. (3.5.7) at the bias level.

Equation (3.5.24) provides a remarkably simple expression for the modulation
bandwidth. It shows that f3dB increases with an increase in the bias level as

√
Pb

or as (Ib − Ith)1/2. This square-root dependence has been verified for many DFB lasers
exhibiting a modulation bandwidth of up to 30 GHz [67]–[70]. Figure 3.21 shows how
f3dB can be increased to 24 GHz for a DFB laser by biasing it at 80 mA [70]. A mod-
ulation bandwidth of 25 GHz was realized in 1994 for a packaged 1.55-µm InGaAsP
laser specifically designed for high-speed response [68].

3.5.3 Large-Signal Modulation

The small-signal analysis, although useful for a qualitative understanding of the modu-
lation response, is not generally applicable to optical communication systems where the
laser is typically biased close to threshold and modulated considerably above threshold
to obtain optical pulses representing digital bits. In this case of large-signal modulation,
the rate equations should be solved numerically. Figure 3.22 shows, as an example, the
shape of the emitted optical pulse for a laser biased at Ib = 1.1Ith and modulated at
2 Gb/s using rectangular current pulses of duration 500 ps and amplitude I m = Ith.
The optical pulse does not have sharp leading and trailing edges because of a limited
modulation bandwidth and exhibits a rise time ∼ 100 ps and a fall time ∼ 300 ps.
The initial overshoot near the leading edge is a manifestation of relaxation oscillations.
Even though the optical pulse is not an exact replica of the applied electrical pulse,
deviations are small enough that semiconductor lasers can be used in practice.

As mentioned before, amplitude modulation in semiconductor lasers is accompa-
nied by phase modulation governed by Eq. (3.5.16). A time-varying phase is equivalent
to transient changes in the mode frequency from its steady-state value ν 0. Such a pulse
is called chirped. The frequency chirp δν(t) is obtained by using Eq. (3.5.16) and is
given by

δν(t) =
1

2π
dφ
dt

=
βc

4π

[
GN(N −N0)− 1

τp

]
. (3.5.25)

The dashed curve in Fig. 3.21 shows the frequency chirp across the optical pulse. The
mode frequency shifts toward the blue side near the leading edge and toward the red
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Figure 3.22: Simulated modulation response of a semiconductor laser to 500-ps rectangular
current pulses. Solid curve shows the pulse shape and the dashed curve shows the frequency
chirp imposed on the pulse (βc = 5).

side near the trailing edge of the optical pulse [71]. Such a frequency shift implies
that the pulse spectrum is considerably broader than that expected in the absence of
frequency chirp.

It was seen in Section 2.4 that the frequency chirp can limit the performance of
optical communication systems, especially when β2C > 0, where β2 is the dispersion
parameter and C is the chirp parameter. Even though optical pulses emitted from semi-
conductors are generally not Gaussian, the analysis of Section 2.4 can be used to study
chirp-induced pulse broadening [72] if we identify C with −β c in Eq. (2.4.23). It turns
out that 1.55-µm lightwave systems are limited to distances below 100 km even at a
bit rate of 2.5 Gb/s because of the frequency chirp [71] when conventional fibers are
used (β2 ≈−20 ps2/km). Higher bit rates and longer distances can only be realized by
using a dispersion management scheme so that the average dispersion is close to zero
(see Chapter 7).

Since frequency chirp is often the limiting factor for lightwave systems operat-
ing near 1.55 µm, several methods have been used to reduce its magnitude [73]–[77].
These include pulse-shape tailoring, injection locking, and coupled-cavity schemes. A
direct way to reduce the frequency chirp is to design semiconductor lasers with small
values of the linewidth enhancement factor β c. The use of quantum-well design re-
duces βc by about a factor of about 2. A further reduction occurs for strained quantum
wells [76]. Indeed, βc ≈ 1 has been measured in modulation-doped strained MQW
lasers [77]. Such lasers exhibit low chirp under direct modulation. The frequency
chirp resulting from current modulation can be avoided altogether if the laser is contin-
uously operated, and an external modulator is used to modulate the laser output [78].
In practice, lightwave systems operating at 10 Gb/s or more use either a monolithically
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integrated electroabsorption modulator or an external LiNbO 3 modulator (see Section
3.6). One can even design a modulator to reverse the sign of chirp such that β 2C < 0,
resulting in improved system performance.

Lightwave system designed using the RZ format, optical time-division multiplex-
ing, or solitons often require mode-locked lasers that generate short optical pulses
(width ∼ 10 ps) at a high repetition rate equal to the bit rate. External-cavity semi-
conductor lasers can be used for this purpose, and are especially practical if a fiber
grating is used for an external mirror. An external modulator is still needed to impose
the data on the mode-locked pulse train; it blocks pulses in each bit slot corresponding
to 0 bits. The gain switching has also been used to generate short pulses from a semi-
conductor laser. A mode-locked fiber laser can also be used for the same purpose [79].

3.5.4 Relative Intensity Noise

The output of a semiconductor laser exhibits fluctuations in its intensity, phase, and
frequency even when the laser is biased at a constant current with negligible current
fluctuations. The two fundamental noise mechanisms are spontaneous emission and
electron–hole recombination (shot noise). Noise in semiconductor lasers is dominated
by spontaneous emission. Each spontaneously emitted photon adds to the coherent field
(established by stimulated emission) a small field component whose phase is random,
and thus perturbs both amplitude and phase in a random manner. Moreover, such
spontaneous-emission events occur randomly at a high rate (∼ 10 12 s−1) because of a
relatively large value of Rsp in semiconductor lasers. The net result is that the intensity
and the phase of the emitted light exhibit fluctuations over a time scale as short as
100 ps. Intensity fluctuations lead to a limited signal-to-noise ratio (SNR), whereas
phase fluctuations lead to a finite spectral linewidth when semiconductor lasers are
operated at a constant current. Since such fluctuations can affect the performance of
lightwave systems, it is important to estimate their magnitude [80].

The rate equations can be used to study laser noise by adding a noise term, known
as the Langevin force, to each of them [81]. Equations (3.5.1), (3.5.2), and (3.5.16)
then become

dP
dt

=
(

G− 1
τp

)
P+ Rsp + FP(t), (3.5.26)

dN
dt

=
I
q
− N

τc
−GP+ FN(t), (3.5.27)

dφ
dt

=
1
2

βc

[
GN(N −N0)− 1

τp

]
+ Fφ(t), (3.5.28)

where Fp(t), FN(t), and Fφ (t) are the Langevin forces. They are assumed to be Gaus-
sian random processes with zero mean and to have a correlation function of the form
(the Markoffian approximation)

〈Fi(t)Fj(t ′)〉 = 2Di jδ (t − t ′), (3.5.29)
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Figure 3.23: RIN spectra at several power levels for a typical 1.55-µm semiconductor laser.

where i, j = P, N, or φ , angle brackets denote the ensemble average, and D i j is called
the diffusion coefficient. The dominant contribution to laser noise comes from only
two diffusion coefficients DPP = RspP and Dφφ = Rsp/4P; others can be assumed to be
nearly zero [82].

The intensity-autocorrelation function is defined as

Cpp(τ) = 〈δP(t)δP(t + τ)〉/P̄2, (3.5.30)

where P̄ ≡ 〈P〉 is the average value and δP = P− P̄ represents a small fluctuation. The
Fourier transform of Cpp(τ) is known as the relative-intensity-noise (RIN) spectrum
and is given by

RIN(ω) =
∫ ∞

−∞
Cpp(τ)exp(−iωt)dt. (3.5.31)

The RIN can be calculated by linearizing Eqs. (3.5.26) and (3.5.27) in δP and δN,
solving the linearized equations in the frequency domain, and performing the average
with the help of Eq. (3.5.29). It is given approximately by [2]

RIN(ω) =
2Rsp{(Γ2

N + ω2)+ GNP̄[GNP̄(1+ N/τcRspP̄)−2ΓN]}
P̄[(ΩR −ω)2 + Γ2

R][(ΩR + ω)2 + Γ2
R]

, (3.5.32)

where ΩR and ΓR are the frequency and the damping rate of relaxation oscillations.
They are given by Eq. (3.5.21), with Pb replaced by P̄.

Figure 3.23 shows the calculated RIN spectra at several power levels for a typi-
cal 1.55-µm InGaAsP laser. The RIN is considerably enhanced near the relaxation-
oscillation frequency ΩR but decreases rapidly for ω � ΩR, since the laser is not able
to respond to fluctuations at such high frequencies. In essence, the semiconductor laser
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acts as a bandpass filter of bandwidth ΩR to spontaneous-emission fluctuations. At
a given frequency, RIN decreases with an increase in the laser power as P−3 at low
powers, but this behavior changes to P−1 dependence at high powers.

The autocorrelation function C pp(τ) is calculated using Eqs. (3.5.31) and (3.5.32).
The calculation shows that Cpp(τ) follows relaxation oscillations and approaches zero
for τ > Γ−1

R [83]. This behavior indicates that intensity fluctuations do not remain cor-
related for times longer than the damping time of relaxation oscillations. The quantity
of practical interest is the SNR defined as P̄/σp, where σp is the root-mean-square
(RMS) noise. From Eq. (3.5.30), SNR = [Cpp(0)]−1/2. At power levels above a few
milliwatts, the SNR exceeds 20 dB and improves linearly with the power as

SNR =
(

εNL

Rspτp

)1/2

P̄. (3.5.33)

The presence of εNL indicates that the nonlinear form of the gain in Eq. (3.5.15) plays
a crucial role. This form needs to be modified at high powers. Indeed, a more accu-
rate treatment shows that the SNR eventually saturates at a value of about 30 dB and
becomes power independent [83].

So far, the laser has been assumed to oscillate in a single longitudinal mode. In
practice, even DFB lasers are accompanied by one or more side modes. Even though
side modes remain suppressed by more than 20 dB on the basis of the average power,
their presence can affect the RIN significantly. In particular, the main and side modes
can fluctuate in such a way that individual modes exhibit large intensity fluctuations,
but the total intensity remains relatively constant. This phenomenon is called mode-
partition noise (MPN) and occurs due to an anticorrelation between the main and side
modes [2]. It manifests through the enhancement of RIN for the main mode by 20 dB
or more in the low-frequency range 0–1 GHz; the exact value of the enhancement factor
depends on the MSR [84]. In the case of a VCSEL, the MPN involves two transverse
modes. [85]. In the absence of fiber dispersion, MPN would be harmless for optical
communication systems, as all modes would remain synchronized during transmis-
sion and detection. However, in practice all modes do not arrive simultaneously at the
receiver because they travel at slightly different speeds. Such a desynchronization not
only degrades the SNR of the received signal but also leads to intersymbol interference.
The effect of MPN on the system performance is discussed in Section 7.4.3.

3.5.5 Spectral Linewidth

The spectrum of emitted light is related to the field-autocorrelation function Γ EE (τ)
through a Fourier-transform relation similar to Eq. (3.5.31), i.e.,

S(ω) =
∫ ∞

−∞
ΓEE(t)exp[−i(ω −ω0)τ]dτ, (3.5.34)

where ΓEE(t) = 〈E∗(t)E(t +τ)〉 and E(t) =
√

Pexp(iφ) is the optical field. If intensity
fluctuations are neglected, ΓEE(t) is given by

ΓEE(t) = 〈exp[i∆φ(t)]〉 = exp[−〈∆φ 2(τ)〉/2], (3.5.35)
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where the phase fluctuation ∆φ(τ) = φ(t + τ)−φ(t) is taken to be a Gaussian random
process. The phase variance 〈∆φ 2(τ)〉 can be calculated by linearizing Eqs. (3.5.26)–
(3.5.28) and solving the resulting set of linear equations. The result is [82]

〈∆φ2(τ)〉 =
Rsp

2P̄

[
(1+ β 2

c b)τ +
β 2

c b
2ΓR cosδ

[cos(3δ )− e−ΓRτ cos(ΩRτ −3δ )]
]
,

(3.5.36)
where

b = ΩR/(Ω2
R + Γ2

R)1/2 and δ = tan−1(ΓR/ΩR). (3.5.37)

The spectrum is obtained by using Eqs. (3.5.34)–(3.5.36). It is found to consist of a
dominant central peak located at ω0 and multiple satellite peaks located at ω = ω0 ±
mΩR, where m is an integer. The amplitude of satellite peaks is typically less than 1% of
that of the central peak. The physical origin of the satellite peaks is related to relaxation
oscillations, which are responsible for the term proportional to b in Eq. (3.5.36). If this
term is neglected, the autocorrelation function ΓEE (τ) decays exponentially with τ .
The integral in Eq. (3.5.34) can then be performed analytically, and the spectrum is
found to be Lorentzian. The spectral linewidth ∆ν is defined as the full-width at half-
maximum (FWHM) of this Lorentzian line and is given by [82]

∆ν = Rsp(1+ β 2
c )/(4π P̄), (3.5.38)

where b = 1 was assumed as ΓR �ΩR under typical operating conditions. The linewidth
is enhanced by a factor of 1+β 2

c as a result of the amplitude-phase coupling governed
by βc in Eq. (3.5.28); βc is called the linewidth enhancement factor for this reason.

Equation (3.5.38) shows that ∆ν should decrease as P̄−1 with an increase in the
laser power. Such an inverse dependence is observed experimentally at low power
levels (< 10 mW) for most semiconductor lasers. However, often the linewidth is found
to saturate to a value in the range 1–10 MHz at a power level above 10 mW. Figure 3.24
shows such linewidth-saturation behavior for several 1.55-µm DFB lasers [86]. It also
shows that the linewidth can be reduced considerably by using a MQW design for the
DFB laser. The reduction is due to a smaller value of the parameter β c realized by such
a design. The linewidth can also be reduced by increasing the cavity length L, since
Rsp decreases and P increases at a given output power as L is increased. Although not
obvious from Eq. (3.5.38), ∆ν can be shown to vary as L−2 when the length dependence
of Rsp and P is incorporated. As seen in Fig. 3.24, ∆ν is reduced by about a factor of
4 when the cavity length is doubled. The 800-µm-long MQW-DFB laser is found to
exhibit a linewidth as small as 270 kHz at a power output of 13.5 mW [86]. It is further
reduced in strained MQW lasers because of relatively low values of β c, and a value of
about 100 kHz has been measured in lasers with β c ≈ 1 [77]. It should be stressed,
however, that the linewidth of most DFB lasers is typically 5–10 MHz when operating
at a power level of 10 mW.

Figure 3.24 shows that as the laser power increases, the linewidth not only saturates
but begins to rebroaden. Several mechanisms have been invoked to explain such behav-
ior; a few of them are current noise, 1/ f noise, nonlinear gain, sidemode interaction,
and index nonlinearity [87]–[94]. The linewidth of most DFB lasers is small enough
that it is not a limiting factor for lightwave systems.
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Figure 3.24: Measured linewidth as a function of emitted power for several 1.55-µm DFB lasers.
Active layer is 100 nm thick for the bulk laser and 10 nm thick for MQW lasers. (After Ref. [86];
c©1991 IEEE; reprinted with permission.)

3.6 Transmitter Design

So far this chapter has focused on the properties of optical sources. Although an optical
source is a major component of optical transmitters, it is not the only component. Other
components include a modulator for converting electrical data into optical form (if
direct modulation is not used) and an electrical driving circuit for supplying current to
the optical source. An external modulator is often used in practice at bit rates of 10 Gb/s
or more for avoiding the chirp that is invariably imposed on the directly modulated
signal. This section covers the design of optical transmitters with emphasis on the
packaging issues [95]–[105].

3.6.1 Source–Fiber Coupling

The design objective for any transmitter is to couple as much light as possible into the
optical fiber. In practice, the coupling efficiency depends on the type of optical source
(LED versus laser) as well as on the type of fiber (multimode versus single mode). The
coupling can be very inefficient when light from an LED is coupled into a single-mode
fiber. As discussed briefly in Section 3.2.1, the coupling efficiency for an LED changes
with the numerical aperture, and can become < 1% in the case of single-mode fibers.
In contrast, the coupling efficiency for edge-emitting lasers is typically 40–50% and
can exceed 80% for VCSELs because of their circular spot size. A small piece of fiber
(known as a pigtail) is included with the transmitter so that the coupling efficiency can
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Figure 3.25: Transmitters employing (a) butt-coupling and (b) lens-coupling designs. (After
Ref. [97]; c©1989 AT&T; reprinted with permission.)

be maximized during packaging; a splice or connector is used to join the pigtail with
the fiber cable.

Two approaches have been used for source–fiber coupling. In one approach, known
as direct or butt coupling, the fiber is brought close to the source and held in place by
epoxy. In the other, known as lens coupling, a lens is used to maximize the coupling
efficiency. Each approach has its own merits, and the choice generally depends on
the design objectives. An important criterion is that the coupling efficiency should not
change with time; mechanical stability of the coupling scheme is therefore a necessary
requirement.

An example of butt coupling is shown in Fig. 3.25(a), where the fiber is brought in
contact with a surface-emitting LED. The coupling efficiency for a fiber of numerical
aperture NA is given by [96]

nc = (1−R f )(NA)2, (3.6.1)

where R f is the reflectivity at the fiber front end. R f is about 4% if an air gap exists
between the source and the fiber but can be reduced to nearly zero by placing an index-
matching liquid. The coupling efficiency is about 1% for a surface-emitting LED and
roughly 10% for an edge-emitting LED. Some improvement is possible in both cases
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by using fibers that are tapered or have a lensed tip. An external lens also improves the
coupling efficiency but only at the expense of reduced mechanical tolerance.

The coupling of a semiconductor laser to a single-mode optical fiber is more effi-
cient than that of an LED. The butt coupling provides only about 10% efficiency, as it
makes no attempt to match the mode sizes of the laser and the fiber. Typically, index-
guided InGaAsP lasers have a mode size of about 1 µm, whereas the mode size of a
single-mode fiber is in the range 6–9 µm. The coupling efficiency can be improved by
tapering the fiber end and forming a lens at the fiber tip. Figure 3.25(a) shows such
a butt-coupling scheme for a commercial transmitter. The fiber is attached to a jewel,
and the jewel is attached to the laser submount by using an epoxy [97]. The fiber tip is
aligned with the emitting region of the laser to maximize the coupling efficiency (typ-
ically 40%). The use of a lensed fiber can improve the coupling efficiency, and values
close to 100% have been realized with an optimum design [98]–[100].

Figure 3.25(b) shows a lens-coupling approach for transmitter design. The coupling
efficiency can exceed 70% for such a confocal design in which a sphere is used to
collimate the laser light and focus it onto the fiber core. The alignment of the fiber
core is less critical for the confocal design because the spot size is magnified to match
the fiber’s mode size. The mechanical stability of the package is ensured by soldering
the fiber into a ferrule which is secured to the body by two sets of laser alignment
welds. One set of welds establishes proper axial alignment, while the other set provides
transverse alignment.

The laser–fiber coupling issue remains important, and several new schemes have
been developed during the 1990s [101]–[105]. In one approach, a silicon optical bench
is used to align the laser and the fiber [101]. In another, a silicon micromirror, fabri-
cated by using the micro-machining technology, is used for optical alignment [102]. In
a different approach, a directional coupler is used as the spot-size converter for maxi-
mizing the coupling efficiency [103]. Coupling efficiencies >80% have been realized
by integrating a spot-size converter with semiconductor lasers [105].

An important problem that needs to be addressed in designing an optical transmit-
ter is related to the extreme sensitivity of semiconductor lasers to optical feedback [2].
Even a relatively small amount of feedback (< 0.1%) can destabilize the laser and affect
the system performance through phenomena such as linewidth broadening, mode hop-
ping, and RIN enhancement [106]–[110]. Attempts are made to reduce the feedback
into the laser cavity by using antireflection coatings. Feedback can also be reduced by
cutting the fiber tip at a slight angle so that the reflected light does not hit the active
region of the laser. Such precautions are generally enough to reduce the feedback to a
tolerable level. However, it becomes necessary to use an optical isolator between the
laser and the fiber in transmitters designed for more demanding applications. One such
application corresponds to lightwave systems operating at high bit rates and requiring
a narrow-linewidth DFB laser.

Most optical isolators make use of the Faraday effect, which governs the rotation
of the plane of polarization of an optical beam in the presence of a magnetic field:
The rotation is in the same direction for light propagating parallel or antiparallel to
the magnetic field direction. Optical isolators consist of a rod of Faraday material
such as yttrium iron garnet (YIG), whose length is chosen to provide 45 ◦ rotation.
The YIG rod is sandwiched between two polarizers whose axes are tilted by 45 ◦ with
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Figure 3.26: Driving circuit for a laser transmitter with feedback control to keep the average
optical power constant. A photodiode monitors the output power and provides the control signal.
(After Ref. [95]; c©1988 Academic Press; reprinted with permission.)

respect to each other. Light propagating in one direction passes through the second
polarizer because of the Faraday rotation. By contrast, light propagating in the opposite
direction is blocked by the first polarizer. Desirable characteristics of optical isolators
are low insertion loss, high isolation (> 30 dB), compact size, and a wide spectral
bandwidth of operation. A very compact isolator can be designed if the lens in Fig.
3.25(b) is replaced by a YIG sphere so that it serves a dual purpose [111]. As light
from a semiconductor laser is already polarized, a signal polarizer placed between the
YIG sphere and the fiber can reduce the feedback by more than 30 dB.

3.6.2 Driving Circuitry

The purpose of driving circuitry is to provide electrical power to the optical source and
to modulate the light output in accordance with the signal that is to be transmitted.
Driving circuits are relatively simple for LED transmitters but become increasingly
complicated for high-bit-rate optical transmitters employing semiconductor lasers as
an optical source [95]. As discussed in Section 3.5.2, semiconductor lasers are biased
near threshold and then modulated through an electrical time-dependent signal. Thus
the driving circuit is designed to supply a constant bias current as well as modulated
electrical signal. Furthermore, a servo loop is often used to keep the average optical
power constant.

Figure 3.26 shows a simple driving circuit that controls the average optical power
through a feedback mechanism. A photodiode monitors the laser output and generates
the control signal that is used to adjust the laser bias level. The rear facet of the laser
is generally used for the monitoring purpose (see Fig. 3.25). In some transmitters a
front-end tap is used to divert a small fraction of the output power to the detector.
The bias-level control is essential, since the laser threshold is sensitive to the operating
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Figure 3.27: Two kinds of external modulators: (a) LiNbO3 modulator in the Mach–Zehnder
configuration; (b) semiconductor modulator based on electroabsorption.

temperature. The threshold current also increases with aging of the transmitter because
of gradual degradation of the semiconductor laser.

The driving circuit shown in Fig. 3.26 adjusts the bias level dynamically but leaves
the modulation current unchanged. Such an approach is acceptable if the slope ef-
ficiency of the laser does not change with aging. As discussed in Section 3.5.1 and
seen in Fig. 3.20, the slope efficiency of the laser generally decreases with an increase
in temperature. A thermoelectric cooler is often used to stabilize the laser tempera-
ture. An alternative approach consists of designing driving circuits that use dual-loop
feedback circuits and adjust both the bias current and the modulation current automat-
ically [112].

3.6.3 Optical Modulators

At bit rates of 10 Gb/s or higher, the frequency chirp imposed by direct modulation
becomes large enough that direct modulation of semiconductor lasers is rarely used.
For such high-speed transmitters, the laser is biased at a constant current to provide the
CW output, and an optical modulator placed next to the laser converts the CW light
into a data-coded pulse train with the right modulation format.

Two types of optical modulators developed for lightwave system applications are
shown in Fig. 3.27. The electroabsorption modulator makes use of the Franz–Keldysh
effect, according to which the bandgap of a semiconductor decreases when an electric
field is applied across it. Thus, a transparent semiconductor layer begins to absorb
light when its bandgap is reduced electronically by applying an external voltage. An
extinction ratio of 15 dB or more can be realized for an applied reverse bias of a few
volts at bit rates of up to 40 Gb/s [113]–[120]. Although some chirp is still imposed
on coded pulses, it can be made small enough not to be detrimental for the system
performance.

An advantage of electroabsorption modulators is that they are made using the same
semiconductor material that is used for the laser, and thus the two can be easily inte-
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grated on the same chip. Low-chirp transmission at a bit rate of 5 Gb/s was demon-
strated as early as 1994 by integrating an electroabsorption modulator with a DBR
laser [114]. By 1999, 10-Gb/s optical transmitters with an integrated electroabsorption
modulator were available commercially and were used routinely for WDM lightwave
systems [119]. By 2001, such integrated modulators exhibited a bandwidth of more
than 50 GHz and had the potential of operating at bit rates of up to 100 Gb/s [120].
An electroabsorption modulator can also be used to generate ultrashort pulses suitable
for optical time-division multiplexing (OTDM). A DFB laser, integrated monolithi-
cally with a MQW modulator, was used as early as 1993 to generate a 20-GHz pulse
train [113]. The 7-ps output pulses were nearly transform-limited because of an ex-
tremely low chirp associated with the modulator. A 40-GHz train of 1.6 ps pulses was
produced in 1999 using an electroabsorption modulator; such pulses can be used for
OTDM systems operating at a bit rate of 160 Gb/s [116].

The second category of optical modulators makes use of the LiNbO 3 material
and a Mach–Zehnder (MZ) interferometer for intensity modulation [121]–[126]. Two
titanium-diffused LiNbO3 waveguides form the two arms of a MZ interferometer (see
Fig. 3.27). The refractive index of electro-optic materials such as LiNbO 3 can be
changed by applying an external voltage. In the absence of external voltage, the optical
fields in the two arms of the MZ interferometer experience identical phase shifts and in-
terfere constructively. The additional phase shift introduced in one of the arms through
voltage-induced index changes destroys the constructive nature of the interference and
reduces the transmitted intensity. In particular, no light is transmitted when the phase
difference between the two arms equals π , because of destructive interference occur-
ring in that case. As a result, the electrical bit stream applied to the modulator produces
an optical replica of the bit stream.

The performance of an external modulator is quantified through the on–off ratio
(also called extinction ratio) and the modulation bandwidth. Modern LiNbO 3 mod-
ulators provide an on–off ratio in excess of 20 and can be modulated at speeds up
to 75 GHz [122]. The driving voltage is typically 5 V but can be reduced to below
3 V with a suitable design [125]. LiNbO3 modulators with a bandwidth of 10 GHz
were available commercially by 1998, and the bandwidth increased to 40 GHz by
2000 [126].

Other materials can also be used to make external modulators. For example, mod-
ulators have been fabricated using electro-optic polymers. Already in 1995 such a
modulator exhibited a modulation bandwidth of up to 60 GHz [127]. In a 2001 ex-
periment, a polymeric electro-optic MZ modulator required only 1.8 V for shifting the
phase of a 1.55-µm signal by π in one of the arms of the MZ interferometer [128].
The device was only 3 cm long and exhibited about 5-dB chip losses. With further
development, such modulators may find applications in lightwave systems.

3.6.4 Optoelectronic Integration

The electrical components used in the driving circuit determine the rate at which the
transmitter output can be modulated. For lightwave transmitters operating at bit rates
above 1 Gb/s, electrical parasitics associated with various transistors and other compo-
nents often limit the transmitter performance. The performance of high-speed trans-
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mitters can be improved considerably by using monolithic integration of the laser
with the driver. Since optical and electrical devices are fabricated on the same chip,
such monolithic transmitters are referred to as optoelectronic integrated-circuit (OEIC)
transmitters. The OEIC approach was first applied to integration of GaAs lasers,
since the technology for fabrication of GaAs electrical devices is relatively well es-
tablished [129]–[131]. The technology for fabrication of InP OEICs evolved rapidly
during the 1990s [132]–[136]. A 1.5-µm OEIC transmitter capable of operating at
5 Gb/s was demonstrated in 1988 [132]. By 1995, 10-Gb/s laser transmitters were fab-
ricated by integrating 1.55-µm DFB lasers with field-effect transistors made with the
InGaAs/InAlAs material system. Since then, OEIC transmitters with multiple lasers
on the same chip have been developed for WDM applications (see Chapter 8).

A related approach to OEIC integrates the semiconductor laser with a photodetec-
tor [137]–[139] and/or with a modulator [117]–[120]. The photodetector is generally
used for monitoring and stabilizing the output power of the laser. The role of the modu-
lator is to reduce the dynamic chirp occurring when a semiconductor laser is modulated
directly (see Section 3.5.2). Photodetectors can be fabricated by using the same mate-
rial as that used for the laser (see Chapter 4).

The concept of monolithic integration can be extended to build single-chip trans-
mitters by adding all functionality on the same chip. Considerable effort has been
directed toward developing such OEICs, often called photonic integrated circuits [6],
which integrate on the same chip multiple optical components, such as lasers, detectors,
modulators, amplifiers, filters, and waveguides [140]–[145]. Such integrated circuits
should prove quite beneficial to lightwave technology.

3.6.5 Reliability and Packaging

An optical transmitter should operate reliably over a relatively long period of time (10
years or more) in order to be useful as a major component of lightwave systems. The
reliability requirements are quite stringent for undersea lightwave systems, for which
repairs and replacement are prohibitively expensive. By far the major reason for failure
of optical transmitters is the optical source itself. Considerable testing is performed
during assembly and manufacture of transmitters to ensure a reasonable lifetime for
the optical source. It is common [95] to quantify the lifetime by a parameter t F known
as mean time to failure (MTTF). Its use is based on the assumption of an exponential
failure probability [PF = exp(−t/tF)]. Typically, tF should exceed 105 hours (about
11 years) for the optical source. Reliability of semiconductor lasers has been studied
extensively to ensure their operation under realistic operating conditions [146]–[151].

Both LEDs and semiconductor lasers can stop operating suddenly (catastrophic
degradation) or may exhibit a gradual mode of degradation in which the device effi-
ciency degrades with aging [147]. Attempts are made to identify devices that are likely
to degrade catastrophically. A common method is to operate the device at high temper-
atures and high current levels. This technique is referred to as burn-in or accelerated
aging [146] and is based on the assumption that under high-stress conditions weak de-
vices will fail, while others will stabilize after an initial period of rapid degradation.
The change in the operating current at a constant power is used as a measure of de-
vice degradation. Figure 3.28 shows the change in the operating current of a 1.3-µm
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Figure 3.28: Change in current as a function of time for a 1.3-µm InGaAsP laser aged at 60◦C
with 5 mW of output power. (After Ref. [148]; c©1985 AT&T; reprinted with permission.)

InGaAsP laser aged at 60◦C under a constant output power of 5 mW from each facet.
The operating current for this laser increases by 40% in the first 400 hours but then
stabilizes and increases at a much reduced rate indicative of gradual degradation. The
degradation rate can be used to estimate the laser lifetime and the MTTF at the elevated
temperature. The MTTF at the normal operating temperature is then extrapolated by
using an Arrhenius-type relation tF = t0 exp(−Ea/kBT ), where t0 is a constant and Ea

is the activation energy with a typical value of about 1 eV [147]. Physically, grad-
ual degradation is due to the generation of various kinds of defects (dark-line defects,
dark-spot defects) within the active region of the laser or LED [2].

Extensive tests have shown that LEDs are normally more reliable than semicon-
ductor lasers under the same operating conditions. The MTTF for GaAs LEDs easily
exceeds 106 hours and can be > 107 hours at 25◦C [147]. The MTTF for InGaAsP
LEDs is even larger, approaching a value ∼ 109 hours. By contrast, the MTTF for In-
GaAsP lasers is generally limited to 106 hours at 25◦C [148]–[150]. Nonetheless, this
value is large enough that semiconductor lasers can be used in undersea optical trans-
mitters designed to operate reliably for a period of 25 years. Because of the adverse
effect of high temperatures on device reliability, most transmitters use a thermoelectric
cooler to maintain the source temperature near 20 ◦C even when the outside temperature
may be as high as 80◦C.

Even with a reliable optical source, a transmitter may fail in an actual system if the
coupling between the source and the fiber degrades with aging. Coupling stability is an
important issue in the design of reliable optical transmitters. It depends ultimately on
the packaging of transmitters. Although LEDs are often packaged nonhermetically, an
hermetic environment is essential for semiconductor lasers. It is common to package
the laser separately so that it is isolated from other transmitter components. Figure
3.25 showed two examples of laser packages. In the butt-coupling scheme, an epoxy
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is used to hold the laser and fiber in place. Coupling stability in this case depends
on how epoxy changes with aging of the transmitter. In the lens-coupling scheme,
laser welding is used to hold various parts of the assembly together. The laser package
becomes a part of the transmitter package, which includes other electrical components
associated with the driving circuit. The choice of transmitter package depends on the
type of application; a dual-in-line package or a butterfly housing with multiple pins is
typically used.

Testing and packaging of optical transmitters are two important parts of the manu-
facturing process [149], and both of them add considerably to the cost of a transmitter.
The development of low-cost packaged transmitters is necessary, especially for local-
area and local-loop applications.

Problems

3.1 Show that the external quantum efficiency of a planar LED is given approx-
imately by ηext = n−1(n + 1)−2, where n is the refractive index of the semi-
conductor–air interface. Consider Fresnel reflection and total internal reflection
at the output facet. Assume that the internal radiation is uniform in all directions.

3.2 Prove that the 3-dB optical bandwidth of a LED is related to the 3-dB electrical
bandwidth by the relation f3dB(optical) =

√
3 f3dB(electrical).

3.3 Find the composition of the quaternary alloy InGaAsP for making semiconductor
lasers operating at 1.3- and 1.55-µm wavelengths.

3.4 The active region of a 1.3-µm InGaAsP laser is 250 µm long. Find the active-
region gain required for the laser to reach threshold. Assume that the internal
loss is 30 cm−1, the mode index is 3.3, and the confinement factor is 0.4.

3.5 Derive the eigenvalue equation for the transverse-electric (TE) modes of a pla-
nar waveguide of thickness d and refractive index n 1 sandwiched between two
cladding layers of refractive index n2. (Hint: Follow the method of Section 2.2.2
using Cartesian coordinates.)

3.6 Use the result of Problem 3.5 to find the single-mode condition. Use this condi-
tion to find the maximum allowed thickness of the active layer for a 1.3-µm semi-
conductor laser. How does this value change if the laser operates at 1.55 µm?
Assume n1 = 3.5 and n2 = 3.2.

3.7 Solve the rate equations in the steady state and obtain the analytic expressions for
P and N as a function of the injection current I. Neglect spontaneous emission
for simplicity.

3.8 A semiconductor laser is operating continuously at a certain current. Its output
power changes slightly because of a transient current fluctuation. Show that the
laser power will attain its original value through an oscillatory approach. Obtain
the frequency and the damping time of such relaxation oscillations.

3.9 A 250-µm-long InGaAsP laser has an internal loss of 40 cm−1. It operates in
a single mode with the modal index 3.3 and the group index 3.4. Calculate the
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photon lifetime. What is the threshold value of the electron population? Assume
that the gain varies as G = GN(N−N0) with GN = 6×103 s−1 and N0 = 1×108.

3.10 Determine the threshold current for the semiconductor laser of Problem 3.9 by
taking 2 ns as the carrier lifetime. How much power is emitted from one facet
when the laser is operated twice above threshold?

3.11 Consider the laser of Problem 3.9 operating twice above threshold. Calculate
the differential quantum efficiency and the external quantum efficiency for the
laser. What is the device (wall-plug) efficiency if the external voltage is 1.5 V?
Assume that the internal quantum efficiency is 90%.

3.12 Calculate the frequency (in GHz units) and the damping time of the relaxation
oscillations for the laser of Problem 3.9 operating twice above threshold. Assume
that GP = −4×104 s−1, where GP is the derivative of G with respect to P. Also
assume that Rsp = 2/τp.

3.13 Determine the 3-dB modulation bandwidth for the laser of Problem 3.11 biased
to operate twice above threshold. What is the corresponding 3-dB electrical
bandwidth?

3.14 The threshold current of a semiconductor laser doubles when the operating tem-
perature is increased by 50◦C. What is the characteristic temperature of the laser?

3.15 Derive an expression for the 3-dB modulation bandwidth by assuming that the
gain G in the rate equations varies with N and P as

G(N,P) = GN(N −N0)(1+ P/Ps)−1/2.

Show that the bandwidth saturates at high operating powers.

3.16 Solve the rate equations (3.5.1) and (3.5.2) numerically by using I(t) = I b +
Im fp(t), where f p(t) represents a rectangular pulse of 200-ps duration. Assume
that Ib/Ith = 0.8, Im/Ith = 3, τp = 3 ps, τc = 2 ns, and Rsp = 2/τp. Use Eq.
(3.5.15) for the gain G with GN = 104 s−1, N0 = 108, and εNL = 10−7. Plot
the optical pulse shape and the frequency chirp. Why is the optical pulse much
shorter than the applied current pulse?

3.17 Complete the derivation of Eq. (3.5.32) for the RIN. How does this expression
change if the gain G is assumed of the form of Problem 3.15?

3.18 Calculate the autocorrelation Cpp(τ) by using Eqs. (3.5.31) and (3.5.32). Use it
to derive an expression for the SNR of the laser output.
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Chapter 4

Optical Receivers

The role of an optical receiver is to convert the optical signal back into electrical form
and recover the data transmitted through the lightwave system. Its main component is
a photodetector that converts light into electricity through the photoelectric effect. The
requirements for a photodetector are similar to those of an optical source. It should
have high sensitivity, fast response, low noise, low cost, and high reliability. Its size
should be compatible with the fiber-core size. These requirements are best met by pho-
todetectors made of semiconductor materials. This chapter focuses on photodetectors
and optical receivers [1]–[9]. We introduce in Section 4.1 the basic concepts behind the
photodetection process and discuss in Section 4.2 several kinds of photodetectors com-
monly used for optical receivers. The components of an optical receiver are described
in Section 4.3 with emphasis on the role played by each component. Section 4.4 deals
with various noise sources that limit the signal-to-noise ratio in optical receivers. Sec-
tions 4.5 and 4.6 are devoted to receiver sensitivity and its degradation under nonideal
conditions. The performance of optical receivers in actual transmission experiments is
discussed in Section 4.7.

4.1 Basic Concepts

The fundamental mechanism behind the photodetection process is optical absorption.
This section introduces basic concepts such as responsivity, quantum efficiency, and
bandwidth that are common to all photodetectors and are needed later in this chapter.

4.1.1 Detector Responsivity

Consider the semiconductor slab shown schematically in Fig. 4.1. If the energy hν of
incident photons exceeds the bandgap energy, an electron–hole pair is generated each
time a photon is absorbed by the semiconductor. Under the influence of an electric field
set up by an applied voltage, electrons and holes are swept across the semiconductor,
resulting in a flow of electric current. The photocurrent I p is directly proportional to
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Figure 4.1: A semiconductor slab used as a photodetector.

the incident optical power Pin, i.e.,

Ip = RPin, (4.1.1)

where R is the responsivity of the photodetector (in units of A/W).
The responsivity R can be expressed in terms of a fundamental quantity η , called

the quantum efficiency and defined as

η =
electron generation rate
photon incidence rate

=
Ip/q

Pin/hν
=

hν
q

R, (4.1.2)

where Eq. (4.1.1) was used. The responsivity R is thus given by

R =
ηq
hν

≈ ηλ
1.24

, (4.1.3)

where λ ≡ c/ν is expressed in micrometers. The responsivity of a photodetector in-
creases with the wavelength λ simply because more photons are present for the same
optical power. Such a linear dependence on λ is not expected to continue forever be-
cause eventually the photon energy becomes too small to generate electrons. In semi-
conductors, this happens for hν < Eg, where Eg is the bandgap. The quantum efficiency
η then drops to zero.

The dependence of η on λ enters through the absorption coefficient α . If the facets
of the semiconductor slab in Fig. 4.1 are assumed to have an antireflection coating, the
power transmitted through the slab of width W is Ptr = exp(−αW )Pin. The absorbed
power can be written as

Pabs = Pin −Ptr = [1− exp(−αW )]Pin. (4.1.4)

Since each absorbed photon creates an electron–hole pair, the quantum efficiency η is
given by

η = Pabs/Pin = 1− exp(−αW ). (4.1.5)
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Figure 4.2: Wavelength dependence of the absorption coefficient for several semiconductor ma-
terials. (After Ref. [2]; c©1979 Academic Press; reprinted with permission.)

As expected, η becomes zero when α = 0. On the other hand, η approaches 1 if
αW � 1.

Figure 4.2 shows the wavelength dependence of α for several semiconductor ma-
terials commonly used to make photodetectors for lightwave systems. The wavelength
λc at which α becomes zero is called the cutoff wavelength, as that material can be
used for a photodetector only for λ < λ c. As seen in Fig. 4.2, indirect-bandgap semi-
conductors such as Si and Ge can be used to make photodetectors even though the
absorption edge is not as sharp as for direct-bandgap materials. Large values of α
(∼ 104 cm−1) can be realized for most semiconductors, and η can approach 100% for
W ∼ 10 µm. This feature illustrates the efficiency of semiconductors for the purpose
of photodetection.

4.1.2 Rise Time and Bandwidth

The bandwidth of a photodetector is determined by the speed with which it responds
to variations in the incident optical power. It is useful to introduce the concept of rise
time Tr, defined as the time over which the current builds up from 10 to 90% of its final
value when the incident optical power is changed abruptly. Clearly, Tr will depend on
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the time taken by electrons and holes to travel to the electrical contacts. It also depends
on the response time of the electrical circuit used to process the photocurrent.

The rise time Tr of a linear electrical circuit is defined as the time during which the
response increases from 10 to 90% of its final output value when the input is changed
abruptly (a step function). When the input voltage across an RC circuit changes instan-
taneously from 0 to V0, the output voltage changes as

Vout(t) = V0[1− exp(−t/RC)], (4.1.6)

where R is the resistance and C is the capacitance of the RC circuit. The rise time is
found to be given by

Tr = (ln9)RC ≈ 2.2τRC, (4.1.7)

where τRC = RC is the time constant of the RC circuit.
The rise time of a photodetector can be written by extending Eq.(4.1.7) as

Tr = (ln9)(τtr + τRC), (4.1.8)

where τtr is the transit time and τRC is the time constant of the equivalent RC circuit.
The transit time is added to τRC because it takes some time before the carriers are col-
lected after their generation through absorption of photons. The maximum collection
time is just equal to the time an electron takes to traverse the absorption region. Clearly,
τtr can be reduced by decreasing W . However, as seen from Eq. (4.1.5), the quantum
efficiency η begins to decrease significantly for αW < 3. Thus, there is a trade-off be-
tween the bandwidth and the responsivity (speed versus sensitivity) of a photodetector.
Often, the RC time constant τRC limits the bandwidth because of electrical parasitics.
The numerical values of τtr and τRC depend on the detector design and can vary over a
wide range.

The bandwidth of a photodetector is defined in a manner analogous to that of a RC
circuit and is given by

∆ f = [2π(τtr + τRC)]−1. (4.1.9)

As an example, when τtr = τRC = 100 ps, the bandwidth of the photodetector is below
1 GHz. Clearly, both τtr and τRC should be reduced below 10 ps for photodetectors
needed for lightwave systems operating at bit rates of 10 Gb/s or more.

Together with the bandwidth and the responsivity, the dark current I d of a pho-
todetector is the third important parameter. Here, Id is the current generated in a pho-
todetector in the absence of any optical signal and originates from stray light or from
thermally generated electron–hole pairs. For a good photodetector, the dark current
should be negligible (Id < 10 nA).

4.2 Common Photodetectors

The semiconductor slab of Fig. 4.1 is useful for illustrating the basic concepts but such
a simple device is rarely used in practice. This section focuses on reverse-biased p–n
junctions that are commonly used for making optical receivers. Metal–semiconductor–
metal (MSM) photodetectors are also discussed briefly.
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Figure 4.3: (a) A p–n photodiode under reverse bias; (b) variation of optical power inside the
photodiode; (c) energy-band diagram showing carrier movement through drift and diffusion.

4.2.1 p–n Photodiodes

A reverse-biased p–n junction consists of a region, known as the depletion region, that
is essentially devoid of free charge carriers and where a large built-in electric field
opposes flow of electrons from the n-side to the p-side (and of holes from p to n).
When such a p–n junction is illuminated with light on one side, say the p-side (see Fig.
4.3), electron–hole pairs are created through absorption. Because of the large built-in
electric field, electrons and holes generated inside the depletion region accelerate in
opposite directions and drift to the n- and p-sides, respectively. The resulting flow of
current is proportional to the incident optical power. Thus a reverse-biased p–n junction
acts as a photodetector and is referred to as the p–n photodiode.

Figure 4.3(a) shows the structure of a p–n photodiode. As shown in Fig. 4.3(b),
optical power decreases exponentially as the incident light is absorbed inside the de-
pletion region. The electron–hole pairs generated inside the depletion region experi-
ence a large electric field and drift rapidly toward the p- or n-side, depending on the
electric charge [Fig. 4.3(c)]. The resulting current flow constitutes the photodiode re-
sponse to the incident optical power in accordance with Eq. (4.1.1). The responsivity
of a photodiode is quite high (R ∼ 1 A/W) because of a high quantum efficiency.

The bandwidth of a p–n photodiode is often limited by the transit time τ tr in Eq.
(4.1.9). If W is the width of the depletion region and vd is the drift velocity, the transit
time is given by

τtr = W/vd . (4.2.1)

Typically, W ∼ 10 µm, vd ∼ 105 m/s, and τtr ∼ 100 ps. Both W and vd can be opti-
mized to minimize τtr. The depletion-layer width depends on the acceptor and donor
concentrations and can be controlled through them. The velocity vd depends on the
applied voltage but attains a maximum value (called the saturation velocity) ∼ 10 5 m/s
that depends on the material used for the photodiode. The RC time constant τ RC can be
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Figure 4.4: Response of a p–n photodiode to a rectangular optical pulse when both drift and
diffusion contribute to the detector current.

written as
τRC = (RL + Rs)Cp, (4.2.2)

where RL is the external load resistance, Rs is the internal series resistance, and Cp is
the parasitic capacitance. Typically, τRC ∼ 100 ps, although lower values are possible
with a proper design. Indeed, modern p–n photodiodes are capable of operating at bit
rates of up to 40 Gb/s.

The limiting factor for the bandwidth of p–n photodiodes is the presence of a dif-
fusive component in the photocurrent. The physical origin of the diffusive component
is related to the absorption of incident light outside the depletion region. Electrons
generated in the p-region have to diffuse to the depletion-region boundary before they
can drift to the n-side; similarly, holes generated in the n-region must diffuse to the
depletion-region boundary. Diffusion is an inherently slow process; carriers take a
nanosecond or longer to diffuse over a distance of about 1 µm. Figure 4.4 shows how
the presence of a diffusive component can distort the temporal response of a photodi-
ode. The diffusion contribution can be reduced by decreasing the widths of the p- and
n-regions and increasing the depletion-region width so that most of the incident opti-
cal power is absorbed inside it. This is the approach adopted for p–i–n photodiodes,
discussed next.

4.2.2 p–i–n Photodiodes

A simple way to increase the depletion-region width is to insert a layer of undoped
(or lightly doped) semiconductor material between the p–n junction. Since the middle
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Figure 4.5: (a) A p–i–n photodiode together with the electric-field distribution under reverse
bias; (b) design of an InGaAs p–i–n photodiode.

layer consists of nearly intrinsic material, such a structure is referred to as the p–i–n
photodiode. Figure 4.5(a) shows the device structure together with the electric-field
distribution inside it under reverse-bias operation. Because of its intrinsic nature, the
middle i-layer offers a high resistance, and most of the voltage drop occurs across it.
As a result, a large electric field exists in the i-layer. In essence, the depletion region
extends throughout the i-region, and its width W can be controlled by changing the
middle-layer thickness. The main difference from the p–n photodiode is that the drift
component of the photocurrent dominates over the diffusion component simply be-
cause most of the incident power is absorbed inside the i-region of a p–i–n photodiode.

Since the depletion width W can be tailored in p–i–n photodiodes, a natural ques-
tion is how large W should be. As discussed in Section 4.1, the optimum value of W
depends on a compromise between speed and sensitivity. The responsivity can be in-
creased by increasing W so that the quantum efficiency η approaches 100% [see Eq.
(4.1.5)]. However, the response time also increases, as it takes longer for carriers to
drift across the depletion region. For indirect-bandgap semiconductors such as Si and
Ge, typically W must be in the range 20–50 µm to ensure a reasonable quantum effi-
ciency. The bandwidth of such photodiodes is then limited by a relatively long transit
time (τtr > 200 ps). By contrast, W can be as small as 3–5 µm for photodiodes that use
direct-bandgap semiconductors, such as InGaAs. The transit time for such photodiodes
is τtr ∼ 10 ps. Such values of τtr correspond to a detector bandwidth ∆ f ∼ 10 GHz if
we use Eq. (4.1.9) with τtr � τRC .

The performance of p–i–n photodiodes can be improved considerably by using a
double-heterostructure design. Similar to the case of semiconductor lasers, the middle
i-type layer is sandwiched between the p-type and n-type layers of a different semicon-
ductor whose bandgap is chosen such that light is absorbed only in the middle i-layer.
A p–i–n photodiode commonly used for lightwave applications uses InGaAs for the
middle layer and InP for the surrounding p-type and n-type layers [10]. Figure 4.5(b)
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Table 4.1 Characteristics of common p–i–n photodiodes

Parameter Symbol Unit Si Ge InGaAs
Wavelength λ µm 0.4–1.1 0.8–1.8 1.0–1.7
Responsivity R A/W 0.4–0.6 0.5–0.7 0.6–0.9
Quantum efficiency η % 75–90 50–55 60–70
Dark current Id nA 1–10 50–500 1–20
Rise time Tr ns 0.5–1 0.1–0.5 0.02–0.5
Bandwidth ∆ f GHz 0.3–0.6 0.5–3 1–10
Bias voltage Vb V 50–100 6–10 5–6

shows such an InGaAs p–i–n photodiode. Since the bandgap of InP is 1.35 eV, InP
is transparent for light whose wavelength exceeds 0.92 µm. By contrast, the bandgap
of lattice-matched In1−xGaxAs material with x = 0.47 is about 0.75 eV (see Section
3.1.4), a value that corresponds to a cutoff wavelength of 1.65 µm. The middle In-
GaAs layer thus absorbs strongly in the wavelength region 1.3–1.6 µm. The diffusive
component of the detector current is eliminated completely in such a heterostructure
photodiode simply because photons are absorbed only inside the depletion region. The
front facet is often coated using suitable dielectric layers to minimize reflections. The
quantum efficiency η can be made almost 100% by using an InGaAs layer 4–5 µm
thick. InGaAs photodiodes are quite useful for lightwave systems and are often used
in practice. Table 4.1 lists the operating characteristics of three common p–i–n photo-
diodes.

Considerable effort was directed during the 1990s toward developing high-speed
p–i–n photodiodes capable of operating at bit rates exceeding 10 Gb/s [10]–[20]. Band-
widths of up to 70 GHz were realized as early as 1986 by using a thin absorption layer
(< 1 µm) and by reducing the parasitic capacitance C p with a small size, but only at
the expense of a lower quantum efficiency and responsivity [10]. By 1995, p–i–n pho-
todiodes exhibited a bandwidth of 110 GHz for devices designed to reduce τ RC to near
1 ps [15].

Several techniques have been developed to improve the efficiency of high-speed
photodiodes. In one approach, a Fabry–Perot (FP) cavity is formed around the p–i–n
structure to enhance the quantum efficiency [11]–[14], resulting in a laserlike structure.
As discussed in Section 3.3.2, a FP cavity has a set of longitudinal modes at which the
internal optical field is resonantly enhanced through constructive interference. As a re-
sult, when the incident wavelength is close to a longitudinal mode, such a photodiode
exhibits high sensitivity. The wavelength selectivity can even be used to advantage in
wavelength-division multiplexing (WDM) applications. A nearly 100% quantum effi-
ciency was realized in a photodiode in which one mirror of the FP cavity was formed by
using the Bragg reflectivity of a stack of AlGaAs/AlAs layers [12]. This approach was
extended to InGaAs photodiodes by inserting a 90-nm-thick InGaAs absorbing layer
into a microcavity composed of a GaAs/AlAs Bragg mirror and a dielectric mirror. The
device exhibited 94% quantum efficiency at the cavity resonance with a bandwidth of
14 nm [13]. By using an air-bridged metal waveguide together with an undercut mesa
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Figure 4.6: (a) Schematic cross section of a mushroom-mesa waveguide photodiode and (b) its
measured frequency response. (After Ref. [17]; c©1994 IEEE; reprinted with permission.)

structure, a bandwidth of 120 GHz has been realized [14]. The use of such a structure
within a FP cavity should provide a p–i–n photodiode with a high bandwidth and high
efficiency.

Another approach to realize efficient high-speed photodiodes makes use of an opti-
cal waveguide into which the optical signal is edge coupled [16]–[20]. Such a structure
resembles an unpumped semiconductor laser except that various epitaxial layers are
optimized differently. In contrast with a semiconductor laser, the waveguide can be
made wide to support multiple transverse modes in order to improve the coupling ef-
ficiency [16]. Since absorption takes place along the length of the optical waveguide
(∼ 10 µm), the quantum efficiency can be nearly 100% even for an ultrathin absorption
layer. The bandwidth of such waveguide photodiodes is limited by τ RC in Eq. (4.1.9),
which can be decreased by controlling the waveguide cross-section-area. Indeed, a
50-GHz bandwidth was realized in 1992 for a waveguide photodiode [16].

The bandwidth of waveguide photodiodes can be increased to 110 GHz by adopting
a mushroom-mesa waveguide structure [17]. Such a device is shown schematically in
Fig. 4.6. In this structure, the width of the i-type absorbing layer was reduced to 1.5 µm
while the p- and n-type cladding layers were made 6 µm wide. In this way, both the
parasitic capacitance and the internal series resistance were minimized, reducing τ RC

to about 1 ps. The frequency response of such a device at the 1.55-µm wavelength
is also shown in Fig. 4.6. It was measured by using a spectrum analyzer (circles) as
well as taking the Fourier transform of the short-pulse response (solid curve). Clearly,
waveguide p–i–n photodiodes can provide both a high responsivity and a large band-
width. Waveguide photodiodes have been used for 40-Gb/s optical receivers [19] and
have the potential for operating at bit rates as high as 100 Gb/s [20].

The performance of waveguide photodiodes can be improved further by adopting
an electrode structure designed to support traveling electrical waves with matching
impedance to avoid reflections. Such photodiodes are called traveling-wave photode-
tectors. In a GaAs-based implementation of this idea, a bandwidth of 172 GHz with
45% quantum efficiency was realized in a traveling-wave photodetector designed with
a 1-µm-wide waveguide [21]. By 2000, such an InP/InGaAs photodetector exhibited a
bandwidth of 310 GHz in the 1.55-µm spectral region [22].
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Figure 4.7: Impact-ionization coefficients of several semiconductors as a function of the elec-
tric field for electrons (solid line) and holes (dashed line). (After Ref. [24]; c©1977 Elsevier;
reprinted with permission.)

4.2.3 Avalanche Photodiodes

All detectors require a certain minimum current to operate reliably. The current re-
quirement translates into a minimum power requirement through Pin = Ip/R. Detectors
with a large responsivity R are preferred since they require less optical power. The re-
sponsivity of p–i–n photodiodes is limited by Eq. (4.1.3) and takes its maximum value
R = q/hν for η = 1. Avalanche photodiode (APDs) can have much larger values of R,
as they are designed to provide an internal current gain in a way similar to photomulti-
plier tubes. They are used when the amount of optical power that can be spared for the
receiver is limited.

The physical phenomenon behind the internal current gain is known as the impact
ionization [23]. Under certain conditions, an accelerating electron can acquire suffi-
cient energy to generate a new electron–hole pair. In the band picture (see Fig. 3.2) the
energetic electron gives a part of its kinetic energy to another electron in the valence
band that ends up in the conduction band, leaving behind a hole. The net result of
impact ionization is that a single primary electron, generated through absorption of a
photon, creates many secondary electrons and holes, all of which contribute to the pho-
todiode current. Of course, the primary hole can also generate secondary electron–hole
pairs that contribute to the current. The generation rate is governed by two parame-
ters, αe and αh, the impact-ionization coefficients of electrons and holes, respectively.
Their numerical values depend on the semiconductor material and on the electric field
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Figure 4.8: (a) An APD together with the electric-field distribution inside various layers under
reverse bias; (b) design of a silicon reach-through APD.

that accelerates electrons and holes. Figure 4.7 shows αe and αh for several semi-
conductors [24]. Values ∼ 1× 104 cm−1 are obtained for electric fields in the range
2–4×105 V/cm. Such large fields can be realized by applying a high voltage (∼ 100 V)
to the APD.

APDs differ in their design from that of p–i–n photodiodes mainly in one respect:
an additional layer is added in which secondary electron–hole pairs are generated
through impact ionization. Figure 4.8(a) shows the APD structure together with the
variation of electric field in various layers. Under reverse bias, a high electric field
exists in the p-type layer sandwiched between i-type and n+-type layers. This layer
is referred to as the multiplication layer, since secondary electron–hole pairs are gen-
erated here through impact ionization. The i-layer still acts as the depletion region
in which most of the incident photons are absorbed and primary electron–hole pairs
are generated. Electrons generated in the i-region cross the gain region and generate
secondary electron–hole pairs responsible for the current gain.

The current gain for APDs can be calculated by using the two rate equations gov-
erning current flow within the multiplication layer [23]:

die
dx

= αeie + αhih, (4.2.3)

−dih
dx

= αeie + αhih, (4.2.4)

where ie is the electron current and ih is the hole current. The minus sign in Eq. (4.2.4)
is due to the opposite direction of the hole current. The total current,

I = ie(x)+ ih(x), (4.2.5)
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remains constant at every point inside the multiplication region. If we replace ih in Eq.
(4.2.3) by I− ie, we obtain

die/dx = (αe −αh)ie + αhI. (4.2.6)

In general, αe and αh are x dependent if the electric field across the gain region is
nonuniform. The analysis is considerably simplified if we assume a uniform electric
field and treat αe and αh as constants. We also assume that αe > αh. The avalanche
process is initiated by electrons that enter the gain region of thickness d at x = 0. By
using the condition ih(d) = 0 (only electrons cross the boundary to enter the n-region),
the boundary condition for Eq. (4.2.6) is i e(d) = I. By integrating this equation, the
multiplication factor defined as M = ie(d)/ie(0) is given by

M =
1− kA

exp[−(1− kA)αed]− kA
, (4.2.7)

where kA = αh/αe. The APD gain is quite sensitive to the ratio of the impact-ionization
coefficients. When αh = 0 so that only electrons participate in the avalanche process,
M = exp(αed), and the APD gain increases exponentially with d. On the other hand,
when αh = αe, so that kA = 1 in Eq. (4.2.7), M = (1−αed)−1. The APD gain then
becomes infinite for αed = 1, a condition known as the avalanche breakdown. Al-
though higher APD gain can be realized with a smaller gain region when α e and αh are
comparable, the performance is better in practice for APDs in which either α e � αh or
αh � αe so that the avalanche process is dominated by only one type of charge carrier.
The reason behind this requirement is discussed in Section 4.4, where issues related to
the receiver noise are considered.

Because of the current gain, the responsivity of an APD is enhanced by the multi-
plication factor M and is given by

RAPD = MR = M(ηq/hν), (4.2.8)

where Eq. (4.1.3) was used. It should be mentioned that the avalanche process in APDs
is intrinsically noisy and results in a gain factor that fluctuates around an average value.
The quantity M in Eq. (4.2.8) refers to the average APD gain. The noise characteristics
of APDs are considered in Section 4.4.

The intrinsic bandwidth of an APD depends on the multiplication factor M. This
is easily understood by noting that the transit time τ tr for an APD is no longer given
by Eq. (4.2.1) but increases considerably simply because generation and collection of
secondary electron–hole pairs take additional time. The APD gain decreases at high
frequencies because of such an increase in the transit time and limits the bandwidth.
The decrease in M(ω) can be written as [24]

M(ω) = M0[1+(ωτeM0)2]−1/2, (4.2.9)

where M0 = M(0) is the low-frequency gain and τe is the effective transit time that
depends on the ionization coefficient ratio kA = αh/αe. For the case αh < αe, τe =
cAkAτtr, where cA is a constant (cA ∼ 1). Assuming that τRC � τe, the APD bandwidth is
given approximately by ∆ f = (2πτeM0)−1. This relation shows the trade-off between
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Table 4.2 Characteristics of common APDs

Parameter Symbol Unit Si Ge InGaAs
Wavelength λ µm 0.4–1.1 0.8–1.8 1.0–1.7
Responsivity RAPD A/W 80–130 3–30 5–20
APD gain M — 100–500 50–200 10–40
k-factor kA — 0.02–0.05 0.7–1.0 0.5–0.7
Dark current Id nA 0.1–1 50–500 1–5
Rise time Tr ns 0.1–2 0.5–0.8 0.1–0.5
Bandwidth ∆ f GHz 0.2–1 0.4–0.7 1–10
Bias voltage Vb V 200–250 20–40 20–30

the APD gain M0 and the bandwidth ∆ f (speed versus sensitivity). It also shows the
advantage of using a semiconductor material for which k A � 1.

Table 4.2 compares the operating characteristics of Si, Ge, and InGaAs APDs. As
kA � 1 for Si, silicon APDs can be designed to provide high performance and are
useful for lightwave systems operating near 0.8 µm at bit rates ∼100 Mb/s. A particu-
larly useful design, shown in Fig. 4.8(b), is known as reach-through APD because the
depletion layer reaches to the contact layer through the absorption and multiplication
regions. It can provide high gain (M ≈ 100) with low noise and a relatively large band-
width. For lightwave systems operating in the wavelength range 1.3–1.6 µm, Ge or
InGaAs APDs must be used. The improvement in sensitivity for such APDs is limited
to a factor below 10 because of a relatively low APD gain (M ∼ 10) that must be used
to reduce the noise (see Section 4.4.3).

The performance of InGaAs APDs can be improved through suitable design modi-
fications to the basic APD structure shown in Fig. 4.8. The main reason for a relatively
poor performance of InGaAs APDs is related to the comparable numerical values of
the impact-ionization coefficients αe and αh (see Fig. 4.7). As a result, the bandwidth
is considerably reduced, and the noise is also relatively high (see Section 4.4). Further-
more, because of a relatively narrow bandgap, InGaAs undergoes tunneling breakdown
at electric fields of about 1×105 V/cm, a value that is below the threshold for avalanche
multiplication. This problem can be solved in heterostructure APDs by using an InP
layer for the gain region because quite high electric fields (> 5×10 5 V/cm) can exist
in InP without tunneling breakdown. Since the absorption region (i-type InGaAs layer)
and the multiplication region (n-type InP layer) are separate in such a device, this struc-
ture is known as SAM, where SAM stands for separate absorption and multiplication
regions. As αh > αe for InP (see Fig. 4.7), the APD is designed such that holes initiate
the avalanche process in an n-type InP layer, and k A is defined as kA = αe/αh. Figure
4.9(a) shows a mesa-type SAM APD structure.

One problem with the SAM APD is related to the large bandgap difference be-
tween InP (Eg = 1.35 eV) and InGaAs (Eg = 0.75 eV). Because of a valence-band step
of about 0.4 eV, holes generated in the InGaAs layer are trapped at the heterojunction
interface and are considerably slowed before they reach the multiplication region (InP
layer). Such an APD has an extremely slow response and a relatively small bandwidth.
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Figure 4.9: Design of (a) SAM and (b) SAGM APDs containing separate absorption, multipli-
cation, and grading regions.

The problem can be solved by using another layer between the absorption and mul-
tiplication regions whose bandgap is intermediate to those of InP and InGaAs layers.
The quaternary material InGaAsP, the same material used for semiconductor lasers,
can be tailored to have a bandgap anywhere in the range 0.75–1.35 eV and is ideal for
this purpose. It is even possible to grade the composition of InGaAsP over a region
of 10–100 nm thickness. Such APDs are called SAGM APDs, where SAGM indicates
separate absorption, grading, and multiplication regions [25]. Figure 4.9(b) shows the
design of an InGaAs APD with the SAGM structure. The use of an InGaAsP grading
layer improves the bandwidth considerably. As early as 1987, a SAGM APD exhibited
a gain–bandwidth product M∆ f = 70 GHz for M > 12 [26]. This value was increased
to 100 GHz in 1991 by using a charge region between the grading and multiplication
regions [27]. In such SAGCM APDs, the InP multiplication layer is undoped, while the
InP charge layer is heavily n-doped. Holes accelerate in the charge layer because of a
strong electric field, but the generation of secondary electron–hole pairs takes place in
the undoped InP layer. SAGCM APDs improved considerably during the 1990s [28]–
[32]. A gain–bandwidth product of 140 GHz was realized in 2000 using a 0.1-µm-thick
multiplication layer that required <20 V across it [32]. Such APDs are quite suitable
for making a compact 10-Gb/s APD receiver.

A different approach to the design of high-performance APDs makes use of a su-
perlattice structure [33]–[38]. The major limitation of InGaAs APDs results from com-
parable values of αe and αh. A superlattice design offers the possibility of reducing the
ratio kA = αh/αe from its standard value of nearly unity. In one scheme, the absorption
and multiplication regions alternate and consist of thin layers (∼10 nm) of semicon-
ductor materials with different bandgaps. This approach was first demonstrated for
GaAs/AlGaAs multiquantum-well (MQW) APDs and resulted in a considerable en-
hancement of the impact-ionization coefficient for electrons [33]. Its use is less suc-
cessful for the InGaAs/InP material system. Nonetheless, considerable progress has
been made through the so-called staircase APDs, in which the InGaAsP layer is com-
positionally graded to form a sawtooth kind of structure in the energy-band diagram
that looks like a staircase under reverse bias. Another scheme for making high-speed
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(a) (b)

Figure 4.10: (a) Device structure and (b) measured 3-dB bandwidth as a function of M for a
superlattice APD. (After Ref. [38]; c©2000 IEEE; reprinted with permission.)

APDs uses alternate layers of InP and InGaAs for the grading region [33]. However,
the ratio of the widths of the InP to InGaAs layers varies from zero near the absorbing
region to almost infinity near the multiplication region. Since the effective bandgap of
a quantum well depends on the quantum-well width (InGaAs layer thickness), a graded
“pseudo-quaternary” compound is formed as a result of variation in the layer thickness.

The most successful design for InGaAs APDs uses a superlattice structure for the
multiplication region of a SAM APD. A superlattice consists of a periodic struc-
ture such that each period is made using two ultrathin (∼10-nm) layers with different
bandgaps. In the case of 1.55-µm APDs, alternate layers of InAlGaAs and InAlAs
are used, the latter acting as a barrier layer. An InP field-buffer layer often separates
the InGaAs absorption region from the superlattice multiplication region. The thick-
ness of this buffer layer is quite critical for the APD performance. For a 52-nm-thick
field-buffer layer, the gain–bandwidth product was limited to M∆ f = 120 GHz [34] but
increased to 150 GHz when the thickness was reduced to 33.4 nm [37]. These early
devices used a mesa structure. During the late 1990s, a planar structure was developed
for improving the device reliability [38]. Figure 4.10 shows such a device schemati-
cally together with its 3-dB bandwidth measured as a function of the APD gain. The
gain–bandwidth product of 110 GHz is large enough for making APDs operating at
10 Gb/s. Indeed, such an APD receiver was used for a 10-Gb/s lightwave system with
excellent performance.

The gain–bandwidth limitation of InGaAs APDs results primarily from using the
InP material system for the generation of secondary electron–hole pairs. A hybrid ap-
proach in which a Si multiplication layer is incorporated next to an InGaAs absorption
layer may be useful provided the heterointerface problems can be overcome. In a 1997
experiment, a gain-bandwidth product of more than 300 GHz was realized by using
such a hybrid approach [39]. The APD exhibited a 3-dB bandwidth of over 9 GHz for
values of M as high as 35 while maintaining a 60% quantum efficiency.

Most APDs use an absorbing layer thick enough (about 1 µm) that the quantum
efficiency exceeds 50%. The thickness of the absorbing layer affects the transit time
τtr and the bias voltage Vb. In fact, both of them can be reduced significantly by using
a thin absorbing layer (∼0.1 µm), resulting in improved APDs provided that a high
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quantum efficiency can be maintained. Two approaches have been used to meet these
somewhat conflicting design requirements. In one design, a FP cavity is formed to
enhance the absorption within a thin layer through multiple round trips. An external
quantum efficiency of ∼70% and a gain–bandwidth product of 270 GHz were realized
in such a 1.55-µm APD using a 60-nm-thick absorbing layer with a 200-nm-thick
multiplication layer [40]. In another approach, an optical waveguide is used into which
the incident light is edge coupled [41]. Both of these approaches reduce the bias voltage
to near 10 V, maintain high efficiency, and reduce the transit time to ∼1 ps. Such APDs
are suitable for making 10-Gb/s optical receivers.

4.2.4 MSM Photodetectors

In metal–semiconductor–metal (MSM) photodetectors, a semiconductor absorbing layer
is sandwiched between two metals, forming a Schottky barrier at each metal–semicon-
ductor interface that prevents flow of electrons from the metal to the semiconductor.
Similar to a p–i–n photodiode, electron–hole pairs generated through photoabsorption
flow toward the metal contacts, resulting in a photocurrent that is a measure of the in-
cident optical power, as indicated in Eq. (4.1.1). For practical reasons, the two metal
contacts are made on the same (top) side of the epitaxially grown absorbing layer by
using an interdigited electrode structure with a finger spacing of about 1 µm [42]. This
scheme results in a planar structure with an inherently low parasitic capacitance that
allows high-speed operation (up to 300 GHz) of MSM photodetectors. If the light is
incident from the electrode side, the responsivity of a MSM photodetector is reduced
because of its blockage by the opaque electrodes. This problem can be solved by back
illumination if the substrate is transparent to the incident light.

GaAs-based MSM photodetectors were developed throughout the 1980s and ex-
hibit excellent operating characteristics [42]. The development of InGaAs-based MSM
photodetectors, suitable for lightwave systems operating in the range 1.3–1.6 µm,
started in the late 1980s, with most progress made during the 1990s [43]–[52]. The
major problem with InGaAs is its relatively low Schottky-barrier height (about 0.2 eV).
This problem was solved by introducing a thin layer of InP or InAlAs between the In-
GaAs layer and the metal contact. Such a layer, called the barrier-enhancement layer,
improves the performance of InGaAs MSM photodetectors drastically. The use of a
20-nm-thick InAlAs barrier-enhancement layer resulted in 1992 in 1.3-µm MSM pho-
todetectors exhibiting 92% quantum efficiency (through back illumination) with a low
dark current [44]. A packaged device had a bandwidth of 4 GHz despite a large 150
µm diameter. If top illumination is desirable for processing or packaging reasons, the
responsivity can be enhanced by using semitransparent metal contacts. In one experi-
ment, the responsivity at 1.55 µm increased from 0.4 to 0.7 A/W when the thickness of
gold contact was reduced from 100 to 10 nm [45]. In another approach, the structure
is separated from the host substrate and bonded to a silicon substrate with the inter-
digited contact on bottom. Such an “inverted” MSM photodetector then exhibits high
responsivity when illuminated from the top [46].

The temporal response of MSM photodetectors is generally different under back
and top illuminations [47]. In particular, the bandwidth ∆ f is larger by about a factor
of 2 for top illumination, although the responsivity is reduced because of metal shad-
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Figure 4.11: Diagram of a digital optical receiver showing various components. Vertical dashed
lines group receiver components into three sections.

owing. The performance of a MSM photodetector can be further improved by using
a graded superlattice structure. Such devices exhibit a low dark-current density, a re-
sponsivity of about 0.6 A/W at 1.3 µm, and a rise time of about 16 ps [50]. In 1998,
a 1.55-µm MSM photodetector exhibited a bandwidth of 78 GHz [51]. By 2001, the
use of a traveling-wave configuration increased the bandwidth beyond 500 GHz for a
GaAs-based device [52]. The planar structure of MSM photodetectors is also suitable
for monolithic integration, an issue covered in the next section.

4.3 Receiver Design

The design of an optical receiver depends on the modulation format used by the trans-
mitter. Since most lightwave systems employ the binary intensity modulation, we focus
in this chapter on digital optical receivers. Figure 4.11 shows a block diagram of such
a receiver. Its components can be arranged into three groups—the front end, the linear
channel, and the decision circuit.

4.3.1 Front End

The front end of a receiver consists of a photodiode followed by a preamplifier. The
optical signal is coupled onto the photodiode by using a coupling scheme similar to that
used for optical transmitters (see Section 3.4.1); butt coupling is often used in practice.
The photodiode converts the optical bit stream into an electrical time-varying signal.
The role of the preamplifier is to amplify the electrical signal for further processing.

The design of the front end requires a trade-off between speed and sensitivity. Since
the input voltage to the preamplifier can be increased by using a large load resistor R L,
a high-impedance front end is often used [see Fig. 4.12(a)]. Furthermore, as discussed
in Section 4.4, a large RL reduces the thermal noise and improves the receiver sensi-
tivity. The main drawback of high-impedance front end is its low bandwidth given by
∆ f = (2πRLCT )−1, where Rs � RL is assumed in Eq. (4.2.2) and CT = Cp +CA is the
total capacitance, which includes the contributions from the photodiode (C p) and the
transistor used for amplification (CA). The receiver bandwidth is limited by its slowest
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Figure 4.12: Equivalent circuit for (a) high-impedance and (b) transimpedance front ends in
optical receivers. The photodiode is modeled as a current source in both cases.

component. A high-impedance front end cannot be used if ∆ f is considerably less than
the bit rate. An equalizer is sometimes used to increase the bandwidth. The equalizer
acts as a filter that attenuates low-frequency components of the signal more than the
high-frequency components, thereby effectively increasing the front-end bandwidth. If
the receiver sensitivity is not of concern, one can simply decrease R L to increase the
bandwidth, resulting in a low-impedance front end.

Transimpedance front ends provide a configuration that has high sensitivity to-
gether with a large bandwidth. Its dynamic range is also improved compared with
high-impedance front ends. As seen in Fig. 4.12(b), the load resistor is connected as
a feedback resistor around an inverting amplifier. Even though RL is large, the nega-
tive feedback reduces the effective input impedance by a factor of G, where G is the
amplifier gain. The bandwidth is thus enhanced by a factor of G compared with high-
impedance front ends. Transimpedance front ends are often used in optical receivers
because of their improved characteristics. A major design issue is related to the stabil-
ity of the feedback loop. More details can be found in Refs. [5]–[9].

4.3.2 Linear Channel

The linear channel in optical receivers consists of a high-gain amplifier (the main am-
plifier) and a low-pass filter. An equalizer is sometimes included just before the am-
plifier to correct for the limited bandwidth of the front end. The amplifier gain is
controlled automatically to limit the average output voltage to a fixed level irrespective
of the incident average optical power at the receiver. The low-pass filter shapes the
voltage pulse. Its purpose is to reduce the noise without introducing much intersymbol
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interference (ISI). As discussed in Section 4.4, the receiver noise is proportional to the
receiver bandwidth and can be reduced by using a low-pass filter whose bandwidth
∆ f is smaller than the bit rate. Since other components of the receiver are designed
to have a bandwidth larger than the filter bandwidth, the receiver bandwidth is deter-
mined by the low-pass filter used in the linear channel. For ∆ f < B, the electrical pulse
spreads beyond the allocated bit slot. Such a spreading can interfere with the detection
of neighboring bits, a phenomenon referred to as ISI.

It is possible to design a low-pass filter in such a way that ISI is minimized [1].
Since the combination of preamplifier, main amplifier, and the filter acts as a linear
system (hence the name linear channel), the output voltage can be written as

Vout(t) =
∫ ∞

−∞
zT (t − t ′)Ip(t ′)dt ′, (4.3.1)

where Ip(t) is the photocurrent generated in response to the incident optical power
(Ip = RPin). In the frequency domain,

Ṽout(ω) = ZT (ω)Ĩp(ω), (4.3.2)

where ZT is the total impedance at the frequency ω and a tilde represents the Fourier
transform. Here, ZT (ω) is determined by the transfer functions associated with various
receiver components and can be written as [3]

ZT (ω) = Gp(ω)GA(ω)HF(ω)/Yin(ω), (4.3.3)

where Yin(ω) is the input admittance and G p(ω), GA(ω), and HF(ω) are transfer func-
tions of the preamplifier, the main amplifier, and the filter. It is useful to isolate the
frequency dependence of Ṽout(ω) and Ĩp(ω) through normalized spectral functions
Hout(ω) and Hp(ω), which are related to the Fourier transform of the output and input
pulse shapes, respectively, and write Eq. (4.3.2) as

Hout(ω) = HT (ω)Hp(ω), (4.3.4)

where HT (ω) is the total transfer function of the linear channel and is related to the total
impedance as HT (ω) = ZT (ω)/ZT (0). If the amplifiers have a much larger bandwidth
than the low-pass filter, HT (ω) can be approximated by HF(ω).

The ISI is minimized when Hout(ω) corresponds to the transfer function of a raised-
cosine filter and is given by [3]

Hout( f ) =
{

1
2 [1+ cos(π f/B)], f < B,
0, f ≥ B,

(4.3.5)

where f = ω/2π and B is the bit rate. The impulse response, obtained by taking the
Fourier transform of Hout( f ), is given by

hout(t) =
sin(2πBt)

2πBt
1

1− (2Bt)2 . (4.3.6)

The functional form of hout(t) corresponds to the shape of the voltage pulse Vout(t)
received by the decision circuit. At the decision instant t = 0, h out(t) = 1, and the
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Figure 4.13: Ideal and degraded eye patterns for the NRZ format.

signal is maximum. At the same time, hout(t) = 0 for t = m/B, where m is an integer.
Since t = m/B corresponds to the decision instant of the neighboring bits, the voltage
pulse of Eq. (4.3.6) does not interfere with the neighboring bits.

The linear-channel transfer function HT (ω) that will result in output pulse shapes
of the form (4.3.6) is obtained from Eq. (4.3.4) and is given by

HT ( f ) = Hout( f )/Hp( f ). (4.3.7)

For an ideal bit stream in the nonreturn-to-zero (NRZ) format (rectangular input pulses
of duration TB = 1/B), Hp( f ) = Bsin(π f/B)/π f , and HT ( f ) becomes

HT ( f ) = (π f/2B)cot(π f/2B). (4.3.8)

Equation (4.3.8) determines the frequency response of the linear channel that would
produce output pulse shape given by Eq. (4.3.6) under ideal conditions. In practice, the
input pulse shape is far from being rectangular. The output pulse shape also deviates
from Eq. (4.3.6), and some ISI invariably occurs.

4.3.3 Decision Circuit

The data-recovery section of optical receivers consists of a decision circuit and a clock-
recovery circuit. The purpose of the latter is to isolate a spectral component at f =
B from the received signal. This component provides information about the bit slot
(TB = 1/B) to the decision circuit and helps to synchronize the decision process. In
the case of RZ (return-to-zero) format, a spectral component at f = B is present in
the received signal; a narrow-bandpass filter such as a surface-acoustic-wave filter can
isolate this component easily. Clock recovery is more difficult in the case of NRZ
format because the signal received lacks a spectral component at f = B. A commonly
used technique generates such a component by squaring and rectifying the spectral
component at f = B/2 that can be obtained by passing the received signal through a
high-pass filter.

The decision circuit compares the output from the linear channel to a threshold
level, at sampling times determined by the clock-recovery circuit, and decides whether
the signal corresponds to bit 1 or bit 0. The best sampling time corresponds to the
situation in which the signal level difference between 1 and 0 bits is maximum. It
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can be determined from the eye diagram formed by superposing 2–3-bit-long electrical
sequences in the bit stream on top of each other. The resulting pattern is called an eye
diagram because of its appearance. Figure 4.13 shows an ideal eye diagram together
with a degraded one in which the noise and the timing jitter lead to a partial closing of
the eye. The best sampling time corresponds to maximum opening of the eye.

Because of noise inherent in any receiver, there is always a finite probability that a
bit would be identified incorrectly by the decision circuit. Digital receivers are designed
to operate in such a way that the error probability is quite small (typically < 10−9).
Issues related to receiver noise and decision errors are discussed in Sections 4.4 and
4.5. The eye diagram provides a visual way of monitoring the receiver performance:
Closing of the eye is an indication that the receiver is not performing properly.

4.3.4 Integrated Receivers

All receiver components shown in Fig. 4.11, with the exception of the photodiode,
are standard electrical components and can be easily integrated on the same chip by
using the integrated-circuit (IC) technology developed for microelectronic devices. In-
tegration is particularly necessary for receivers operating at high bit rates. By 1988,
both Si and GaAs IC technologies have been used to make integrated receivers up to a
bandwidth of more than 2 GHz [53]. Since then, the bandwidth has been extended to
10 GHz.

Considerable effort has been directed at developing monolithic optical receivers
that integrate all components, including the photodetector, on the same chip by using
the optoelectronic integrated-circuit (OEIC) technology [54]–[74]. Such a complete
integration is relatively easy for GaAs receivers, and the technology behind GaAs-
based OEICs is quite advanced. The use of MSM photodiodes has proved especially
useful as they are structurally compatible with the well-developed field-effect-transistor
(FET) technology. This technique was used as early as 1986 to demonstrate a four-
channel OEIC receiver chip [56].

For lightwave systems operating in the wavelength range 1.3–1.6 µm, InP-based
OEIC receivers are needed. Since the IC technology for GaAs is much more ma-
ture than for InP, a hybrid approach is sometimes used for InGaAs receivers. In this
approach, called flip-chip OEIC technology [57], the electronic components are inte-
grated on a GaAs chip, whereas the photodiode is made on top of an InP chip. The
two chips are then connected by flipping the InP chip on the GaAs chip, as shown in
Fig. 4.14. The advantage of the flip-chip technique is that the photodiode and the elec-
trical components of the receiver can be independently optimized while keeping the
parasitics (e.g., effective input capacitance) to a bare minimum.

The InP-based IC technology has advanced considerably during the 1990s, making
it possible to develop InGaAs OEIC receivers [58]–[74]. Several kinds of transistors
have been used for this purpose. In one approach, a p–i–n photodiode is integrated
with the FETs or high-electron-mobility transistors (HEMTs) side by side on an InP
substrate [59]–[63]. By 1993, HEMT-based receivers were capable of operating at
10 Gb/s with high sensitivity [62]. The bandwidth of such receivers has been increased
to >40 GHz, making it possible to use them at bit rates above 40 Gb/s [63] A waveguide
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Figure 4.14: Flip-chip OEIC technology for integrated receivers. The InGaAs photodiode is
fabricated on an InP substrate and then bonded to the GaAs chip through common electrical
contacts. (After Ref. [57]; c©1988 IEE; reprinted with permission.)

p–i–n photodiode has also been integrated with HEMTs to develop a two-channel OEIC
receiver.

In another approach [64]–[69], the heterojunction-bipolar transistor (HBT) technol-
ogy is used to fabricate the p–i–n photodiode within the HBT structure itself through a
common-collector configuration. Such transistors are often called heterojunction pho-
totransistors. OEIC receivers operating at 5 Gb/s (bandwidth ∆ f = 3 GHz) were made
by 1993 [64]. By 1995, OEIC receivers making use of the HBT technology exhib-
ited a bandwidth of up to 16 GHz, together with a high gain [66]. Such receivers can
be used at bit rates of more than 20 Gb/s. Indeed, a high-sensitivity OEIC receiver
module was used in 1995 at a bit rate of 20 Gb/s in a 1.55-µm lightwave system [67].
Even a decision circuit can be integrated within the OEIC receiver by using the HBT
technology [68].

A third approach to InP-based OEIC receivers integrates a MSM or a waveguide
photodetector with an HEMT amplifier [70]–[73]. By 1995, a bandwidth of 15 GHz
was realized for such an OEIC by using modulation-doped FETs [71]. By 2000, such
receivers exhibited bandwidths of more than 45 GHz with the use of waveguide photo-
diodes [73]. Figure 4.15 shows the frequency response together with the epitaxial-layer
structure of such an OEIC receiver. This receiver had a bandwidth of 46.5 GHz and
exhibited a responsivity of 0.62 A/W in the 1.55-µm wavelength region. It had a clear
eye opening at bit rates of up to 50 Gb/s.

Similar to the case of optical transmitters (Section 3.4), packaging of optical re-
ceivers is also an important issue [75]–[79]. The fiber–detector coupling issue is quite
critical since only a small amount of optical power is typically available at the pho-
todetector. The optical-feedback issue is also important since unintentional reflections
fed back into the transmission fiber can affect system performance and should be mini-
mized. In practice, the fiber tip is cut at an angle to reduce the optical feedback. Several
different techniques have been used to produce packaged optical receivers capable of
operating at bit rates as high as 10 Gb/s. In one approach, an InGaAs APD was bonded
to the Si-based IC by using the flip-chip technique [75]. Efficient fiber–APD coupling
was realized by using a slant-ended fiber and a microlens monolithically fabricated on
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(a)
(b)

Figure 4.15: (a) Epitaxial-layer structure and (b) frequency response of an OEIC receiver mod-
ule made using a waveguide photodetector (WGPD). (After Ref. [73]; c©2000 IEEE; reprinted
with permission.)

the photodiode. The fiber ferrule was directly laser welded to the package wall with a
double-ring structure for mechanical stability. The resulting receiver module withstood
shock and vibration tests and had a bandwidth of 10 GHz.

Another hybrid approach makes use of a planar-lightwave-circuit platform con-
taining silica waveguides on a silicon substrate. In one experiment, an InP-based OEIC
receiver with two channels was flip-chip bonded to the platform [76]. The resulting
module could detect two 10-Gb/s channels with negligible crosstalk. GaAs ICs have
also been used to fabricate a compact receiver module capable of operating at a bit rate
of 10 Gb/s [77]. By 2000, fully packaged 40-Gb/s receivers were available commer-
cially [79]. For local-loop applications, a low-cost package is needed. Such receivers
operate at lower bit rates but they should be able to perform well over a wide tempera-
ture range extending from −40 to 85◦C.

4.4 Receiver Noise

Optical receivers convert incident optical power Pin into electric current through a pho-
todiode. The relation Ip = RPin in Eq. (4.1.1) assumes that such a conversion is noise
free. However, this is not the case even for a perfect receiver. Two fundamental noise
mechanisms, shot noise and thermal noise [80]–[82], lead to fluctuations in the current
even when the incident optical signal has a constant power. The relation I p = RPin still
holds if we interpret Ip as the average current. However, electrical noise induced by
current fluctuations affects the receiver performance. The objective of this section is to
review the noise mechanisms and then discuss the signal-to-nose ratio (SNR) in optical
receivers. The p–i–n and APD receivers are considered in separate subsections, as the
SNR is also affected by the avalanche gain mechanism in APDs.
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4.4.1 Noise Mechanisms

The shot noise and thermal noise are the two fundamental noise mechanisms responsi-
ble for current fluctuations in all optical receivers even when the incident optical power
Pin is constant. Of course, additional noise is generated if Pin is itself fluctuating be-
cause of noise produced by optical amplifiers. This section considers only the noise
generated at the receiver; optical noise is discussed in Section 4.6.2.

Shot Noise

Shot noise is a manifestation of the fact that an electric current consists of a stream
of electrons that are generated at random times. It was first studied by Schottky [83]
in 1918 and has been thoroughly investigated since then [80]–[82]. The photodiode
current generated in response to a constant optical signal can be written as

I(t) = Ip + is(t), (4.4.1)

where Ip = RPin is the average current and is(t) is a current fluctuation related to shot
noise. Mathematically, is(t) is a stationary random process with Poisson statistics (ap-
proximated often by Gaussian statistics). The autocorrelation function of i s(t) is related
to the spectral density Ss( f ) by the Wiener–Khinchin theorem [82]

〈is(t)is(t + τ)〉 =
∫ ∞

−∞
Ss( f )exp(2π i f τ)d f , (4.4.2)

where angle brackets denote an ensemble average over fluctuations. The spectral den-
sity of shot noise is constant and is given by Ss( f ) = qIp (an example of white noise).
Note that Ss( f ) is the two-sided spectral density, as negative frequencies are included
in Eq. (4.4.2). If only positive frequencies are considered by changing the lower limit
of integration to zero, the one-sided spectral density becomes 2qI p.

The noise variance is obtained by setting τ = 0 in Eq. (4.4.2), i.e.,

σ2
s = 〈i2s (t)〉 =

∫ ∞

−∞
Ss( f )d f = 2qIp ∆ f , (4.4.3)

where ∆ f is the effective noise bandwidth of the receiver. The actual value of ∆ f
depends on receiver design. It corresponds to the intrinsic photodetector bandwidth if
fluctuations in the photocurrent are measured. In practice, a decision circuit may use
voltage or some other quantity (e.g., signal integrated over the bit slot). One then has
to consider the transfer functions of other receiver components such as the preamplifier
and the low-pass filter. It is common to consider current fluctuations and include the
total transfer function HT ( f ) by modifying Eq. (4.4.3) as

σ2
s = 2qIp

∫ ∞

0
|HT ( f )|2 d f = 2qIp ∆ f , (4.4.4)

where ∆ f =
∫ ∞

0 |HT ( f )|2d f and HT ( f ) is given by Eq. (4.3.7). Since the dark current
Id also generates shot noise, its contribution is included in Eq. (4.4.4) by replacing I p

by Ip + Id . The total shot noise is then given by

σ2
s = 2q(Ip + Id)∆ f . (4.4.5)
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The quantity σs is the root-mean-square (RMS) value of the noise current induced by
shot noise.

Thermal Noise

At a finite temperature, electrons move randomly in any conductor. Random thermal
motion of electrons in a resistor manifests as a fluctuating current even in the absence
of an applied voltage. The load resistor in the front end of an optical receiver (see Fig.
4.12) adds such fluctuations to the current generated by the photodiode. This additional
noise component is referred to as thermal noise. It is also called Johnson noise [84]
or Nyquist noise [85] after the two scientists who first studied it experimentally and
theoretically. Thermal noise can be included by modifying Eq. (4.4.1) as

I(t) = Ip + is(t)+ iT (t), (4.4.6)

where iT (t) is a current fluctuation induced by thermal noise. Mathematically, i T (t)
is modeled as a stationary Gaussian random process with a spectral density that is
frequency independent up to f ∼ 1 THz (nearly white noise) and is given by

ST ( f ) = 2kBT/RL, (4.4.7)

where kB is the Boltzmann constant, T is the absolute temperature, and R L is the load
resistor. As mentioned before, ST ( f ) is the two-sided spectral density.

The autocorrelation function of iT (t) is given by Eq. (4.4.2) if we replace the sub-
script s by T . The noise variance is obtained by setting τ = 0 and becomes

σ2
T = 〈i2T (t)〉 =

∫ ∞

−∞
ST ( f )d f = (4kBT/RL)∆ f , (4.4.8)

where ∆ f is the effective noise bandwidth. The same bandwidth appears in the case of
both shot and thermal noises. Note that σ 2

T does not depend on the average current I p,
whereas σ 2

s does.
Equation (4.4.8) includes thermal noise generated in the load resistor. An actual re-

ceiver contains many other electrical components, some of which add additional noise.
For example, noise is invariably added by electrical amplifiers. The amount of noise
added depends on the front-end design (see Fig. 4.12) and the type of amplifiers used.
In particular, the thermal noise is different for field-effect and bipolar transistors. Con-
siderable work has been done to estimate the amplifier noise for different front-end
designs [5]. A simple approach accounts for the amplifier noise by introducing a quan-
tity Fn, referred to as the amplifier noise figure, and modifying Eq. (4.4.8) as

σ2
T = (4kBT/RL)Fn∆ f . (4.4.9)

Physically, Fn represents the factor by which thermal noise is enhanced by various
resistors used in pre- and main amplifiers.

The total current noise can be obtained by adding the contributions of shot noise and
thermal noise. Since is(t) and iT (t) in Eq. (4.4.6) are independent random processes
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with approximately Gaussian statistics, the total variance of current fluctuations, ∆I =
I− Ip = is + iT , can be obtained simply by adding individual variances. The result is

σ2 = 〈(∆I)2〉 = σ2
s + σ2

T = 2q(Ip + Id)∆ f +(4kBT/RL)Fn∆ f . (4.4.10)

Equation (4.4.10) can be used to calculate the SNR of the photocurrent.

4.4.2 p–i–n Receivers

The performance of an optical receiver depends on the SNR. The SNR of a receiver
with a p–i–n photodiode is considered here; APD receivers are discussed in the follow-
ing subsection. The SNR of any electrical signal is defined as

SNR =
average signal power

noise power
=

I2
p

σ2 , (4.4.11)

where we used the fact that electrical power varies as the square of the current. By
using Eq. (4.4.10) in Eq. (4.4.11) together with I p = RPin, the SNR is related to the
incident optical power as

SNR =
R2P2

in

2q(RPin + Id)∆ f + 4(kBT/RL)Fn∆ f
, (4.4.12)

where R = ηq/hν is the responsivity of the p–i–n photodiode.

Thermal-Noise Limit

In most cases of practical interest, thermal noise dominates receiver performance (σ 2
T �

σ2
s ). Neglecting the shot-noise term in Eq. (4.4.12), the SNR becomes

SNR =
RLR2P2

in

4kBT Fn∆ f
. (4.4.13)

Thus, the SNR varies as P2
in in the thermal-noise limit. It can also be improved by in-

creasing the load resistance. As discussed in Section 4.3.1, this is the reason why most
receivers use a high-impedance or transimpedance front end. The effect of thermal
noise is often quantified through a quantity called the noise-equivalent power (NEP).
The NEP is defined as the minimum optical power per unit bandwidth required to pro-
duce SNR = 1 and is given by

NEP =
Pin√
∆ f

=
(

4kBTFn

RLR2

)1/2

=
hν
ηq

(
4kBT Fn

RL

)1/2

. (4.4.14)

Another quantity, called detectivity and defined as (NEP)−1, is also used for this pur-
pose. The advantage of specifying NEP or the detectivity for a p–i–n receiver is that it
can be used to estimate the optical power needed to obtain a specific value of SNR if
the bandwidth ∆ f is known. Typical values of NEP are in the range 1–10 pW/Hz 1/2.
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Shot-Noise Limit

Consider the opposite limit in which the receiver performance is dominated by shot
noise (σ 2

s � σ2
T ). Since σ 2

s increases linearly with Pin, the shot-noise limit can be
achieved by making the incident power large. The dark current I d can be neglected in
that situation. Equation (4.4.12) then provides the following expression for SNR:

SNR =
RPin

2q∆ f
=

ηPin

2hν∆ f
. (4.4.15)

The SNR increases linearly with Pin in the shot-noise limit and depends only on the
quantum efficiency η , the bandwidth ∆ f , and the photon energy hν . It can be writ-
ten in terms of the number of photons N p contained in the “1” bit. If we use E p =
Pin

∫ ∞
−∞ hp(t)dt = Pin/B for the pulse energy of a bit of duration 1/B, where B is the

bit rate, and note that Ep = Nphν , we can write Pin as Pin = NphνB. By choosing
∆ f = B/2 (a typical value for the bandwidth), the SNR is simply given by ηN p. In
the shot-noise limit, a SNR of 20 dB can be realized if N p ≈ 100. By contrast, several
thousand photons are required to obtain SNR = 20 dB when thermal noise dominates
the receiver. As a reference, for a 1.55-µm receiver operating at 10 Gb/s, N p = 100
when Pin ≈ 130 nW.

4.4.3 APD Receivers

Optical receivers that employ an APD generally provide a higher SNR for the same
incident optical power. The improvement is due to the internal gain that increases the
photocurrent by a multiplication factor M so that

Ip = MRPin = RAPDPin, (4.4.16)

where RAPD is the APD responsivity, enhanced by a factor of M compared with that of
p–i–n photodiodes (RAPD = MR). The SNR should improve by a factor of M 2 if the
receiver noise were unaffected by the internal gain mechanism of APDs. Unfortunately,
this is not the case, and the SNR improvement is considerably reduced.

Shot-Noise Enhancement

Thermal noise remains the same for APD receivers, as it originates in the electrical
components that are not part of the APD. This is not the case for shot noise. The APD
gain results from generation of secondary electron–hole pairs through the process of
impact ionization. Since such pairs are generated at random times, an additional con-
tribution is added to the shot noise associated with the generation of primary electron–
hole pairs. In effect, the multiplication factor itself is a random variable, and M appear-
ing in Eq. (4.4.16) represents the average APD gain. Total shot noise can be calculated
by using Eqs. (4.2.3) and (4.2.4) and treating i e and ih as random variables [86]. The
result is

σ2
s = 2qM2FA(RPin + Id)∆ f . (4.4.17)

where FA is the excess noise factor of the APD and is given by [86]

FA(M) = kAM +(1− kA)(2−1/M). (4.4.18)
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Figure 4.16: Excess noise factor FA as a function of the average APD gain M for several values
of the ionization-coefficient ratio kA.

The dimensionless parameter kA = αh/αe if αh < αe but is defined as kA = αe/αh when
αh > αe. In other words, kA is in the range 0 < kA < 1. Figure 4.16 shows the gain
dependence of FA for several values of kA. In general, FA increases with M. However,
although FA is at most 2 for kA = 0, it keeps on increasing linearly (FA = M) when
kA = 1. The ratio kA should be as small as possible for achieving the best performance
from an APD [87].

If the avalanche–gain process were noise free (FA = 1), both Ip and σs would in-
crease by the same factor M, and the SNR would be unaffected as far as the shot-noise
contribution is concerned. In practice, the SNR of APD receivers is worse than that
of p–i–n receivers when shot noise dominates because of the excess noise generated
inside the APD. It is the dominance of thermal noise in practical receivers that makes
APDs attractive. In fact, the SNR of APD receivers can be written as

SNR =
I2

p

σ2
s + σ2

T

=
(MRPin)2

2qM2FA(RPin + Id)∆ f + 4(kBT/RL)Fn∆ f
, (4.4.19)

where Eqs. (4.4.9), (4.4.16), and (4.4.17) were used. In the thermal-noise limit (σ s �
σT ), the SNR becomes

SNR = (RLR2/4kBTFn∆ f )M2P2
in (4.4.20)

and is improved, as expected, by a factor of M 2 compared with that of p–i–n receivers
[see Eq. (4.4.13)]. By contrast, in the shot-noise limit (σ s � σT ), the SNR is given by

SNR =
RPin

2qFA∆ f
=

ηPin

2hνFA∆ f
(4.4.21)
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Figure 4.17: Optimum APD gain Mopt as a function of the incident optical power Pin for several
values of kA. Parameter values corresponding to a typical 1.55-µm InGaAs APD receiver were
used.

and is reduced by the excess noise factor FA compared with that of p–i–n receivers [see
Eq. (4.4.15)].

Optimum APD Gain

Equation (4.4.19) shows that for a given Pin, the SNR of APD receivers is maximum
for an optimum value Mopt of the APD gain M. It is easy to show that the SNR is
maximum when Mopt satisfies the following cubic polynomial:

kAM3
opt +(1− kA)Mopt =

4kBTFn

qRL(RPin + Id)
. (4.4.22)

The optimum value Mopt depends on a large number of the receiver parameters, such as
the dark current, the responsivity R, and the ionization-coefficient ratio k A. However,
it is independent of receiver bandwidth. The most notable feature of Eq. (4.4.22) is
that Mopt decreases with an increase in Pin. Figure 4.17 shows the variation of Mopt

with Pin for several values of kA by using typical parameter values RL = 1 kΩ, Fn = 2,
R = 1 A/W, and Id = 2 nA corresponding to a 1.55-µm InGaAs receiver. The optimum
APD gain is quite sensitive to the ionization-coefficient ratio kA. For kA = 0, Mopt

decreases inversely with Pin, as can readily be inferred from Eq. (4.4.22) by noting that

the contribution of Id is negligible in practice. By contrast, Mopt varies as P−1/3
in for

kA = 1, and this form of dependence appears to hold even for k A as small as 0.01 as
long as Mopt > 10. In fact, by neglecting the second term in Eq. (4.4.22), M opt is well
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approximated by

Mopt ≈
[

4kBTFn

kAqRL(RPin + Id)

]1/3

(4.4.23)

for kA in the range 0.01–1. This expression shows the critical role played by the
ionization-coefficient ratio kA. For Si APDs, for which kA � 1, Mopt can be as large
as 100. By contrast, Mopt is in the neighborhood of 10 for InGaAs receivers, since
kA ≈ 0.7. InGaAs APD receivers are nonetheless useful for optical communication
systems simply because of their higher sensitivity. Receiver sensitivity is an important
issue in the design of lightwave systems and is discussed next.

4.5 Receiver Sensitivity

Among a group of optical receivers, a receiver is said to be more sensitive if it achieves
the same performance with less optical power incident on it. The performance criterion
for digital receivers is governed by the bit-error rate (BER), defined as the probability
of incorrect identification of a bit by the decision circuit of the receiver. Hence, a
BER of 2× 10−6 corresponds to on average 2 errors per million bits. A commonly
used criterion for digital optical receivers requires the BER to be below 1×10−9. The
receiver sensitivity is then defined as the minimum average received power P̄rec required
by the receiver to operate at a BER of 10−9. Since P̄rec depends on the BER, let us begin
by calculating the BER.

4.5.1 Bit-Error Rate

Figure 4.18(a) shows schematically the fluctuating signal received by the decision cir-
cuit, which samples it at the decision instant tD determined through clock recovery.
The sampled value I fluctuates from bit to bit around an average value I1 or I0, depend-
ing on whether the bit corresponds to 1 or 0 in the bit stream. The decision circuit
compares the sampled value with a threshold value ID and calls it bit 1 if I > ID or bit
0 if I < ID. An error occurs if I < ID for bit 1 because of receiver noise. An error also
occurs if I > ID for bit 0. Both sources of errors can be included by defining the error
probability as

BER = p(1)P(0/1)+ p(0)P(1/0), (4.5.1)

where p(1) and p(0) are the probabilities of receiving bits 1 and 0, respectively, P(0/1)
is the probability of deciding 0 when 1 is received, and P(1/0) is the probability of
deciding 1 when 0 is received. Since 1 and 0 bits are equally likely to occur, p(1) =
p(0) = 1/2, and the BER becomes

BER = 1
2 [P(0/1)+ P(1/0)]. (4.5.2)

Figure 4.18(b) shows how P(0/1) and P(1/0) depend on the probability density
function p(I) of the sampled value I. The functional form of p(I) depends on the
statistics of noise sources responsible for current fluctuations. Thermal noise i T in Eq.
(4.4.6) is well described by Gaussian statistics with zero mean and variance σ 2

T . The



4.5. RECEIVER SENSITIVITY 163

Figure 4.18: (a) Fluctuating signal generated at the receiver. (b) Gaussian probability densities
of 1 and 0 bits. The dashed region shows the probability of incorrect identification.

statistics of shot-noise contribution is in Eq. (4.4.6) is also approximately Gaussian for
p–i–n receivers although that is not the case for APDs [86]–[88]. A common approx-
imation treats is as a Gaussian random variable for both p–i–n and APD receivers but
with different variance σ 2

s given by Eqs. (4.4.5) and (4.4.17), respectively. Since the
sum of two Gaussian random variables is also a Gaussian random variable, the sam-
pled value I has a Gaussian probability density function with variance σ 2 = σ2

s + σ2
T .

However, both the average and the variance are different for 1 and 0 bits since I p in Eq.
(4.4.6) equals I1 or I0, depending on the bit received. If σ 2

1 and σ 2
0 are the correspond-

ing variances, the conditional probabilities are given by

P(0/1) =
1

σ1
√

2π

∫ ID

−∞
exp

(
− (I− I1)2

2σ 2
1

)
dI =

1
2

erfc

(
I1 − ID

σ1
√

2

)
, (4.5.3)

P(1/0) =
1

σ0
√

2π

∫ ∞

ID
exp

(
− (I− I0)2

2σ 2
0

)
dI =

1
2

erfc

(
ID − I0

σ0
√

2

)
, (4.5.4)

where erfc stands for the complementary error function, defined as [89]

erfc(x) =
2√
π

∫ ∞

x
exp(−y2)dy. (4.5.5)

By substituting Eqs. (4.5.3) and (4.5.4) in Eq. (4.5.2), the BER is given by

BER =
1
4

[
erfc

(
I1 − ID

σ1
√

2

)
+ erfc

(
ID − I0

σ0
√

2

)]
. (4.5.6)
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Equation (4.5.6) shows that the BER depends on the decision threshold I D. In
practice, ID is optimized to minimize the BER. The minimum occurs when ID is chosen
such that

(ID − I0)2

2σ 2
0

=
(I1 − ID)2

2σ 2
1

+ ln

(
σ1

σ0

)
. (4.5.7)

The last term in this equation is negligible in most cases of practical interest, and ID is
approximately obtained from

(ID − I0)/σ0 = (I1 − ID)/σ1 ≡ Q. (4.5.8)

An explicit expression for ID is

ID =
σ0I1 + σ1I0

σ0 + σ1
. (4.5.9)

When σ1 = σ0, ID = (I1 + I0)/2, which corresponds to setting the decision threshold
in the middle. This is the situation for most p–i–n receivers whose noise is dominated
by thermal noise (σT � σs) and is independent of the average current. By contrast,
shot noise is larger for bit 1 than for bit 0, since σ 2

s varies linearly with the average
current. In the case of APD receivers, the BER can be minimized by setting the decision
threshold in accordance with Eq. (4.5.9).

The BER with the optimum setting of the decision threshold is obtained by using
Eqs. (4.5.6) and (4.5.8) and depends only on the Q parameter as

BER =
1
2

erfc

(
Q√

2

)
≈ exp(−Q2/2)

Q
√

2π
, (4.5.10)

where the parameter Q is obtained from Eqs. (4.5.8) and (4.5.9) and is given by

Q =
I1 − I0

σ1 + σ0
. (4.5.11)

The approximate form of BER is obtained by using the asymptotic expansion [89]
of erfc(Q/

√
2) and is reasonably accurate for Q > 3. Figure 4.19 shows how the BER

varies with the Q parameter. The BER improves as Q increases and becomes lower than
10−12 for Q > 7. The receiver sensitivity corresponds to the average optical power for
which Q ≈ 6, since BER ≈ 10−9 when Q = 6. The next subsection provides an explicit
expression for the receiver sensitivity.

4.5.2 Minimum Received Power

Equation (4.5.10) can be used to calculate the minimum optical power that a receiver
needs to operate reliably with a BER below a specified value. For this purpose the Q
parameter should be related to the incident optical power. For simplicity, consider the
case in which 0 bits carry no optical power so that P0 = 0, and hence I0 = 0. The power
P1 in 1 bits is related to I1 as

I1 = MRP1 = 2MRP̄rec, (4.5.12)



4.5. RECEIVER SENSITIVITY 165

Figure 4.19: Bit-error rate versus the Q parameter.

where P̄rec is the average received power defined as P̄rec = (P1 + P0)/2. The APD
gain M is included in Eq. (4.5.12) for generality. The case of p–i–n receivers can be
considered by setting M = 1.

The RMS noise currents σ1 and σ0 include the contributions of both shot noise and
thermal noise and can be written as

σ1 = (σ2
s + σ2

T )1/2 and σ0 = σT , (4.5.13)

where σ 2
s and σ 2

T are given by Eqs. (4.4.17) and (4.4.9), respectively. Neglecting the
contribution of dark current, the noise variances become

σ2
s = 2qM2FAR(2P̄rec)∆ f , (4.5.14)

σ2
T = (4kBT/RL)Fn∆ f . (4.5.15)

By using Eqs. (4.5.11)–(4.5.13), the Q parameter is given by

Q =
I1

σ1 + σ0
=

2MRP̄rec

(σ2
s + σ2

T )1/2 + σT
. (4.5.16)

For a specified value of BER, Q is determined from Eq. (4.5.10) and the receiver sensi-
tivity P̄rec is found from Eq. (4.5.16). A simple analytic expression for P̄rec is obtained
by solving Eq. (4.5.16) for a given value of Q and is given by [3]

P̄rec =
Q
R

(
qFAQ∆ f +

σT

M

)
. (4.5.17)
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Equation (4.5.17) shows how P̄rec depends on various receiver parameters and how
it can be optimized. Consider first the case of a p–i–n receiver by setting M = 1. Since
thermal noise σT generally dominates for such a receiver, P̄rec is given by the simple
expression

(P̄rec)pin ≈ QσT /R. (4.5.18)

From Eq. (4.5.15), σ 2
T depends not only on receiver parameters such as R L and Fn but

also on the bit rate through the receiver bandwidth ∆ f (typically, ∆ f = B/2). Thus,
P̄rec increases as

√
B in the thermal-noise limit. As an example, consider a 1.55-µm

p–i–n receiver with R = 1 A/W. If we use σT = 100 nA as a typical value and Q = 6
corresponding to a BER of 10−9, the receiver sensitivity is given by P̄rec = 0.6 µW or
−32.2 dBm.

Equation (4.5.17) shows how receiver sensitivity improves with the use of APD
receivers. If thermal noise remains dominant, P̄rec is reduced by a factor of M, and
the received sensitivity is improved by the same factor. However, shot noise increases
considerably for APD, and Eq. (4.5.17) should be used in the general case in which
shot-noise and thermal-noise contributions are comparable. Similar to the case of SNR
discussed in Section 4.4.3, the receiver sensitivity can be optimized by adjusting the
APD gain M. By using FA from Eq. (4.4.18) in Eq. (4.5.17), it is easy to verify that P̄rec

is minimum for an optimum value of M given by [3]

Mopt = k−1/2
A

(
σT

Qq∆ f
+ kA −1

)1/2

≈
(

σT

kAQq∆ f

)1/2

, (4.5.19)

and the minimum value is given by

(P̄rec)APD = (2q∆ f/R)Q2(kAMopt + 1− kA). (4.5.20)

The improvement in receiver sensitivity obtained by the use of an APD can be esti-
mated by comparing Eqs. (4.5.18) and (4.5.20). It depends on the ionization-coefficient
ratio kA and is larger for APDs with a smaller value of kA. For InGaAs APD receivers,
the sensitivity is typically improved by 6–8 dB; such an improvement is sometimes
called the APD advantage. Note that P̄rec for APD receivers increases linearly with the
bit rate B (∆ f ≈ B/2), in contrast with its

√
B dependence for p–i–n receivers. The

linear dependence of P̄rec on B is a general feature of shot-noise-limited receivers. For
an ideal receiver for which σT = 0, the receiver sensitivity is obtained by setting M = 1
in Eq. (4.5.17) and is given by

(P̄rec)ideal = (q∆ f/R)Q2. (4.5.21)

A comparison of Eqs. (4.5.20) and (4.5.21) shows sensitivity degradation caused by
the excess-noise factor in APD receivers.

Alternative measures of receiver sensitivity are sometimes used. For example, the
BER can be related to the SNR and to the average number of photons N p contained
within the “1” bit. In the thermal-noise limit σ0 ≈ σ1. By using I0 = 0, Eq. (4.5.11)
provides Q = I1/2σ1. As SNR = I2

1/σ2
1 , it is related to Q by the simple relation SNR =

4Q2. Since Q = 6 for a BER of 10−9, the SNR must be at least 144 or 21.6 dB for
achieving BER ≤ 10−9. The required value of SNR changes in the shot-noise limit. In
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the absence of thermal noise, σ0 ≈ 0, since shot noise is negligible for the “0” bit if the
dark-current contribution is neglected. Since Q = I1/σ1 = (SNR)1/2 in the shot-noise
limit, an SNR of 36 or 15.6 dB is enough to obtain BER = 1×10−9. It was shown in
Section 4.4.2 that SNR ≈ ηNp [see Eq. (4.4.15) and the following discussion] in the
shot-noise limit. By using Q = (ηNp)1/2 in Eq. (4.5.10), the BER is given by

BER = 1
2 erfc

(√
ηNp/2

)
. (4.5.22)

For a receiver with 100% quantum efficiency (η = 1), BER = 1×10−9 when Np = 36.
In practice, most optical receivers require N p ∼ 1000 to achieve a BER of 10−9, as their
performance is severely limited by thermal noise.

4.5.3 Quantum Limit of Photodetection

The BER expression (4.5.22) obtained in the shot-noise limit is not totally accurate,
since its derivation is based on the Gaussian approximation for the receiver noise statis-
tics. For an ideal detector (no thermal noise, no dark current, and 100% quantum ef-
ficiency), σ0 = 0, as shot noise vanishes in the absence of incident power, and thus
the decision threshold can be set quite close to the 0-level signal. Indeed, for such
an ideal receiver, 1 bits can be identified without error as long as even one photon is
detected. An error is made only if a 1 bit fails to produce even a single electron–hole
pair. For such a small number of photons and electrons, shot-noise statistics cannot
be approximated by a Gaussian distribution, and the exact Poisson statistics should be
used. If Np is the average number of photons in each 1 bit, the probability of generating
m electron–hole pairs is given by the Poisson distribution [90]

Pm = exp(−Np)Nm
p /m!. (4.5.23)

The BER can be calculated by using Eqs. (4.5.2) and (4.5.23). The probability
P(1/0) that a 1 is identified when 0 is received is zero since no electron–hole pair is
generated when Np = 0. The probability P(0/1) is obtained by setting m = 0 in Eq.
(4.5.23), since a 0 is decided in that case even though 1 is received. Since P(0/1) =
exp(−Np), the BER is given by the simple expression

BER = exp(−Np)/2. (4.5.24)

For BER < 10−9, Np must exceed 20. Since this requirement is a direct result of
quantum fluctuations associated with the incoming light, it is referred to as the quantum
limit. Each 1 bit must contain at least 20 photons to be detected with a BER < 10−9.
This requirement can be converted into power by using P1 = NphνB, where B is the bit
rate and hν the photon energy. The receiver sensitivity, defined as P̄rec = (P1 +P0)/2 =
P1/2, is given by

P̄rec = NphνB/2 = N̄phνB. (4.5.25)

The quantity N̄p expresses the receiver sensitivity in terms of the average number of
photons/bit and is related to Np as N̄p = Np/2 when 0 bits carry no energy. Its use



168 CHAPTER 4. OPTICAL RECEIVERS

as a measure of receiver sensitivity is quite common. In the quantum limit N̄p = 10.
The power can be calculated from Eq. (4.5.25). For example, for a 1.55-µm receiver
(hν = 0.8 eV), P̄rec = 13 nW or −48.9 dBm at B = 10 Gb/s. Most receivers operate
away from the quantum limit by 20 dB or more. This is equivalent to saying that N̄p

typically exceeds 1000 photons in practical receivers.

4.6 Sensitivity Degradation

The sensitivity analysis in Section 4.5 is based on the consideration of receiver noise
only. In particular, the analysis assumes that the optical signal incident on the receiver
consists of an ideal bit stream such that 1 bits consist of an optical pulse of constant
energy while no energy is contained in 0 bits. In practice, the optical signal emitted by
a transmitter deviates from this ideal situation. Moreover, it can be degraded during its
transmission through the fiber link. An example of such degradation is provided by the
noise added at optical amplifiers. The minimum average optical power required by the
receiver increases because of such nonideal conditions. This increase in the average
received power is referred to as the power penalty. In this section we focus on the
sources of power penalties that can lead to sensitivity degradation even without signal
transmission through the fiber. The transmission-related power-penalty mechanisms
are discussed in Chapter 7.

4.6.1 Extinction Ratio

A simple source of a power penalty is related to the energy carried by 0 bits. Some
power is emitted by most transmitters even in the off state. In the case of semiconductor
lasers, the off-state power P0 depends on the bias current Ib and the threshold current
Ith. If Ib < Ith, the power emitted during 0 bits is due to spontaneous emission, and
generally P0 � P1, where P1 is the on-state power. By contrast, P0 can be a significant
fraction of P1 if the laser is biased close to but above threshold. The extinction ratio is
defined as

rex = P0/P1. (4.6.1)

The power penalty can be obtained by using Eq. (4.5.11). For a p–i–n receiver
I1 = RP1 and I0 = RP0, where R is the responsivity (the APD gain can be included
by replacing R with MR). By using the definition P̄rec = (P1 + P0)/2 for the receiver
sensitivity, the parameter Q is given by

Q =
(

1− rex

1+ rex

)
2RP̄rec

σ1 + σ0
. (4.6.2)

In general, σ1 and σ0 depend on P̄rec because of the dependence of the shot-noise
contribution on the received optical signal. However, both of them can be approximated
by the thermal noise σT when receiver performance is dominated by thermal noise. By
using σ1 ≈ σ0 ≈ σT in Eq. (4.6.2), P̄rec is given by

P̄rec(rex) =
(

1+ rex

1− rex

)
σT Q

R
. (4.6.3)
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Figure 4.20: Power penalty versus the extinction ratio rex.

This equation shows that P̄rec increases when rex �= 0. The power penalty is defined
as the ratio δex = P̄rec(rex)/P̄rec(0). It is commonly expressed in decibel (dB) units by
using

δex = 10 log10

(
P̄rec(rex)
P̄rec(0)

)
= 10 log10

(
1+ rex

1− rex

)
. (4.6.4)

Figure 4.20 shows how the power penalty increases with r ex. A 1-dB penalty occurs
for rex = 0.12 and increases to 4.8 dB for rex = 0.5. In practice, for lasers biased below
threshold, rex is typically below 0.05, and the corresponding power penalty (<0.4 dB)
is negligible. Nonetheless, it can become significant if the semiconductor laser is biased
above threshold. An expression for P̄rec(rex) can be obtained [3] for APD receivers by
including the APD gain and the shot-noise contribution to σ 0 and σ1 in Eq. (4.6.2). The
optimum APD gain is lower than that in Eq. (4.5.19) when r ex �= 0. The sensitivity is
also reduced because of the lower optimum gain. Normally, the power penalty for an
APD receiver is larger by about a factor of 2 for the same value of r ex.

4.6.2 Intensity Noise

The noise analysis of Section 4.4 is based on the assumption that the optical power
incident on the receiver does not fluctuate. In practice, light emitted by any transmitter
exhibits power fluctuations. Such fluctuations, called intensity noise, were discussed
in Section 3.3.8 in the context of semiconductor lasers. The optical receiver converts
power fluctuations into current fluctuations which add to those resulting from shot noise
and thermal noise. As a result, the receiver SNR is degraded and is lower than that
given by Eq. (4.4.19). An exact analysis is complicated, as it involves the calculation
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of photocurrent statistics [91]. A simple approach consists of adding a third term to the
current variance given by Eq. (4.4.10), so that

σ2 = σ2
s + σ2

T + σ2
I , (4.6.5)

where
σI = R〈(∆P2

in)〉1/2 = RPinrI . (4.6.6)

The parameter rI , defined as rI = 〈(∆P2
in)〉1/2/Pin, is a measure of the noise level

of the incident optical signal. It is related to the relative intensity noise (RIN) of the
transmitter as

r2
I =

1
2π

∫ ∞

−∞
RIN(ω)dω , (4.6.7)

where RIN(ω) is given by Eq. (3.5.32). As discussed in Section 3.5.4, r I is simply the
inverse of the SNR of light emitted by the transmitter. Typically, the transmitter SNR
is better than 20 dB, and rI < 0.01.

As a result of the dependence of σ0 and σ1 on the parameter rI , the parameter Q in
Eq. (4.5.11) is reduced in the presence of intensity noise, Since Q should be maintained
to the same value to maintain the BER, it is necessary to increase the received power.
This is the origin of the power penalty induced by intensity noise. To simplify the
following analysis, the extinction ratio is assumed to be zero, so that I0 = 0 and σ0 =
σT . By using I1 = RP1 = 2RP̄rec and Eq. (4.6.5) for σ1, Q is given by

Q =
2RP̄rec

(σ2
T + σ2

s + σ2
I )1/2 + σT

, (4.6.8)

where
σs = (4qRP̄rec∆ f )1/2, σI = 2rIRP̄rec, (4.6.9)

and σT is given by Eq. (4.4.9). Equation (4.6.8) is easily solved to obtain the following
expression for the receiver sensitivity:

P̄rec(rI) =
QσT + Q2q∆ f

R(1− r2
I Q2)

. (4.6.10)

The power penalty, defined as the increase in P̄rec when rI �= 0, is given by

δI = 10 log10[P̄rec(rI)/P̄rec(0)] = −10 log10(1− r2
I Q2). (4.6.11)

Figure 4.21 shows the power penalty as a function of r I for maintaining Q = 6 cor-
responding to a BER of 10−9. The penalty is negligible for rI < 0.01 as δI is below
0.02 dB. Since this is the case for most optical transmitters, the effect of transmitter
noise is negligible in practice. The power penalty is almost 2 dB for r I = 0.1 and
becomes infinite when rI = Q−1 = 0.167. An infinite power penalty implies that the
receiver cannot operate at the specific BER even if the received optical power is in-
creased indefinitely. In the BER diagram shown in Fig. 4.19, an infinite power penalty
corresponds to a saturation of the BER curve above the 10−9 level, a feature referred to
as the BER floor. In this respect, the effect of intensity noise is qualitatively different
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Figure 4.21: Power penalty versus the intensity noise parameter rI .

than the extinction ratio, for which the power penalty remains finite for all values of r ex

such that rex < 1.
The preceding analysis assumes that the intensity noise at the receiver is the same

as at the transmitter. This is not typically the case when the optical signal propagates
through a fiber link. The intensity noise added by in-line optical amplifiers often be-
comes a limiting factor for most long-haul lightwave systems (see Chapter 5). When
a multimode semiconductor laser is used, fiber dispersion can lead to degradation of
the receiver sensitivity through the mode-partition noise. Another phenomenon that
can enhance intensity noise is optical feedback from parasitic reflections occurring all
along the fiber link. Such transmission-induced power-penalty mechanisms are con-
sidered in Chapter 7.

4.6.3 Timing Jitter

The calculation of receiver sensitivity in Section 4.5 is based on the assumption that
the signal is sampled at the peak of the voltage pulse. In practice, the decision instant
is determined by the clock-recovery circuit (see Fig. 4.11). Because of the noisy nature
of the input to the clock-recovery circuit, the sampling time fluctuates from bit to bit.
Such fluctuations are called timing jitter [92]–[95]. The SNR is degraded because
fluctuations in the sampling time lead to additional fluctuations in the signal. This
can be understood by noting that if the bit is not sampled at the bit center, the sampled
value is reduced by an amount that depends on the timing jitter ∆t. Since ∆t is a random
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variable, the reduction in the sampled value is also random. The SNR is reduced as a
result of such additional fluctuations, and the receiver performance is degraded. The
SNR can be maintained by increasing the received optical power. This increase is the
power penalty induced by timing jitter.

To simplify the following analysis, let us consider a p–i–n receiver dominated by
thermal noise σT and assume a zero extinction ratio. By using I0 = 0 in Eq. (4.5.11),
the parameter Q is given by

Q =
I1 −〈∆i j〉

(σ2
T + σ2

j )1/2+ σT
, (4.6.12)

where 〈∆i j〉 is the average value and σ j is the RMS value of the current fluctuation ∆i j

induced by timing jitter ∆t. If hout(t) governs the shape of the current pulse,

∆i j = I1[hout(0)−hout(∆t)], (4.6.13)

where the ideal sampling instant is taken to be t = 0.
Clearly, σ j depends on the shape of the signal pulse at the decision current. A sim-

ple choice [92] corresponds to hout(t) = cos2(πBt/2), where B is the bit rate. Here Eq.
(4.3.6) is used as many optical receivers are designed to provide that pulse shape. Since
∆t is likely to be much smaller than the bit period TB = 1/B, it can be approximated as

∆i j = (2π2/3−4)(B∆t)2I1 (4.6.14)

by assuming that B∆t � 1. This approximation provides a reasonable estimate of the
power penalty as long as the penalty is not too large [92]. This is expected to be the
case in practice. To calculate σ j, the probability density function of the timing jitter ∆t
is assumed to be Gaussian, so that

p(∆t) =
1

τ j
√

2π
exp

(
−∆t2

2τ2
j

)
, (4.6.15)

where τ j is the RMS value (standard deviation) of ∆t. The probability density of ∆i j

can be obtained by using Eqs. (4.6.14) and (4.6.15) and noting that ∆i j is proportional
to (∆t)2. The result is

p(∆i j) =
1√

πb∆i jI1
exp

(
−∆i j

bI1

)
, (4.6.16)

where
b = (4π2/3−8)(Bτ j)2. (4.6.17)

Equation (4.6.16) is used to calculate 〈∆i j〉 and σ j = 〈(∆i j)2〉1/2. The integration
over ∆i j is easily done to obtain

〈∆i j〉 = bI1/2, σ j = bI1/
√

2. (4.6.18)
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Figure 4.22: Power penalty versus the timing jitter parameter Bτ j.

By using Eqs. (4.6.12) and (4.6.18) and noting that I 1 = 2RP̄rec, where R is the respon-
sivity, the receiver sensitivity is given by

P̄rec(b) =
(

σT Q
R

)
1−b/2

(1−b/2)2−b2Q2/2
. (4.6.19)

The power penalty, defined as the increase in P̄rec, is given by

δ j = 10 log10

(
P̄rec(b)
P̄rec(0)

)
= 10 log10

(
1−b/2

(1−b/2)2−b2Q2/2

)
. (4.6.20)

Figure 4.22 shows how the power penalty varies with the parameter Bτ j, which has
the physical significance of the fraction of the bit period over which the decision time
fluctuates (one standard deviation). The power penalty is negligible for Bτ j < 0.1 but
increases rapidly beyond Bτ j = 0.1. A 2-dB penalty occurs for Bτ j = 0.16. Similar
to the case of intensity noise, the jitter-induced penalty becomes infinite beyond Bτ j =
0.2. The exact value of Bτ j at which the penalty becomes infinite depends on the model
used to calculate the jitter-induced power penalty. Equation (4.6.20) is obtained by
using a specific pulse shape and a specific jitter distribution. It is also based on the use
of Eqs. (4.5.10) and (4.6.12), which assumes Gaussian statistics for the receiver current.
As evident from Eq. (4.6.16), jitter-induced current fluctuations are not Gaussian in
nature. A more accurate calculation shows that Eq. (4.6.20) underestimates the power
penalty [94]. The qualitative behavior, however, remains the same. In general, the
RMS value of the timing jitter should be below 10% of the bit period for a negligible
power penalty. A similar conclusion holds for APD receivers, for which the penalty is
generally larger [95].
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Figure 4.23: Measured receiver sensitivities versus the bit rate for p–i–n (circles) and APD (tri-
angles) receivers in transmission experiments near 1.3- and 1.55-µm wavelengths. The quantum
limit of receiver sensitivity is also shown for comparison (solid lines).

4.7 Receiver Performance

The receiver performance is characterized by measuring the BER as a function of the
average optical power received. The average optical power corresponding to a BER
of 10−9 is a measure of receiver sensitivity. Figure 4.23 shows the receiver sensitivity
measured in various transmission experiments [96]–[107] by sending a long sequence
of pseudorandom bits (typical sequence length 2 15 − 1) over a single-mode fiber and
then detecting it by using either a p–i–n or an APD receiver. The experiments were
performed at the 1.3- or 1.55-µm wavelength, and the bit rate varied from 100 MHz
to 10 GHz. The theoretical quantum limit at these two wavelengths is also shown in
Fig. 4.23 by using Eq. (4.5.25). A direct comparison shows that the measured receiver
sensitivities are worse by 20 dB or more compared with the quantum limit. Most of
the degradation is due to the thermal noise that is unavoidable at room temperature
and generally dominates the shot noise. Some degradation is due to fiber dispersion,
which leads to power penalties; sources of such penalties are discussed in the following
chapter.

The dispersion-induced sensitivity degradation depends on both the bit rate B and
the fiber length L and increases with BL. This is the reason why the sensitivity degra-
dation from the quantum limit is larger (25–30 dB) for systems operating at high bit
rates. The receiver sensitivity at 10 Gb/s is typically worse than −25 dBm [107]. It
can be improved by 5–6 dB by using APD receivers. In terms of the number of pho-
tons/bit, APD receivers require nearly 1000 photons/bit compared with the quantum
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Figure 4.24: BER curves measured for three fiber-link lengths in a 1.55-µm transmission exper-
iment at 10 Gb/s. Inset shows an example of the eye diagram at the receiver. (After Ref. [110];
c©2000 IEEE; reprinted with permission.)

limit of 10 photons/bit. The receiver performance is generally better for shorter wave-
lengths in the region near 0.85 µm, where silicon APDs can be used; they perform
satisfactorily with about 400 photons/bit; an experiment in 1976 achieved a sensitivity
of only 187 photons/bit [108]. It is possible to improve the receiver sensitivity by using
coding schemes. A sensitivity of 180 photons/bit was realized in a 1.55-µm system
experiment [109] after 305 km of transmission at 140 Mb/s.

It is possible to isolate the extent of sensitivity degradation occurring as a result
of signal propagation inside the optical fiber. The common procedure is to perform
a separate measurement of the receiver sensitivity by connecting the transmitter and
receiver directly, without the intermediate fiber. Figure 4.24 shows the results of such a
measurement for a 1.55-µm field experiment in which the RZ-format signal consisting
of a pseudorandom bit stream in the form of solitons (sequence length 2 23 − 1) was
propagated over more than 2000 km of fiber [110]. In the absence of fiber (0-km
curve), a BER of 10−9 is realized for −29.5 dBm of received power. However, the
launched signal is degraded considerably during transmission, resulting in about a 3-
dB penalty for a 2040-km fiber link. The power penalty increases rapidly with further
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propagation. In fact, the increasing curvature of BER curves indicates that the BER of
10−9 would be unreachable after a distance of 2600 km. This behavior is typical of
most lightwave systems. The eye diagram seen in Fig. 4.24 is qualitatively different
than that appearing in Fig. 4.13. This difference is related to the use of the RZ format.

The performance of an optical receiver in actual lightwave systems may change
with time. Since it is not possible to measure the BER directly for a system in opera-
tion, an alternative is needed to monitor system performance. As discussed in Section
4.3.3, the eye diagram is best suited for this purpose; closing of the eye is a measure
of degradation in receiver performance and is associated with a corresponding increase
in the BER. Figures 4.13 and 4.24 show examples of the eye diagrams for lightwave
systems making use of the NRZ and RZ formats, respectively. The eye is wide open
in the absence of optical fiber but becomes partially closed when the signal is trans-
mitted through a long fiber link. Closing of the eye is due to amplifier noise, fiber
dispersion, and various nonlinear effects, all of which lead to considerable distortion
of optical pulses as they propagate through the fiber. The continuous monitoring of the
eye pattern is common in actual systems as a measure of receiver performance.

The performance of optical receivers operating in the wavelength range 1.3–1.6 µm
is severely limited by thermal noise, as seen clearly from the data in Fig. 4.23. The use
of APD receivers improves the situation, but to a limited extent only, because of the
excess noise factor associated with InGaAs APDs. Most receivers operate away from
the quantum limit by 20 dB or more. The effect of thermal noise can be considerably
reduced by using coherent-detection techniques in which the received signal is mixed
coherently with the output of a narrow-linewidth laser. The receiver performance can
also be improved by amplifying the optical signal before it is incident on the photode-
tector. We turn to optical amplifiers in the next chapter.

Problems

4.1 Calculate the responsivity of a p–i–n photodiode at 1.3 and 1.55 µm if the quan-
tum efficiency is 80%. Why is the photodiode more responsive at 1.55 µm?

4.2 Photons at a rate of 1010/s are incident on an APD with responsivity of 6 A/W.
Calculate the quantum efficiency and the photocurrent at the operating wave-
length of 1.5 µm for an APD gain of 10.

4.3 Show by solving Eqs. (4.2.3) and (4.2.4) that the multiplication factor M is given
by Eq. (4.2.7) for an APD in which electrons initiate the avalanche process. Treat
αe and αh as constants.

4.4 Draw a block diagram of a digital optical receiver showing its various compo-
nents. Explain the function of each component. How is the signal used by the
decision circuit related to the incident optical power?

4.5 The raised-cosine pulse shape of Eq. (4.3.6) can be generalized to generate a
family of such pulses by defining

hout(t) =
sin(πBt)

πBt
cos(πβ Bt)

1− (2β Bt)2 ,
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where the parameter β varies between 0 and 1. Derive an expression for the
transfer function Hout( f ) given by the Fourier transform of hout(t). Plot hout(t)
and Hout( f ) for β = 0, 0.5, and 1.

4.6 Consider a 0.8-µm receiver with a silicon p–i–n photodiode. Assume 20 MHz
bandwidth, 65% quantum efficiency, 1 nA dark current, 8 pF junction capaci-
tance, and 3 dB amplifier noise figure. The receiver is illuminated with 5 µW
of optical power. Determine the RMS noise currents due to shot noise, thermal
noise, and amplifier noise. Also calculate the SNR.

4.7 The receiver of Problem 4.6 is used in a digital communication system that re-
quires a SNR of at least 20 dB for satisfactory performance. What is the min-
imum received power when the detection is limited by (a) shot noise and (b)
thermal noise? Also calculate the noise-equivalent power in the two cases.

4.8 The excess noise factor of avalanche photodiodes is often approximated by M x

instead of Eq. (4.4.18). Find the range of M for which Eq. (4.4.18) can be approx-
imated within 10% by FA(M) = Mx by choosing x = 0.3 for Si, 0.7 for InGaAs,
and 1.0 for Ge. Use kA = 0.02 for Si, 0.35 for InGaAs, and 1.0 for Ge.

4.9 Derive Eq. (4.4.22). Plot Mopt versus kA by solving the cubic polynomial on a
computer by using RL = 1 kΩ, Fn = 2, R = 1 A/W, Pin = 1 µW, and Id = 2 nA.
Compare the results with the approximate analytic solution given by Eq. (4.4.23)
and comment on its validity.

4.10 Derive an expression for the optimum value of M for which the SNR becomes
maximum by using FA(M) = Mx in Eq. (4.4.19).

4.11 Prove that the bit-error rate (BER) given by Eq. (4.5.6) is minimum when the
decision threshold is set close to a value given by Eq. (4.5.9).

4.12 A 1.3-µm digital receiver is operating at 100 Mb/s and has an effective noise
bandwidth of 60 MHz. The p–i–n photodiode has negligible dark current and
90% quantum efficiency. The load resistance is 100 Ω and the amplifier noise
figure is 3 dB. Calculate the receiver sensitivity corresponding to a BER of 10−9.
How much does it change if the receiver is designed to operate reliably up to a
BER of 10−12?

4.13 Calculate the receiver sensitivity (at a BER of 10−9) for the receiver in Problem
4.12 in the shot-noise and thermal-noise limits. How many photons are incident
during bit 1 in the two limits if the optical pulse can be approximated by a square
pulse?

4.14 Derive an expression for the optimum gain Mopt of an APD receiver that would
maximize the receiver sensitivity by taking the excess-noise factor as M x. Plot
Mopt as a function of x for σT = 0.2 mA and ∆ f = 1 GHz and estimate its value
for InGaAs APDs (see Problem 4.8).

4.15 Derive an expression for the sensitivity of an APD receiver by taking into account
a finite extinction ratio for the general case in which both shot noise and thermal
noise contribute to the receiver sensitivity. You can neglect the dark current.
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4.16 Derive an expression for the intensity-noise-induced power penalty of a p–i–n
receiver by taking into account a finite extinction ratio. Shot-noise and intensity-
noise contributions can both be neglected compared with the thermal noise in the
off state but not in the on state.

4.17 Use the result of Problem 4.16 to plot the power penalty as a function of the
intensity-noise parameter rI [see Eq. (4.6.6) for its definition] for several values
of the extinction ratio. When does the power penalty become infinite? Explain
the meaning of an infinite power penalty.

4.18 Derive an expression for the timing-jitter-induced power penalty by assuming a
parabolic pulse shape I(t) = Ip(1−B2t2) and a Gaussian jitter distribution with a
standard deviation τ (RMS value). You can assume that the receiver performance
is dominated by thermal noise. Calculate the tolerable value of Bτ that would
keep the power penalty below 1 dB.
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[13] I.-H. Tan, J. Dudley, D. I. Babić, D. A. Cohen, B. D. Young, E. L. Hu, J. E. Bowers, B. I.

Miller, U. Koren, and M. G. Young, IEEE Photon. Technol. Lett. 6, 811 (1994).
[14] I.-H. Tan, C.-K. Sun, K. S. Giboney, J. E. Bowers E. L. Hu, B. I. Miller, and R. J. Kapik,

IEEE Photon. Technol. Lett. 7, 1477 (1995).
[15] Y.-G. Wey, K. S. Giboney, J. E. Bowers, M. J. Rodwell, P. Silvestre, P. Thiagarajan, and

G. Robinson, J. Lightwave Technol. 13, 1490 (1995).
[16] K. Kato, S. Hata, K. Kwano, J. Yoshida, and A. Kozen, IEEE J. Quantum Electron. 28,

2728 (1992).



REFERENCES 179

[17] K. Kato, A. Kozen, Y. Muramoto, Y. Itaya, N. Nagatsuma, and M. Yaita, IEEE Photon.
Technol. Lett. 6, 719 (1994).

[18] K. Kato and Y. Akatsu, Opt. Quantum Electron. 28, 557 (1996).

[19] T. Takeuchi, T. Nakata, K. Fukuchi, K. Makita, and K. Taguchi, IEICE Trans. Electron.
E82C, 1502 (1999).

[20] K. Kato, IEEE Trans. Microwave Theory Tech. 47, 1265 (1999).

[21] K. S. Giboney, R. L. Nagarajan, T. E. Reynolds, S. T. Allen, R. P. Mirin, M. J. W. Rod-
well, and J. E. Bowers, IEEE Photon. Technol. Lett. 7, 412 (1995).

[22] H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, Electron. Lett. 36, 1809 (2000).

[23] G. E. Stillman and C. M. Wolfe, in Semiconductors and Semimetals, Vol. 12, R. K.
Willardson and A. C. Beer, Eds., Academic Press, San Diego, CA, 1977, pp. 291–393.

[24] H. Melchior, in Laser Handbook, Vol. 1, F. T. Arecchi and E. O. Schulz-Dubois, Eds.,
North-Holland, Amsterdam, 1972, pp. 725–835.

[25] J. C. Campbell, A. G. Dentai, W. S. Holden, and B. L. Kasper, Electron. Lett. 19, 818
(1983).

[26] B. L. Kasper and J. C. Campbell, J. Lightwave Technol. 5, 1351 (1987).

[27] L. E. Tarof, Electron. Lett. 27, 34 (1991).

[28] L. E. Tarof, J. Yu, R. Bruce, D. G. Knight, T. Baird, and B. Oosterbrink, IEEE Photon.
Technol. Lett. 5, 672 (1993).

[29] J. Yu, L. E. Tarof, R. Bruce, D. G. Knight, K. Visvanatha, and T. Baird, IEEE Photon.
Technol. Lett. 6, 632 (1994).

[30] C. L. F. Ma, M. J. Deen, and L. E. Tarof, IEEE J. Quantum Electron. 31, 2078 (1995).

[31] K. A. Anselm, H. Nie, C. Lenox, P. Yuan, G. Kinsey, J. C. Campbell, B. G. Streetman,
IEEE J. Quantum Electron. 34, 482 (1998).

[32] T. Nakata, I. Watanabe, K. Makita, and T. Torikai, Electron. Lett. 36, 1807 (2000).

[33] F. Capasso, in Semiconductor and Semimetals, Vol. 22D, W. T. Tsang, Ed., Academic
Press, San Diego, CA, 1985, pp. 1–172.

[34] I. Watanabe, S. Sugou, H. Ishikawa, T. Anan, K. Makita, M. Tsuji, and K. Taguchi, IEEE
Photon. Technol. Lett. 5, 675 (1993).

[35] T. Kagawa, Y. Kawamura, and H. Iwamura, IEEE J. Quantum Electron. 28, 1419 (1992);
IEEE J. Quantum Electron. 29, 1387 (1993).

[36] S. Hanatani, H. Nakamura, S. Tanaka, T. Ido, and C. Notsu, Microwave Opt. Tech. Lett.
7, 103 (1994).

[37] I. Watanabe, M. Tsuji, K. Makita, and K. Taguchi, IEEE Photon. Technol. Lett. 8, 269
(1996).

[38] I. Watanabe, T. Nakata, M. Tsuji, K. Makita, T. Torikai, and K. Taguchi, J. Lightwave
Technol. 18, 2200 (2000).

[39] A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, Appl. Phys. Lett. 70,
303 (1997).

[40] C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Homles, B. G. Streetman, and J. C. Campbell,
IEEE Photon. Technol. Lett. 11, 1162 (1999).

[41] T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, Electron. Lett. 36, 2033
(2000).

[42] J. Burm, K. I. Litvin, D. W. Woodard, W. J. Schaff, P. Mandeville, M. A. Jaspan, M. M.
Gitin, and L. F. Eastman, IEEE J. Quantum Electron. 31, 1504 (1995).

[43] J. B. D. Soole and H. Schumacher, IEEE J. Quantum Electron. 27, 737 (1991).



180 CHAPTER 4. OPTICAL RECEIVERS

[44] J. H. Kim, H. T. Griem, R. A. Friedman, E. Y. Chan, and S. Roy, IEEE Photon. Technol.
Lett. 4, 1241 (1992).

[45] R.-H. Yuang, J.-I. Chyi, Y.-J. Chan, W. Lin, and Y.-K. Tu, IEEE Photon. Technol. Lett. 7,
1333 (1995).

[46] O. Vendier, N. M. Jokerst, and R. P. Leavitt, IEEE Photon. Technol. Lett. 8, 266 (1996).
[47] M. C. Hargis, S. E. Ralph, J. Woodall, D. McInturff, A. J. Negri, and P. O. Haugsjaa,

IEEE Photon. Technol. Lett. 8, 110 (1996).
[48] W. A. Wohlmuth, P. Fay, C. Caneau, and I. Adesida, Electron. Lett. 32, 249 (1996).
[49] A. Bartels, E. Peiner, G.-P. Tang, R. Klockenbrink, H.-H. Wehmann, and A. Schlachetzki,

IEEE Photon. Technol. Lett. 8, 670 (1996).
[50] Y. G. Zhang, A. Z. Li, and J. X. Chen, IEEE Photon. Technol. Lett. 8, 830 (1996).
[51] E. Droge, E. H. Bottcher, S. Kollakowski, A. Strittmatter, D. Bimberg, O. Reimann, and

R. Steingruber, Electron. Lett. 34, 2241 (1998).
[52] J. W. Shi, K. G. Gan, Y. J. Chiu, Y. H. Chen, C. K. Sun, Y. J. Yang, and J. E. Bowers,

IEEE Photon. Technol. Lett. 16, 623 (2001).
[53] R. G. Swartz, in Optical Fiber Telecommunications II, S. E. Miller and I. P. Kaminow,

Eds., Academic Press, San Diego, CA, 1988, Chap. 20.
[54] K. Kobayashi, in Optical Fiber Telecommunications II, S. E. Miller and I. P. Kaminow,

Eds., Academic Press, San Diego, CA, 1988, Chap. 11.
[55] T. Horimatsu and M. Sasaki, J. Lightwave Technol. 7, 1612 (1989).
[56] O. Wada, H. Hamaguchi, M. Makiuchi, T. Kumai, M. Ito, K. Nakai, T. Horimatsu, and T.

Sakurai, J. Lightwave Technol. 4, 1694 (1986).
[57] M. Makiuchi, H. Hamaguchi, T. Kumai, O. Aoki, Y. Oikawa, and O. Wada, Electron.

Lett. 24, 995 (1988).
[58] K. Matsuda, M. Kubo, K. Ohnaka, and J. Shibata, IEEE Trans. Electron. Dev. 35, 1284

(1988).
[59] H. Yano, K. Aga, H. Kamei, G. Sasaki, and H. Hayashi, J. Lightwave Technol. 8, 1328

(1990).
[60] H. Hayashi, H. Yano, K. Aga, M. Murata, H. Kamei, and G. Sasaki, IEE Proc. 138, Pt. J,

164 (1991).
[61] H. Yano, G. Sasaki, N. Nishiyama, M. Murata, and H. Hayashi, IEEE Trans. Electron.

Dev. 39, 2254 (1992).
[62] Y. Akatsu, M. Miyugawa, Y. Miyamoto, Y. Kobayashi, and Y. Akahori, IEEE Photon.

Technol. Lett. 5, 163 (1993).
[63] K. Takahata, Y. Muramoto, H. Fukano, K. Kato, A. Kozen, O. Nakajima, and Y. Mat-

suoka, IEEE Photon. Technol. Lett. 10, 1150 (1998).
[64] S. Chandrasekhar, L. M. Lunardi, A. H. Gnauck, R. A. Hamm, and G. J. Qua, IEEE

Photon. Technol. Lett. 5, 1316 (1993).
[65] E. Sano, M. Yoneyama, H. Nakajima, and Y. Matsuoka, J. Lightwave Technol. 12, 638

(1994).
[66] H. Kamitsuna, J. Lightwave Technol. 13, 2301 (1995).
[67] L. M. Lunardi, S. Chandrasekhar, C. A. Burrus, and R. A. Hamm, IEEE Photon. Technol.

Lett. 7, 1201 (1995).
[68] M. Yoneyama, E. Sano, S. Yamahata, and Y. Matsuoka, IEEE Photon. Technol. Lett. 8,

272 (1996).
[69] E. Sano, K. Kurishima, and S. Yamahata, Electron. Lett. 33, 159 (1997).
[70] W. P. Hong, G. K. Chang, R. Bhat, C. K. Nguyen, and M. Koza, IEEE Photon. Technol.

Lett. 3, 156 (1991).



REFERENCES 181

[71] P. Fay, W. Wohlmuth, C. Caneau, and I. Adesida, Electron. Lett. 31, 755 (1995).
[72] G. G. Mekonnen, W. Schlaak, H. G. Bach, R. Steingruber, A. Seeger, T. Enger, W. Passen-

berg, A. Umbach, C. Schramm, G. Unterborsch, and S. van Waasen, IEEE Photon. Tech-
nol. Lett. 11, 257 (1999).

[73] K. Takahata, Y. Muramoto, H. Fukano, K. Kato, A. Kozen, S. Kimura, Y. Imai, Y.
Miyamoto, O. Nakajima, and Y. Matsuoka, IEEE J. Sel. Topics Quantum Electron. 6,
31 (2000).

[74] N. Shimizu, K. Murata, A. Hirano, Y. Miyamoto, H. Kitabayashi, Y. Umeda, T. Akeyoshi,
T. Furuta, and N. Watanabe, Electron. Lett. 36, 1220 (2000).

[75] Y. Oikawa, H. Kuwatsuka, T. Yamamoto, T. Ihara, H. Hamano, and T. Minami, J. Light-
wave Technol. 12, 343 (1994).

[76] T. Ohyama, S. Mino, Y. Akahori, M. Yanagisawa, T. Hashimoto, Y. Yamada, Y. Mu-
ramoto, and T. Tsunetsugu, Electron. Lett. 32, 845 (1996).

[77] Y. Kobayashi, Y. Akatsu, K. Nakagawa, H. Kikuchi, and Y. Imai, IEEE Trans. Microwave
Theory Tech. 43, 1916 (1995).

[78] K. Emura, Solid-State Electron. 43, 1613 (1999).
[79] M. Bitter, R. Bauknecht, W. Hunziker, and H. Melchior, IEEE Photon. Technol. Lett. 12,

74 (2000).
[80] W. R. Bennett, Electrical Noise, McGraw-Hill, New York, 1960.
[81] D. K. C. MacDonald, Noise and Fluctuations: An Introduction, Wiley, New York, 1962.
[82] F. N. H. Robinson, Noise and Fluctuations in Electronic Devices and Circuits, Oxford

University Press, Oxford, 1974.
[83] W. Schottky, Ann. Phys. 57, 541 (1918).
[84] J. B. Johnson, Phys. Rev. 32, 97 (1928).
[85] H. Nyquist, Phys. Rev. 32, 110 (1928).
[86] R. J. McIntyre, IEEE Trans. Electron. Dev. 13, 164 (1966); 19, 703 (1972).
[87] P. P. Webb, R. J. McIntyre, and J. Conradi, RCA Rev. 35, 235 (1974).
[88] P. Balaban, Bell Syst. Tech. J. 55, 745 (1976).
[89] M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions, Dover,

New York, 1970.
[90] B. E. A. Saleh and M. Teich, Fundamentals of Photonics, Wiley, New York, 1991.
[91] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambride University

Press, New York, 1995.
[92] G. P. Agrawal and T. M. Shen, Electron. Lett. 22, 450 (1986).
[93] J. J. O’Reilly, J. R. F. DaRocha, and K. Schumacher, IEE Proc. 132, Pt. J, 309 (1985).
[94] K. Schumacher and J. J. O’Reilly, Electron. Lett. 23, 718 (1987).
[95] T. M. Shen, Electron. Lett. 22, 1043 (1986).
[96] T. P. Lee, C. A. Burrus, A. G. Dentai, and K. Ogawa, Electron. Lett. 16, 155 (1980).
[97] D. R. Smith, R. C. Hooper, P. P. Smyth, and D. Wake, Electron. Lett. 18, 453 (1982).
[98] J. Yamada, A. Kawana, T. Miya, H. Nagai, and T. Kimura, IEEE J. Quantum Electron.

18, 1537 (1982).
[99] M. C. Brain, P. P. Smyth, D. R. Smith, B. R. White, and P. J. Chidgey, Electron. Lett. 20,

894 (1984).
[100] M. L. Snodgrass and R. Klinman, J. Lightwave Technol. 2, 968 (1984).
[101] S. D. Walker and L. C. Blank, Electron. Lett. 20, 808 (1984).
[102] C. Y. Chen, B. L. Kasper, H. M. Cox, and J. K. Plourde, Appl. Phys. Lett. 46, 379 (1985).



182 CHAPTER 4. OPTICAL RECEIVERS

[103] B. L. Kasper, J. C. Campbell, A. H. Gnauck, A. G. Dentai, and J. R. Talman, Electron.
Lett. 21, 982 (1985).

[104] B. L. Kasper, J. C. Campbell, J. R. Talman, A. H. Gnauck, J. E. Bowers, and W. S.
Holden, J. Lightwave Technol. 5, 344 (1987).

[105] R. Heidemann, U. Scholz, and B. Wedding, Electron. Lett. 23, 1030 (1987).
[106] M. Shikada, S. Fujita, N. Henmi, I. Takano, I. Mito, K. Taguchi, and K. Minemura, J.

Lightwave Technol. 5, 1488 (1987).
[107] S. Fujita, M. Kitamura, T. Torikai, N. Henmi, H. Yamada, T. Suzaki, I. Takano, and M.

Shikada, Electron. Lett. 25, 702 (1989).
[108] P. K. Runge, IEEE Trans. Commun. 24, 413 (1976).
[109] L. Pophillat and A. Levasseur, Electron. Lett. 27, 535 (1991).
[110] M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, IEEE J. Sel. Topics

Quantum Electron. 6, 363 (2000).



Chapter 5

Lightwave Systems

The preceding three chapters focused on the three main components of a fiber-optic
communication system—optical fibers, optical transmitters, and optical receivers. In
this chapter we consider the issues related to system design and performance when the
three components are put together to form a practical lightwave system. Section 5.1
provides an overview of various system architectures. The design guidelines for fiber-
optic communication systems are discussed in Section 5.2 by considering the effects
of fiber losses and group-velocity dispersion. The power and the rise-time budgets are
also described in this section. Section 5.3 focuses on long-haul systems for which the
nonlinear effects become quite important. This section also covers various terrestrial
and undersea lightwave systems that have been developed since 1977 when the first
field trial was completed in Chicago. Issues related to system performance are treated
in Section 5.4 with emphasis on performance degradation occurring as a result of signal
transmission through the optical fiber. The physical mechanisms that can lead to power
penalty in actual lightwave systems include modal noise, mode-partition noise, source
spectral width, frequency chirp, and reflection feedback; each of them is discussed in
separate subsections. In Section 5.5 we emphasize the importance of computer-aided
design for lightwave systems.

5.1 System Architectures

From an architectural standpoint, fiber-optic communication systems can be classified
into three broad categories—point-to-point links, distribution networks, and local-area
networks [1]–[7]. This section focuses on the main characteristics of these three system
architectures.

5.1.1 Point-to-Point Links

Point-to-point links constitute the simplest kind of lightwave systems. Their role is to
transport information, available in the form of a digital bit stream, from one place to
another as accurately as possible. The link length can vary from less than a kilometer
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Figure 5.1: Point-to-point fiber links with periodic loss compensation through (a) regenerators
and (b) optical amplifiers. A regenerator consists of a receiver followed by a transmitter.

(short haul) to thousands of kilometers (long haul), depending on the specific appli-
cation. For example, optical data links are used to connect computers and terminals
within the same building or between two buildings with a relatively short transmission
distance (<10 km). The low loss and the wide bandwidth of optical fibers are not of
primary importance for such data links; fibers are used mainly because of their other
advantages, such as immunity to electromagnetic interference. In contrast, undersea
lightwave systems are used for high-speed transmission across continents with a link
length of several thousands of kilometers. Low losses and a large bandwidth of optical
fibers are important factors in the design of transoceanic systems from the standpoint
of reducing the overall operating cost.

When the link length exceeds a certain value, in the range 20–100 km depending on
the operating wavelength, it becomes necessary to compensate for fiber losses, as the
signal would otherwise become too weak to be detected reliably. Figure 5.1 shows two
schemes used commonly for loss compensation. Until 1990, optoelectronic repeaters,
called regenerators because they regenerate the optical signal, were used exclusively.
As seen in Fig. 5.1(a), a regenerator is nothing but a receiver–transmitter pair that de-
tects the incoming optical signal, recovers the electrical bit stream, and then converts
it back into optical form by modulating an optical source. Fiber losses can also be
compensated by using optical amplifiers, which amplify the optical bit stream directly
without requiring conversion of the signal to the electric domain. The advent of optical
amplifiers around 1990 revolutionized the development of fiber-optic communication
systems [8]–[10]. Amplifiers are especially valuable for wavelength-division multi-
plexed (WDM) lightwave systems as they can amplify many channels simultaneously;
Chapter 6 is devoted to them.

Optical amplifiers solve the loss problem but they add noise (see Chapter 6) and
worsen the impact of fiber dispersion and nonlinearity since signal degradation keeps
on accumulating over multiple amplification stages. Indeed, periodically amplified
lightwave systems are often limited by fiber dispersion unless dispersion-compensation
techniques (discussed in Chapter 7) are used. Optoelectronic repeaters do not suf-
fer from this problem as they regenerate the original bit stream and thus effectively
compensate for all sources of signal degradation automatically. An optical regenera-
tor should perform the same three functions—reamplification, reshaping, and retiming
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(the 3Rs)—to replace an optoelectronic repeater. Although considerable research effort
is being directed toward developing such all-optical regenerators [11], most terrestrial
systems use a combination of the two techniques shown in Fig. 5.1 and place an op-
toelectronic regenerator after a certain number of optical amplifiers. Until 2000, the
regenerator spacing was in the range of 600–800 km. Since then, ultralong-haul sys-
tems have been developed that are capable of transmitting optical signals over 3000 km
or more without using a regenerator [12].

The spacing L between regenerators or optical amplifiers (see Fig. 5.1), often called
the repeater spacing, is a major design parameter simply because the system cost re-
duces as L increases. However, as discussed in Section 2.4, the distance L depends on
the bit rate B because of fiber dispersion. The bit rate–distance product, BL, is generally
used as a measure of the system performance for point-to-point links. The BL product
depends on the operating wavelength, since both fiber losses and fiber dispersion are
wavelength dependent. The first three generations of lightwave systems correspond to
three different operating wavelengths near 0.85, 1.3, and 1.55 µm. Whereas the BL
product was ∼1 (Gb/s)-km for the first-generation systems operating near 0.85 µm, it
becomes ∼1 (Tb/s)-km for the third-generation systems operating near 1.55 µm and
can exceed 100 (Tb/s)-km for the fourth-generation systems.

5.1.2 Distribution Networks

Many applications of optical communication systems require that information is not
only transmitted but is also distributed to a group of subscribers. Examples include
local-loop distribution of telephone services and broadcast of multiple video channels
over cable television (CATV, short for common-antenna television). Considerable ef-
fort is directed toward the integration of audio and video services through a broadband
integrated-services digital network (ISDN). Such a network has the ability to dis-
tribute a wide range of services, including telephone, facsimile, computer data, and
video broadcasts. Transmission distances are relatively short (L < 50 km), but the bit
rate can be as high as 10 Gb/s for a broadband ISDN.

Figure 5.2 shows two topologies for distribution networks. In the case of hub topol-
ogy, channel distribution takes place at central locations (or hubs), where an automated
cross-connect facility switches channels in the electrical domain. Such networks are
called metropolitan-area networks (MANs) as hubs are typically located in major
cities [13]. The role of fiber is similar to the case of point-to-point links. Since the
fiber bandwidth is generally much larger than that required by a single hub office,
several offices can share a single fiber headed for the main hub. Telephone networks
employ hub topology for distribution of audio channels within a city. A concern for the
hub topology is related to its reliability—outage of a single fiber cable can affect the
service to a large portion of the network. Additional point-to-point links can be used to
guard against such a possibility by connecting important hub locations directly.

In the case of bus topology, a single fiber cable carries the multichannel optical
signal throughout the area of service. Distribution is done by using optical taps, which
divert a small fraction of the optical power to each subscriber. A simple CATV applica-
tion of bus topology consists of distributing multiple video channels within a city. The
use of optical fiber permits distribution of a large number of channels (100 or more)
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Figure 5.2: (a) Hub topology and (b) bus topology for distribution networks.

because of its large bandwidth compared with coaxial cables. The advent of high-
definition television (HDTV) also requires lightwave transmission because of a large
bandwidth (about 100 Mb/s) of each video channel unless a compression technique
(such as MPEG-2, or 2nd recommendation of the motion-picture entertainment group)
is used.

A problem with the bus topology is that the signal loss increases exponentially with
the number of taps and limits the number of subscribers served by a single optical bus.
Even when fiber losses are neglected, the power available at the Nth tap is given by [1]

PN = PTC[(1− δ )(1−C)]N−1, (5.1.1)

where PT is the transmitted power, C is the fraction of power coupled out at each tap,
and δ accounts for insertion losses, assumed to be the same at each tap. The derivation
of Eq. (5.1.1) is left as an exercise for the reader. If we use δ = 0.05, C = 0.05,
PT = 1 mW, and PN = 0.1 µW as illustrative values, N should not exceed 60. A solution
to this problem is offered by optical amplifiers which can boost the optical power of the
bus periodically and thus permit distribution to a large number of subscribers as long
as the effects of fiber dispersion remain negligible.

5.1.3 Local-Area Networks

Many applications of fiber-optic communication technology require networks in which
a large number of users within a local area (e.g., a university campus) are intercon-
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Figure 5.3: (a) Ring topology and (b) star topology for local-area networks.

nected in such a way that any user can access the network randomly to transmit data
to any other user [14]–[16]. Such networks are called local-area networks (LANs).
Optical-access networks used in a local subscriber loop also fall in this category [17].
Since the transmission distances are relatively short (<10 km), fiber losses are not of
much concern for LAN applications. The major motivation behind the use of optical
fibers is the large bandwidth offered by fiber-optic communication systems.

The main difference between MANs and LANs is related to the random access of-
fered to multiple users of a LAN. The system architecture plays an important role for
LANs, since the establishment of predefined protocol rules is a necessity in such an
environment. Three commonly used topologies are known as bus, ring, and star con-
figurations. The bus topology is similar to that shown in Fig. 5.2(b). A well-known
example of bus topology is provided by the Ethernet, a network protocol used to con-
nect multiple computers and used by the Internet. The Ethernet operates at speeds up
to 1 Gb/s by using a protocol based on carrier-sense multiple access (CSMA) with
collision detection. Although the Ethernet LAN architecture has proven to be quite
successful when coaxial cables are used for the bus, a number of difficulties arise when
optical fibers are used. A major limitation is related to the losses occurring at each tap,
which limits the number of users [see Eq. (5.1.1)].

Figure 5.3 shows the ring and star topologies for LAN applications. In the ring
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topology [18], consecutive nodes are connected by point-to-point links to form a closed
ring. Each node can transmit and receive the data by using a transmitter–receiver pair,
which also acts as a repeater. A token (a predefined bit sequence) is passed around the
ring. Each node monitors the bit stream to listen for its own address and to receive
the data. It can also transmit by appending the data to an empty token. The use of ring
topology for fiber-optic LANs has been commercialized with the standardized interface
known as the fiber distributed data interface, FDDI for short [18]. The FDDI operates
at 100 Mb/s by using multimode fibers and 1.3-µm transmitters based on light-emitting
diodes (LEDs). It is designed to provide backbone services such as the interconnection
of lower-speed LANs or mainframe computers.

In the star topology, all nodes are connected through point-to-point links to a central
node called a hub, or simply a star. Such LANs are further subclassified as active-star
or passive-star networks, depending on whether the central node is an active or passive
device. In the active-star configuration, all incoming optical signals are converted to
the electrical domain through optical receivers. The electrical signal is then distributed
to drive individual node transmitters. Switching operations can also be performed at
the central node since distribution takes place in the electrical domain. In the passive-
star configuration, distribution takes place in the optical domain through devices such
as directional couplers. Since the input from one node is distributed to many output
nodes, the power transmitted to each node depends on the number of users. Similar
to the case of bus topology, the number of users supported by passive-star LANs is
limited by the distribution losses. For an ideal N ×N star coupler, the power reaching
each node is simply PT /N (if we neglect transmission losses) since the transmitted
power PT is divided equally among N users. For a passive star composed of directional
couplers (see Section 8.2.4), the power is further reduced because of insertion losses
and can be written as [1]

PN = (PT /N)(1− δ )log2 N , (5.1.2)

where δ is the insertion loss of each directional coupler. If we use δ = 0.05, PT =
1 mW, and PN = 0.1 µW as illustrative values, N can be as large as 500. This value
of N should be compared with N = 60 obtained for the case of bus topology by us-
ing Eq. (5.1.1). A relatively large value of N makes star topology attractive for LAN
applications. The remainder of this chapter focuses on the design and performance of
point-to-point links, which constitute a basic element of all communication systems,
including LANs, MANS, and other distribution networks.

5.2 Design Guidelines

The design of fiber-optic communication systems requires a clear understanding of the
limitations imposed by the loss, dispersion, and nonlinearity of the fiber. Since fiber
properties are wavelength dependent, the choice of operating wavelength is a major
design issue. In this section we discuss how the bit rate and the transmission distance of
a single-channel system are limited by fiber loss and dispersion; Chapter 8 is devoted to
multichannel systems. We also consider the power and rise-time budgets and illustrate
them through specific examples [5]. The power budget is also called the link budget,
and the rise-time budget is sometimes referred to as the bandwidth budget.



5.2. DESIGN GUIDELINES 189

Step-index fiber Graded-index Fiber

Figure 5.4: Loss (solid lines) and dispersion (dashed lines) limits on transmission distance L as
a function of bit rate B for the three wavelength windows. The dotted line corresponds to coaxial
cables. Circles denote commercial lightwave systems; triangles show laboratory experiments.
(After Ref. [1]; c©1988 Academic Press; reprinted with permission.)

5.2.1 Loss-Limited Lightwave Systems

Except for some short-haul fiber links, fiber losses play an important role in the system
design. Consider an optical transmitter that is capable of launching an average power
P̄tr. If the signal is detected by a receiver that requires a minimum average power P̄rec

at the bit rate B, the maximum transmission distance is limited by

L =
10
α f

log10

(
P̄tr

P̄rec

)
, (5.2.1)

where α f is the net loss (in dB/km) of the fiber cable, including splice and connector
losses. The bit-rate dependence of L arises from the linear dependence of P̄rec on the
bit rate B. Noting that P̄rec = N̄phνB, where hν is the photon energy and N̄p is the
average number of photons/bit required by the receiver [see Eq. (4.5.24)], the distance
L decreases logarithmically as B increases at a given operating wavelength.

The solid lines in Fig. 5.4 show the dependence of L on B for three common oper-
ating wavelengths of 0.85, 1.3, and 1.55 µm by using α f = 2.5, 0.4, and 0.25 dB/km,
respectively. The transmitted power is taken to be P̄tr = 1 mW at the three wavelengths,
whereas N̄p = 300 at λ = 0.85 µm and N̄p = 500 at 1.3 and 1.55 µm. The smallest
value of L occurs for first-generation systems operating at 0.85 µm because of rela-
tively large fiber losses near that wavelength. The repeater spacing of such systems
is limited to 10–25 km, depending on the bit rate and the exact value of the loss pa-
rameter. In contrast, a repeater spacing of more than 100 km is possible for lightwave
systems operating near 1.55 µm.

It is interesting to compare the loss limit of 0.85-µm lightwave systems with that
of electrical communication systems based on coaxial cables. The dotted line in Fig.
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5.4 shows the bit-rate dependence of L for coaxial cables by assuming that the loss
increases as

√
B. The transmission distance is larger for coaxial cables at small bit

rates (B < 5 Mb/s), but fiber-optic systems take over at bit rates in excess of 5 Mb/s.
Since a longer transmission distance translates into a smaller number of repeaters in
a long-haul point-to-point link, fiber-optic communication systems offer an economic
advantage when the operating bit rate exceeds 10 Mb/s.

The system requirements typically specified in advance are the bit rate B and the
transmission distance L. The performance criterion is specified through the bit-error
rate (BER), a typical requirement being BER < 10−9. The first decision of the system
designer concerns the choice of the operating wavelength. As a practical matter, the
cost of components is lowest near 0.85 µm and increases as wavelength shifts toward
1.3 and 1.55 µm. Figure 5.4 can be quite helpful in determining the appropriate oper-
ating wavelength. Generally speaking, a fiber-optic link can operate near 0.85 µm if
B < 200 Mb/s and L < 20 km. This is the case for many LAN applications. On the
other hand, the operating wavelength is by necessity in the 1.55-µm region for long-
haul lightwave systems operating at bit rates in excess of 2 Gb/s. The curves shown in
Fig. 5.4 provide only a guide to the system design. Many other issues need to be ad-
dressed while designing a realistic fiber-optic communication system. Among them are
the choice of the operating wavelength, selection of appropriate transmitters, receivers,
and fibers, compatibility of various components, issue of cost versus performance, and
system reliability and upgradability concerns.

5.2.2 Dispersion-Limited Lightwave Systems

In Section 2.4 we discussed how fiber dispersion limits the bit rate–distance product
BL because of pulse broadening. When the dispersion-limited transmission distance is
shorter than the loss-limited distance of Eq. (5.2.1), the system is said to be dispersion-
limited. The dashed lines in Fig. 5.4 show the dispersion-limited transmission distance
as a function of the bit rate. Since the physical mechanisms leading to dispersion
limitation can be different for different operating wavelengths, let us examine each
case separately.

Consider first the case of 0.85-µm lightwave systems, which often use multimode
fibers to minimize the system cost. As discussed in Section 2.1, the most limiting factor
for multimode fibers is intermodal dispersion. In the case of step-index multimode
fibers, Eq. (2.1.6) provides an approximate upper bound on the BL product. A slightly
more restrictive condition BL = c/(2n1∆) is plotted in Fig. 5.4 by using typical values
n1 = 1.46 and ∆ = 0.01. Even at a low bit rate of 1 Mb/s, such multimode systems
are dispersion-limited, and their transmission distance is limited to below 10 km. For
this reason, multimode step-index fibers are rarely used in the design of fiber-optic
communication systems. Considerable improvement can be realized by using graded-
index fibers for which intermodal dispersion limits the BL product to values given
by Eq. (2.1.11). The condition BL = 2c/(n 1∆2) is plotted in Fig. 5.4 and shows that
0.85-µm lightwave systems are loss-limited, rather than dispersion-limited, for bit rates
up to 100 Mb/s when graded-index fibers are used. The first generation of terrestrial
telecommunication systems took advantage of such an improvement and used graded-
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index fibers. The first commercial system became available in 1980 and operated at a
bit rate of 45 Mb/s with a repeater spacing of less than 10 km.

The second generation of lightwave systems used primarily single-mode fibers near
the minimum-dispersion wavelength occurring at about 1.31 µm. The most limiting
factor for such systems is dispersion-induced pulse broadening dominated by a rela-
tively large source spectral width. As discussed in Section 2.4.3, the BL product is then
limited by [see Eq. (2.4.26)]

BL ≤ (4|D|σλ )−1, (5.2.2)

where σλ is the root-mean-square (RMS) width of the source spectrum. The actual
value of |D| depends on how close the operating wavelength is to the zero-dispersion
wavelength of the fiber and is typically ∼1 ps/(km-nm). Figure 5.4 shows the dis-
persion limit for 1.3-µm lightwave systems by choosing |D|σ λ = 2 ps/km so that
BL ≤ 125 (Gb/s)-km. As seen there, such systems are generally loss-limited for bit
rates up to 1 Gb/s but become dispersion-limited at higher bit rates.

Third- and fourth-generation lightwave systems operate near 1.55 µm to take ad-
vantage of the smallest fiber losses occurring in this wavelength region. However, fiber
dispersion becomes a major problem for such systems since D ≈ 16 ps/(km-nm) near
1.55 µm for standard silica fibers. Semiconductor lasers operating in a single longitu-
dinal mode provide a solution to this problem. The ultimate limit is then given by [see
Eq. (2.4.30)]

B2L < (16|β2|)−1, (5.2.3)

where β2 is related to D as in Eq. (2.3.5). Figure 5.4 shows this limit by choosing
B2L = 4000 (Gb/s)2-km. As seen there, such 1.55-µm systems become dispersion-
limited only for B > 5 Gb/s. In practice, the frequency chirp imposed on the optical
pulse during direct modulation provides a much more severe limitation. The effect of
frequency chirp on system performance is discussed in Section 5.4.4. Qualitatively
speaking, the frequency chirp manifests through a broadening of the pulse spectrum.
If we use Eq. (5.2.2) with D = 16 ps/(km-nm) and σ λ = 0.1 nm, the BL product is
limited to 150 (Gb/s)-km. As a result, the frequency chirp limits the transmission dis-
tance to 75 km at B = 2 Gb/s, even though loss-limited distance exceeds 150 km. The
frequency-chirp problem is often solved by using an external modulator for systems
operating at bit rates >5 Gb/s.

A solution to the dispersion problem is offered by dispersion-shifted fibers for
which dispersion and loss both are minimum near 1.55 µm. Figure 5.4 shows the
improvement by using Eq. (5.2.3) with |β 2| = 2 ps2/km. Such systems can be operated
at 20 Gb/s with a repeater spacing of about 80 km. Further improvement is possible
by operating the lightwave system very close to the zero-dispersion wavelength, a task
that requires careful matching of the laser wavelength to the zero-dispersion wave-
length and is not always feasible because of variations in the dispersive properties of
the fiber along the transmission link. In practice, the frequency chirp makes it difficult
to achieve even the limit indicated in Fig. 5.4. By 1989, two laboratory experiments had
demonstrated transmission over 81 km at 11 Gb/s [19] and over 100 km at 10 Gb/s [20]
by using low-chirp semiconductor lasers together with dispersion-shifted fibers. The
triangles in Fig. 5.4 show that such systems operate quite close to the fundamental
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limits set by fiber dispersion. Transmission over longer distances requires the use of
dispersion-management techniques discussed in Chapter 7.

5.2.3 Power Budget

The purpose of the power budget is to ensure that enough power will reach the receiver
to maintain reliable performance during the entire system lifetime. The minimum aver-
age power required by the receiver is the receiver sensitivity P̄rec (see Section 4.4). The
average launch power P̄tr is generally known for any transmitter. The power budget
takes an especially simple form in decibel units with optical powers expressed in dBm
units (see Appendix A). More specifically,

P̄tr = P̄rec +CL + Ms, (5.2.4)

where CL is the total channel loss and Ms is the system margin. The purpose of system
margin is to allocate a certain amount of power to additional sources of power penalty
that may develop during system lifetime because of component degradation or other
unforeseen events. A system margin of 4–6 dB is typically allocated during the design
process.

The channel loss CL should take into account all possible sources of power loss,
including connector and splice losses. If α f is the fiber loss in decibels per kilometer,
CL can be written as

CL = α f L+ αcon + αsplice, (5.2.5)

where αcon and αsplice account for the connector and splice losses throughout the fiber
link. Sometimes splice loss is included within the specified loss of the fiber cable. The
connector loss αcon includes connectors at the transmitter and receiver ends but must
include other connectors if used within the fiber link.

Equations (5.2.4) and (5.2.5) can be used to estimate the maximum transmission
distance for a given choice of the components. As an illustration, consider the design
of a fiber link operating at 100 Mb/s and requiring a maximum transmission distance
of 8 km. As seen in Fig. 5.4, such a system can be designed to operate near 0.85 µm
provided that a graded-index multimode fiber is used for the optical cable. The op-
eration near 0.85 µm is desirable from the economic standpoint. Once the operating
wavelength is selected, a decision must be made about the appropriate transmitters and
receivers. The GaAs transmitter can use a semiconductor laser or an LED as an optical
source. Similarly, the receiver can be designed to use either a p–i–n or an avalanche
photodiode. Keeping the low cost in mind, let us choose a p–i–n receiver and assume
that it requires 2500 photons/bit on average to operate reliably with a BER below 10 −9.
Using the relation P̄rec = N̄phνB with N̄p = 2500 and B = 100 Mb/s, the receiver sensi-
tivity is given by P̄rec = −42 dBm. The average launch power for LED and laser-based
transmitters is typically 50 µW and 1 mW, respectively.

Table 5.1 shows the power budget for the two transmitters by assuming that the
splice loss is included within the cable loss. The transmission distance L is limited to
6 km in the case of LED-based transmitters. If the system specification is 8 km, a more
expensive laser-based transmitter must be used. The alternative is to use an avalanche
photodiode (APD) receiver. If the receiver sensitivity improves by more than 7 dB
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Table 5.1 Power budget of a 0.85-µm lightwave system

Quantity Symbol Laser LED
Transmitter power P̄tr 0 dBm −13 dBm
Receiver sensitivity P̄rec −42 dBm −42 dBm
System margin Ms 6 dB 6 dB
Available channel loss CL 36 dB 23 dB
Connector loss αcon 2 dB 2 dB
Fiber cable loss α f 3.5 dB/km 3.5 dB/km
Maximum fiber length L 9.7 km 6 km

when an APD is used in place of a p–i–n photodiode, the transmission distance can be
increased to 8 km even for an LED-based transmitter. Economic considerations would
then dictate the choice between the laser-based transmitters and APD receivers.

5.2.4 Rise-Time Budget

The purpose of the rise-time budget is to ensure that the system is able to operate prop-
erly at the intended bit rate. Even if the bandwidth of the individual system components
exceeds the bit rate, it is still possible that the total system may not be able to operate at
that bit rate. The concept of rise time is used to allocate the bandwidth among various
components. The rise time Tr of a linear system is defined as the time during which the
response increases from 10 to 90% of its final output value when the input is changed
abruptly. Figure 5.5 illustrates the concept graphically.

An inverse relationship exists between the bandwidth ∆ f and the rise time Tr as-
sociated with a linear system. This relationship can be understood by considering a
simple RC circuit as an example of the linear system. When the input voltage across an
RC circuit changes instantaneously from 0 to V0, the output voltage changes as

Vout(t) = V0[1− exp(−t/RC)], (5.2.6)

where R is the resistance and C is the capacitance of the RC circuit. The rise time is
found to be given by

Tr = (ln9)RC ≈ 2.2RC. (5.2.7)

Figure 5.5: Rise time Tr associated with a bandwidth-limited linear system.
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The transfer function H( f ) of the RC circuit is obtained by taking the Fourier transform
of Eq. (5.2.6) and is of the form

H( f ) = (1+ i2π f RC)−1. (5.2.8)

The bandwidth ∆ f of the RC circuit corresponds to the frequency at which |H( f )| 2 =
1/2 and is given by the well-known expression ∆ f = (2πRC)−1. By using Eq. (5.2.7),
∆ f and Tr are related as

Tr =
2.2

2π∆ f
=

0.35
∆ f

. (5.2.9)

The inverse relationship between the rise time and the bandwidth is expected to
hold for any linear system. However, the product Tr∆ f would generally be different
than 0.35. One can use Tr∆ f = 0.35 in the design of optical communication systems as
a conservative guideline. The relationship between the bandwidth ∆ f and the bit rate
B depends on the digital format. In the case of return-to-zero (RZ) format (see Section
1.2), ∆ f = B and BTr = 0.35. By contrast, ∆ f ≈ B/2 for the nonreturn-to-zero (NRZ)
format and BTr = 0.7. In both cases, the specified bit rate imposes an upper limit on the
maximum rise time that can be tolerated. The communication system must be designed
to ensure that Tr is below this maximum value, i.e.,

Tr ≤
{

0.35/B for RZ format,
0.70/B for NRZ format.

(5.2.10)

The three components of fiber-optic communication systems have individual rise
times. The total rise time of the whole system is related to the individual component
rise times approximately as [21]

T 2
r = T 2

tr + T 2
fiber + T 2

rec, (5.2.11)

where Ttr, Tfiber, and Trec are the rise times associated with the transmitter, fiber, and
receiver, respectively. The rise times of the transmitter and the receiver are generally
known to the system designer. The transmitter rise time Ttr is determined primarily by
the electronic components of the driving circuit and the electrical parasitics associated
with the optical source. Typically, Ttr is a few nanoseconds for LED-based transmitters
but can be shorter than 0.1 ns for laser-based transmitters. The receiver rise time T rec

is determined primarily by the 3-dB electrical bandwidth of the receiver front end.
Equation (5.2.9) can be used to estimate Trec if the front-end bandwidth is specified.

The fiber rise time Tfiber should in general include the contributions of both the
intermodal dispersion and group-velocity dispersion (GVD) through the relation

T 2
fiber = T 2

modal + T2
GVD. (5.2.12)

For single-mode fibers, Tmodal = 0 and Tfiber = TGVD. In principle, one can use the
concept of fiber bandwidth discussed in Section 2.4.4 and relate Tfiber to the 3-dB fiber
bandwidth f3dB through a relation similar to Eq. (5.2.9). In practice it is not easy
to calculate f3dB, especially in the case of modal dispersion. The reason is that a fiber
link consists of many concatenated fiber sections (typical length 5 km), which may have
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different dispersion characteristics. Furthermore, mode mixing occurring at splices and
connectors tends to average out the propagation delay associated with different modes
of a multimode fiber. A statistical approach is often necessary to estimate the fiber
bandwidth and the corresponding rise time [22]–[25].

In a phenomenological approach, Tmodal can be approximated by the time delay ∆T
given by Eq. (2.1.5) in the absence of mode mixing, i.e.,

Tmodal ≈ (n1∆/c)L, (5.2.13)

where n1 ≈ n2 was used. For graded-index fibers, Eq. (2.1.10) is used in place of Eq.
(2.1.5), resulting in Tmodal ≈ (n1∆2/8c)L. In both cases, the effect of mode mixing is
included by changing the linear dependence on L by a sublinear dependence L q, where
q has a value in the range 0.5–1, depending on the extent of mode mixing. A reasonable
estimate based on the experimental data is q = 0.7. The contribution TGVD can also be
approximated by ∆T given by Eq. (2.3.4), so that

TGVD ≈ |D|L∆λ , (5.2.14)

where ∆λ is the spectral width of the optical source (taken as a full width at half
maximum). The dispersion parameter D may change along the fiber link if different
sections have different dispersion characteristics; an average value should be used in
Eq. (5.2.14) in that case.

As an illustration of the rise-time budget, consider a 1.3-µm lightwave system de-
signed to operate at 1 Gb/s over a single-mode fiber with a repeater spacing of 50 km.
The rise times for the transmitter and the receiver have been specified as Ttr = 0.25 ns
and Trec = 0.35 ns. The source spectral width is specified as ∆λ = 3 nm, whereas the
average value of D is 2 ps/(km-nm) at the operating wavelength. From Eq. (5.2.14),
TGVD = 0.3 ns for a link length L = 50 km. Modal dispersion does not occur in single-
mode fibers. Hence Tmodal = 0 and Tfiber = 0.3 ns. The system rise time is estimated by
using Eq. (5.2.11) and is found to be Tr = 0.524 ns. The use of Eq. (5.2.10) indicates
that such a system cannot be operated at 1 Gb/s when the RZ format is employed for
the optical bit stream. However, it would operate properly if digital format is changed
to the NRZ format. If the use of RZ format is a prerequisite, the designer must choose
different transmitters and receivers to meet the rise-time budget requirement. The NRZ
format is often used as it permits a larger system rise time at the same bit rate.

5.3 Long-Haul Systems

With the advent of optical amplifiers, fiber losses can be compensated by inserting
amplifiers periodically along a long-haul fiber link (see Fig. 5.1). At the same time,
the effects of fiber dispersion (GVD) can be reduced by using dispersion management
(see Chapter 7). Since neither the fiber loss nor the GVD is then a limiting factor, one
may ask how many in-line amplifiers can be cascaded in series, and what limits the
total link length. This topic is covered in Chapter 6 in the context of erbium-doped
fiber amplifiers. Here we focus on the factors that limit the performance of amplified
fiber links and provide a few design guidelines. The section also outlines the progress
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realized in the development of terrestrial and undersea lightwave systems since 1977
when the first field trial was completed.

5.3.1 Performance-Limiting Factors

The most important consideration in designing a periodically amplified fiber link is re-
lated to the nonlinear effects occurring inside all optical fibers [26] (see Section 2.6).
For single-channel lightwave systems, the dominant nonlinear phenomenon that limits
the system performance is self-phase modulation (SPM). When optoelectronic regen-
erators are used, the SPM effects accumulate only over one repeater spacing (typically
<100 km) and are of little concern if the launch power satisfies Eq. (2.6.15) or the con-
dition Pin � 22 mW when NA = 1. In contrast, the SPM effects accumulate over long
lengths (∼1000 km) when in-line amplifiers are used periodically for loss compensa-
tion. A rough estimate of the limitation imposed by the SPM is again obtained from
Eq. (2.6.15). This equation predicts that the peak power should be below 2.2 mW for
10 cascaded amplifiers when the nonlinear parameter γ = 2 W−1/km. The condition on
the average power depends on the modulation format and the shape of optical pulses.
It is nonetheless clear that the average power should be reduced to below 1 mW for
SPM effects to remain negligible for a lightwave system designed to operate over a
distance of more than 1000 km. The limiting value of the average power also depends
on the type of fiber in which light is propagating through the effective core area Aeff.
The SPM effects are most dominant inside dispersion-compensating fibers for which
Aeff is typically close to 20 µm2.

The forgoing discussion of the SPM-induced limitations is too simplistic to be ac-
curate since it completely ignores the role of fiber dispersion. In fact, as the dispersive
and nonlinear effects act on the optical signal simultaneously, their mutual interplay
becomes quite important [26]. The effect of SPM on pulses propagating inside an
optical fiber can be included by using the nonlinear Schrödinger (NLS) equation of
Section 2.6. This equation is of the form [see Eq. (2.6.18)]

∂A
∂ z

+
iβ2

2
∂ 2A
∂ t2 = −α

2
A+ iγ|A|2A, (5.3.1)

where fiber losses are included through the α term. This term can also include periodic
amplification of the signal by treating α as a function of z. The NLS equation is used
routinely for designing modern lightwave systems.

Because of the nonlinear nature of Eq. (5.3.1), it should be solved numerically
in general. A numerical approach has indeed been adopted (see Appendix E) since
the early 1990s for quantifying the impact of SPM on the performance of long-haul
lightwave systems [27]–[35]. The use of a large-effective-area fiber (LEAF) helps by
reducing the nonlinear parameter γ defined as γ = 2πn 2/(λ Aeff). Appropriate chirping
of input pulses can also be beneficial for reducing the SPM effects. This feature has led
to the adoption of a new modulation format known as the chirped RZ or CRZ format.
Numerical simulations show that, in general, the launch power must be optimized to
a value that depends on many design parameters such as the bit rate, total link length,
and amplifier spacing. In one study, the optimum launch power was found to be about
1 mW for a 5-Gb/s signal transmitted over 9000 km with 40-km amplifier spacing [31].
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The combined effects of GVD and SPM also depend on the sign of the dispersion
parameter β2. In the case of anomalous dispersion (β2 < 0), the nonlinear phenomenon
of modulation instability [26] can affect the system performance drastically [32]. This
problem can be overcome by using a combination of fibers with normal and anomalous
GVD such that the average dispersion over the entire fiber link is “normal.” However, a
new kind of modulation instability, referred to as sideband instability [36], can occur in
both the normal and anomalous GVD regions. It has its origin in the periodic variation
of the signal power along the fiber link when equally spaced optical amplifiers are
used to compensate for fiber losses. Since the quantity γ|A|2 in Eq. (5.3.1) is then a
periodic function of z, the resulting nonlinear-index grating can initiate a four-wave-
mixing process that generates sidebands in the signal spectrum. It can be avoided by
making the amplifier spacing nonuniform.

Another factor that plays a crucial role is the noise added by optical amplifiers.
Similar to the case of electronic amplifiers (see Section 4.4), the noise of optical ampli-
fiers is quantified through an amplifier noise figure Fn (see Chapter 6). The nonlinear
interaction between the amplified spontaneous emission and the signal can lead to a
large spectral broadening through the nonlinear phenomena such as cross-phase modu-
lation and four-wave mixing [37]. Because the noise has a much larger bandwidth than
the signal, its impact can be reduced by using optical filters. Numerical simulations in-
deed show a considerable improvement when optical filters are used after every in-line
amplifier [31].

The polarization effects that are totally negligible in the traditional “nonamplified”
lightwave systems become of concern for long-haul systems with in-line amplifiers.
The polarization-mode dispersion (PMD) issue has been discussed in Section 2.3.5.
In addition to PMD, optical amplifiers can also induce polarization-dependent gain
and loss [30]. Although the PMD effects must be considered during system design,
their impact depends on the design parameters such as the bit rate and the transmission
distance. For bit rates as high as 10-Gb/s, the PMD effects can be reduced to an accept-
able level with a proper design. However, PMD becomes of major concern for 40-Gb/s
systems for which the bit slot is only 25 ps wide. The use of a PMD-compensation
technique appears to be necessary at such high bit rates.

The fourth generation of lightwave systems began in 1995 when lightwave systems
employing amplifiers first became available commercially. Of course, the laboratory
demonstrations began as early as 1989. Many experiments used a recirculating fiber
loop to demonstrate system feasibility as it was not practical to use long lengths of fiber
in a laboratory setting. Already in 1991, an experiment showed the possibility of data
transmission over 21,000 km at 2.5 Gb/s, and over 14,300 km at 5 Gb/s, by using the
recirculating-loop configuration [38]. In a system trial carried out in 1995 by using
actual submarine cables and repeaters [39], a 5.3-Gb/s signal was transmitted over
11,300 km with 60 km of amplifier spacing. This system trial led to the deployment of
a commercial transpacific cable (TPC–5) that began operating in 1996.

The bit rate of fourth-generation systems was extended to 10 Gb/s beginning in
1992. As early as 1995, a 10-Gb/s signal was transmitted over 6480 km with 90-km
amplifier spacing [40]. With a further increase in the distance, the SNR decreased
below the value needed to maintain the BER below 10−9. One may think that the per-
formance should improve by operating close to the zero-dispersion wavelength of the
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Table 5.2 Terrestrial lightwave systems

System Year λ B L Voice
(µm) (Mb/s) (km) Channels

FT–3 1980 0.85 45 < 10 672
FT–3C 1983 0.85 90 < 15 1,344
FT–3X 1984 1.30 180 < 25 2,688
FT–G 1985 1.30 417 < 40 6,048
FT–G-1.7 1987 1.30 1,668 < 46 24,192
STM–16 1991 1.55 2,488 < 85 32,256
STM–64 1996 1.55 9,953 < 90 129,024
STM–256 2002 1.55 39,813 < 90 516,096

fiber. However, an experiment, performed under such conditions, achieved a distance
of only 6000 km at 10 Gb/s even with 40-km amplifier spacing [41], and the situa-
tion became worse when the RZ modulation format was used. Starting in 1999, the
single-channel bit rate was pushed toward 40 Gb/s in several experiments [42]–[44].
The design of 40-Gb/s lightwave systems requires the use of several new ideas in-
cluding the CRZ format, dispersion management with GVD-slope compensation, and
distributed Raman amplification. Even then, the combined effects of the higher-order
dispersion, PMD, and SPM degrade the system performance considerably at a bit rate
of 40 Gb/s.

5.3.2 Terrestrial Lightwave Systems

An important application of fiber-optic communication links is for enhancing the ca-
pacity of telecommunication networks worldwide. Indeed, it is this application that
started the field of optical fiber communications in 1977 and has propelled it since then
by demanding systems with higher and higher capacities. Here we focus on the status
of commercial systems by considering the terrestrial and undersea systems separately.

After a successful Chicago field trial in 1977, terrestrial lightwave systems be-
came available commercially beginning in 1980 [45]–[47]. Table 5.2 lists the operating
characteristics of several terrestrial systems developed since then. The first-generation
systems operated near 0.85 µm and used multimode graded-index fibers as the trans-
mission medium. As seen in Fig. 5.4, the BL product of such systems is limited to
2 (Gb/s)-km. A commercial lightwave system (FT–3C) operating at 90 Mb/s with a re-
peater spacing of about 12 km realized a BL product of nearly 1 (Gb/s)-km; it is shown
by a filled circle in Fig. 5.4. The operating wavelength moved to 1.3 µm in second-
generation lightwave systems to take advantage of low fiber losses and low dispersion
near this wavelength. The BL product of 1.3-µm lightwave systems is limited to about
100 (Gb/s)-km when a multimode semiconductor laser is used inside the transmitter. In
1987, a commercial 1.3-µm lightwave system provided data transmission at 1.7 Gb/s
with a repeater spacing of about 45 km. A filled circle in Fig. 5.4 shows that this system
operates quite close to the dispersion limit.
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The third generation of lightwave systems became available commercially in 1991.
They operate near 1.55 µm at bit rates in excess of 2 Gb/s, typically at 2.488 Gb/s,
corresponding to the OC-48 level of the synchronized optical network (SONET) [or the
STS–16 level of the synchronous digital hierarchy (SDH)] specifications. The switch
to the 1.55-µm wavelength helps to increase the loss-limited transmission distance to
more than 100 km because of fiber losses of less than 0.25 dB/km in this wavelength
region. However, the repeater spacing was limited to below 100 km because of the
high GVD of standard telecommunication fibers. In fact, the deployment of third-
generation lightwave systems was possible only after the development of distributed
feedback (DFB) semiconductor lasers, which reduce the impact of fiber dispersion by
reducing the source spectral width to below 100 MHz (see Section 2.4).

The fourth generation of lightwave systems appeared around 1996. Such systems
operate in the 1.55-µm region at a bit rate as high as 40 Gb/s by using dispersion-
shifted fibers in combination with optical amplifiers. However, more than 50 million
kilometers of the standard telecommunication fiber is already installed in the world-
wide telephone network. Economic reasons dictate that the fourth generation of light-
wave systems make use of this existing base. Two approaches are being used to solve
the dispersion problem. First, several dispersion-management schemes (discussed in
Chapter 7) make it possible to extend the bit rate to 10 Gb/s while maintaining an am-
plifier spacing of up to 100 km. Second, several 10-Gb/s signals can be transmitted
simultaneously by using the WDM technique discussed in Chapter 8. Moreover, if
the WDM technique is combined with dispersion management, the total transmission
distance can approach several thousand kilometers provided that fiber losses are com-
pensated periodically by using optical amplifiers. Such WDM lightwave systems were
deployed commercially worldwide beginning in 1996 and allowed a system capacity
of 1.6 Tb/s by 2000 for the 160-channel commercial WDM systems.

The fifth generation of lightwave systems was just beginning to emerge in 2001.
The bit rate of each channel in this generation of WDM systems is 40 Gb/s (correspond-
ing to the STM-256 or OC-768 level). Several new techniques developed in recent
years make it possible to transmit a 40-Gb/s optical signal over long distances. New
fibers known as reverse-dispersion fibers have been developed with a negative GVD
slope. Their use in combination with tunable dispersion-compensating techniques can
compensate the GVD for all channels simultaneously. The PMD compensators help to
reduce the PMD-induced degradation of the signal. The use of Raman amplification
helps to reduce the noise and improves the signal-to-noise ratio (SNR) at the receiver.
The use of a forward-error-correction technique helps to increase the transmission dis-
tance by reducing the required SNR. The number of WDM channels can be increased
by using the L and S bands located on the long- and short-wavelength sides of the
conventional C band occupying the 1530–1570-nm spectral region. In one 3-Tb/s ex-
periment, 77 channels, each operating at 42.7-Gb/s, were transmitted over 1200 km
by using the C and L bands simultaneously [48]. In another experiment, the system
capacity was extended to 10.2 Tb/s by transmitting 256 channels over 100 km at 42.7
Gb/s per channel using only the C and L bands, resulting in a spectral efficiency of
1.28 (b/s)/Hz [49]. The bit rate was 42.7 Gb/s in both of these experiments because
of the overhead associated with the forward-error-correction technique. The highest
capacity achieved in 2001 was 11 Tb/s and was realized by transmitting 273 channels
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Table 5.3 Commercial transatlantic lightwave systems

System Year Capacity L Comments
(Gb/s) (km)

TAT–8 1988 0.28 70 1.3 µm, multimode lasers
TAT–9 1991 0.56 80 1.55 µm, DFB lasers
TAT–10/11 1993 0.56 80 1.55 µm, DFB lasers
TAT–12/13 1996 5.00 50 1.55 µm, optical amplifiers
AC–1 1998 80.0 50 1.55 µm, WDM with amplifiers
TAT–14 2001 1280 50 1.55 µm, dense WDM
AC–2 2001 1280 50 1.55 µm, dense WDM
360Atlantic-1 2001 1920 50 1.55 µm, dense WDM
Tycom 2001 2560 50 1.55 µm, dense WDM
FLAG Atlantic-1 2001 4800 50 1.55 µm, dense WDM

over 117 km at 40 Gb/s per channel while using all three bands simultaneously [50].

5.3.3 Undersea Lightwave Systems

Undersea or submarine transmission systems are used for intercontinental communi-
cations and are capable of providing a network spanning the whole earth [51]–[53].
Figure 1.5 shows several undersea systems deployed worldwide. Reliability is of ma-
jor concern for such systems as repairs are expensive. Generally, undersea systems are
designed for a 25-year service life, with at most three failures during operation. Ta-
ble 5.3 lists the main characteristics of several transatlantic fiber-optic cable systems.
The first undersea fiber-optic cable (TAT–8) was a second-generation system. It was
installed in 1988 in the Atlantic Ocean for operation at a bit rate of 280 Mb/s with a re-
peater spacing of up to 70 km. The system design was on the conservative side, mainly
to ensure reliability. The same technology was used for the first transpacific lightwave
system (TPC–3), which became operational in 1989.

By 1990 the third-generation lightwave systems had been developed. The TAT–
9 submarine system used this technology in 1991; it was designed to operate near
1.55 µm at a bit rate of 560 Mb/s with a repeater spacing of about 80 km. The increas-
ing traffic across the Atlantic Ocean led to the deployment of the TAT–10 and TAT–11
lightwave systems by 1993 with the same technology. The advent of optical amplifiers
prompted their use in the next generation of undersea systems, and the TAT–12 sub-
marine fiber-optic cable became operational by 1996. This fourth-generation system
employed optical amplifiers in place of optoelectronic regenerators and operated at a bit
rate of 5.3 Gb/s with an amplifier spacing of about 50 km. The bit rate is slightly larger
than the STM-32-level bit rate of 5 Gb/s because of the overhead associated with the
forward-error-correction technique. As discussed earlier, the design of such lightwave
systems is much more complex than that of previous undersea systems because of the
cumulative effects of fiber dispersion and nonlinearity, which must be controlled over
long distances. The transmitter power and the dispersion profile along the link must be
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optimized to combat such effects. Even then, amplifier spacing is typically limited to
50 km, and the use of an error-correction scheme is essential to ensure a bit-error rate
of < 2×10−11.

A second category of undersea lightwave systems requires repeaterless transmis-
sion over several hundred kilometers [52]. Such systems are used for interisland com-
munication or for looping a shoreline such that the signal is regenerated on the shore
periodically after a few hundred kilometers of undersea transmission. The dispersive
and nonlinear effects are of less concern for such systems than for transoceanic light-
wave systems, but fiber losses become a major issue. The reason is easily appreciated
by noting that the cable loss exceeds 100 dB over a distance of 500 km even under the
best operating conditions. In the 1990s several laboratory experiments demonstrated
repeaterless transmission at 2.5 Gb/s over more than 500 km by using two in-line am-
plifiers that were pumped remotely from the transmitter and receiver ends with high-
power pump lasers. Another amplifier at the transmitter boosted the launched power to
close to 100 mW.

Such high input powers exceed the threshold level for stimulated Brillouin scatter-
ing (SBS), a nonlinear phenomenon discussed in Section 2.6. The suppression of SBS
is often realized by modulating the phase of the optical carrier such that the carrier
linewidth is broadened to 200 MHz or more from its initial value of <10 MHz [54].
Directly modulated DFB lasers can also be used for this purpose. In a 1996 experi-
ment. a 2.5-Gb/s signal was transmitted over 465 km by direct modulation of a DFB
laser [55]. Chirping of the modulated signal broadened the spectrum enough that an
external phase modulator was not required provided that the launched power was kept
below 100 mW. The bit rate of repeaterless undersea systems can be increased to
10 Gb/s by employing the same techniques used at 2.5 Gb/s. In a 1996 experiment [56],
the 10-Gb/s signal was transmitted over 442 km by using two remotely pumped in-line
amplifiers. Two external modulators were used, one for SBS suppression and another
for signal generation. In a 1998 experiment, a 40-Gb/s signal was transmitted over
240 km using the RZ format and an alternating polarization format [57]. These results
indicate that undersea lightwave systems looping a shoreline can operate at 10 Gb/s or
more with only shore-based electronics [58].

The use of the WDM technique in combination with optical amplifiers, dispersion
management, and error correction has revolutionized the design of submarine fiber-
optic systems. In 1998, a submarine cable known as Atlantic-Crossing 1 (AC–1) with
a capacity of 80 Gb/s was deployed using the WDM technology. An identically de-
signed system (Pacific-Crossing 1 or PC–1) crossed the Pacific Ocean. The use of
dense WDM, in combination with multiple fiber pairs per cable, resulted in systems
with much larger capacities. By 2001, several systems with a capacity of >1 Tb/s be-
came operational across the Atlantic Ocean (see Table 5.3). These systems employ a
ring configuration and cross the Atlantic Ocean twice to ensure fault tolerance. The
“360Atlantic” submarine system can operate at speeds up to 1.92 Tb/s and spans a
total distance of 11,700 km. Another system, known as FLAG Atlantic-1, is capable
of carrying traffic at speeds up to 4.8 Tb/s as it employs six fiber pairs. A global net-
work, spanning 250,000 km and capable of operating at 3.2 Tb/s using 80 channels (at
10 Gb/s) over 4 fibers, was under development in 2001 [53]. Such a submarine network
can transmit nearly 40 million voice channels simultaneously, a capacity that should be
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contrasted with the TAT–8 capacity of 8000 channels in 1988, which in turn should be
compared to the 48-channel capacity of TAT–1 in 1959.

5.4 Sources of Power Penalty

The sensitivity of the optical receiver in a realistic lightwave system is affected by
several physical phenomena which, in combination with fiber dispersion, degrade the
SNR at the decision circuit. Among the phenomena that degrade the receiver sensitivity
are modal noise, dispersion broadening and intersymbol interference, mode-partition
noise, frequency chirp, and reflection feedback. In this section we discuss how the
system performance is affected by fiber dispersion by considering the extent of power
penalty resulting from these phenomena.

5.4.1 Modal Noise

Modal noise is associated with multimode fibers and was studied extensively during the
1980s [59]–[72]. Its origin can be understood as follows. Interference among various
propagating modes in a multimode fiber creates a speckle pattern at the photodetector.
The nonuniform intensity distribution associated with the speckle pattern is harmless
in itself, as the receiver performance is governed by the total power integrated over
the detector area. However, if the speckle pattern fluctuates with time, it will lead to
fluctuations in the received power that would degrade the SNR. Such fluctuations are
referred to as modal noise. They invariably occur in multimode fiber links because
of mechanical disturbances such as vibrations and microbends. In addition, splices
and connectors act as spatial filters. Any temporal changes in spatial filtering translate
into speckle fluctuations and enhancement of the modal noise. Modal noise is strongly
affected by the source spectral bandwidth ∆ν since mode interference occurs only if
the coherence time (Tc ≈ 1/∆ν) is longer than the intermodal delay time ∆T given by
Eq. (2.1.5). For LED-based transmitters ∆ν is large enough (∆ν ∼ 5 THz) that this
condition is not satisfied. Most lightwave systems that use multimode fibers also use
LEDs to avoid the modal-noise problem.

Modal noise becomes a serious problem when semiconductor lasers are used in
combination with multimode fibers. Attempts have been made to estimate the extent
of sensitivity degradation induced by modal noise [61]–[63] by calculating the BER
after adding modal noise to the other sources of receiver noise. Figure 5.6 shows the
power penalty at a BER of 10−12 calculated for a 1.3-µm lightwave system operating at
140 Mb/s. The graded-index fiber has a 50-µm core diameter and supports 146 modes.
The power penalty depends on the mode-selective coupling loss occurring at splices
and connectors. It also depends on the longitudinal-mode spectrum of the semiconduc-
tor laser. As expected, power penalty decreases as the number of longitudinal modes
increases because of a reduction in the coherence time of the emitted light.

Modal noise can also occur in single-mode systems if short sections of fiber are
installed between two connectors or splices during repair or normal maintenance [63]–
[66]. A higher-order mode can be excited at the fiber discontinuity occurring at the
first splice and then converted back to the fundamental mode at the second connector
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Figure 5.6: Modal-noise power penalty versus mode-selective loss. The parameter M is defined
as the total number of longitudinal modes whose power exceeds 10% of the peak power. (After
Ref. [61]; c©1986 IEEE; reprinted with permission.)

or splice. Since a higher-order mode cannot propagate far from its excitation point, this
problem can be avoided by ensuring that the spacing between two connectors or splices
exceeds 2 m. Generally speaking, modal noise is not a problem for properly designed
and maintained single-mode fiber-optic communication systems.

With the development of the vertical-cavity surface-emitting laser (VCSEL), the
modal-noise issue has resurfaced in recent years [67]–[71]. The use of such lasers in
short-haul optical data links, making use of multimode fibers (even those made of plas-
tic), is of considerable interest because of the high bandwidth associated with VCSELs.
Indeed, rates of several gigabits per second have been demonstrated in laboratory ex-
periments with plastic-cladded multimode fibers [73]. However, VCSELs have a long
coherence length as they oscillate in a single longitudinal mode. In a 1994 experi-
ment the BER measurements showed an error floor at a level of 10−7 even when the
mode-selective loss was only 1 dB [68]. This problem can be avoided to some extent
by using larger-diameter VCSELs which oscillate in several transverse modes and thus
have a shorter coherence length. Computer models are generally used to estimate the
power penalty for optical data links under realistic operating conditions [70]. Analytic
tools such as the saddle-point method can also provide a reasonable estimate of the
BER [71].
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5.4.2 Dispersive Pulse Broadening

The use of single-mode fibers for lightwave systems nearly avoids the problem of inter-
modal dispersion and the associated modal noise. The group-velocity dispersion still
limits the bit rate–distance product BL by broadening optical pulses beyond their allo-
cated bit slot; Eq. (5.2.2) provides the limiting BL product and shows how it depends on
the source spectral width σλ . Dispersion-induced pulse broadening can also decrease
the receiver sensitivity. In this subsection we discuss the power penalty associated with
such a decrease in receiver sensitivity.

Dispersion-induced pulse broadening affects the receiver performance in two ways.
First, a part of the pulse energy spreads beyond the allocated bit slot and leads to
intersymbol interference (ISI). In practice, the system is designed to minimize the effect
of ISI (see Section 4.3.2). Second, the pulse energy within the bit slot is reduced when
the optical pulse broadens. Such a decrease in the pulse energy reduces the SNR at
the decision circuit. Since the SNR should remain constant to maintain the system
performance, the receiver requires more average power. This is the origin of dispersion-
induced power penalty δd . An exact calculation of δd is difficult, as it depends on
many details, such as the extent of pulse shaping at the receiver. A rough estimate
is obtained by following the analysis of Section 2.4.2, where broadening of Gaussian
pulses is discussed. Equation (2.4.16) shows that the optical pulse remains Gaussian,
but its peak power is reduced by a pulse-broadening factor given by Eq. (2.4.17). If we
define the power penalty δd as the increase (in dB) in the received power that would
compensate the peak-power reduction, δd is given by

δd = 10 log10 fb, (5.4.1)

where fb is the pulse broadening factor. When pulse broadening is due mainly to a wide
source spectrum at the transmitter, the broadening factor f b is given by Eq. (2.4.24),
i.e.,

fb = σ/σ0 = [1+(DLσλ/σ0)2]1/2, (5.4.2)

where σ0 is the RMS width of the optical pulse at the fiber input and σλ is the RMS
width of the source spectrum assumed to be Gaussian.

Equations (5.4.1) and (5.4.2) can be used to estimate the dispersion penalty for
lightwave systems that use single-mode fiber together with a multimode laser or an
LED. The ISI is minimized when the bit rate B is such that 4Bσ ≤ 1, as little pulse
energy spreads beyond the bit slot (TB = 1/B). By using σ = (4B)−1, Eq. (5.4.2) can
be written as

f 2
b = 1+(4BLDσλ fb)2. (5.4.3)

By solving this equation for fb and substituting it in Eq. (5.4.1), the power penalty is
given by

δd = −5 log10[1− (4BLDσλ )2]. (5.4.4)

Figure 5.7 shows the power penalty as a function of the dimensionless parameter
combination BLDσλ . Although the power penalty is negligible (δd = 0.38 dB) for
BLDσλ = 0.1, it increases to 2.2 dB when BLDσλ = 0.2 and becomes infinite when
BLDσλ = 0.25. The BL product, shown in Fig. 5.4, is truly limiting, since receiver
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Figure 5.7: Dispersion-induced power penalty for a Gaussian pulse as a function of BLDσλ .
Source spectrum is also assumed to be Gaussian with an RMS width σλ .

sensitivity degrades severely when a system is designed to approach it. Most lightwave
systems are designed such that BLDσλ < 0.2, so that the dispersion penalty is below
2 dB. It should be stressed that Eq. (5.4.4) provides a rough estimate only as its deriva-
tion is based on several simplifying assumptions, such as a Gaussian pulse shape and
a Gaussian source spectrum. These assumptions are not always satisfied in practice.
Moreover, it is based on the condition 4Bσ = 1, so that the pulse remains nearly con-
fined within the bit slot. It is possible to design a system such that the pulse spreads
outside the bit slot but ISI is reduced through pulse shaping at the receiver.

5.4.3 Mode-Partition Noise

As discussed in Section 3.5.4, multimode semiconductor lasers exhibit mode-partition
noise (MPN), a phenomenon occurring because of an anticorrelation among pairs of
longitudinal modes. In particular, various longitudinal modes fluctuate in such a way
that individual modes exhibit large intensity fluctuations even though the total intensity
remains relatively constant. MPN would be harmless in the absence of fiber disper-
sion, as all modes would remain synchronized during transmission and detection. In
practice, different modes become unsynchronized, since they travel at slightly differ-
ent speeds inside the fiber because of group-velocity dispersion. As a result of such
desynchronization, the receiver current exhibits additional fluctuations, and the SNR
at the decision circuit becomes worse than that expected in the absence of MPN. A
power penalty must be paid to improve the SNR to the same value that is necessary to
achieve the required BER (see Section 4.5). The effect of MPN on system performance
has been studied extensively for both multimode semiconductor lasers [74]–[83] and
nearly single-mode lasers [84]–[98].
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In the case of multimode semiconductor lasers, the power penalty can be calculated
by following an approach similar to that of Section 4.6.2 and is given by [74]

δmpn = −5 log10(1−Q2r2
mpn), (5.4.5)

where rmpn is the relative noise level of the received power in the presence of MPN.
A simple model for estimating the parameter rmpn assumes that laser modes fluctuate
in such a way that the total power remains constant under CW operation [75]. It also
assumes that the average mode power is distributed according to a Gaussian distribution
of RMS width σλ and that the pulse shape at the decision circuit of the receiver is
described by a cosine function [74]. Different laser modes are assumed to have the
same cross-correlation coefficient γcc, i.e.,

γcc =
〈PiPj〉
〈Pi〉〈Pj〉 (5.4.6)

for all i and j such that i �= j. The angular brackets denote an average over power
fluctuations associated with mode partitioning. A straightforward calculation shows
that rmpn is given by [78]

rmpn = (k/
√

2){1− exp[−(πBLDσλ )2]}, (5.4.7)

where the mode-partition coefficient k is related to γcc as k =
√

1− γcc. The model
assumes that mode partition can be quantified in terms of a single parameter k with
values in the range 0–1. The numerical value of k is difficult to estimate and is likely
to vary from laser to laser. Experimental measurements suggest that the values of k are
in the range 0.6–0.8 and vary for different mode pairs [75], [80].

Equations (5.4.5) and (5.4.7) can be used to calculate the MPN-induced power
penalty. Figure 5.8 shows the power penalty at a BER of 10−9 (Q = 6) as a function of
the normalized dispersion parameter BLDσλ for several values of the mode-partition
coefficient k. For a given value of k, the variation of power penalty is similar to that
shown in Fig. 5.7; δmpn increases rapidly with an increase in BLDσλ and becomes
infinite when BLDσλ reaches a critical value. For k > 0.5, the MPN-induced power
penalty is larger than the penalty occurring due to dispersion-induced pulse broaden-
ing (see Fig. 5.7). However, it can be reduced to a negligible level (δ mpn < 0.5 dB) by
designing the optical communication system such that BLDσλ < 0.1. As an example,
consider a 1.3-µm lightwave system. If we assume that the operating wavelength is
matched to the zero-dispersion wavelength to within 10 nm, D ≈ 1 ps/(km-nm). A
typical value of σλ for multimode semiconductor lasers is 2 nm. The MPN-induced
power penalty would be negligible if the BL product were below 50 (Gb/s)-km. At
B = 2 Gb/s the transmission distance is then limited to 25 km. The situation becomes
worse for 1.55-µm lightwave systems for which D ≈ 16 ps/(km-nm) unless dispersion-
shifted fibers are used. In general, the MPN-induced power penalty is quite sensitive
to the spectral bandwidth of the multimode laser and can be reduced by reducing the
bandwidth. In one study [83], a reduction in the carrier lifetime from 340 to 130 ps,
realized by p-doping of the active layer, reduced the bandwidth of 1.3-µm semicon-
ductor lasers by only 40% (from 5.6 to 3.4 nm), but the power penalty decreased from
an infinite value (BER floor above 10−9 level) to a mere 0.5 dB.
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Figure 5.8: MPN-induced Power penalty versus BLDσλ for a multimode semiconductor laser
of RMS spectral width σλ . Different curves correspond to different values of the mode-partition
coefficient k.

One may think that MPN can be avoided completely by using DFB lasers designed
to oscillate in a single longitudinal mode. Unfortunately, this is not necessarily the
case [88]–[91]. The reason is that the main mode of any DFB laser is accompanied
by several side modes of much smaller amplitudes. The single-mode nature of DFB
lasers is quantified through the mode-suppression ratio (MSR), defined as the ratio of
the main-mode power Pm to the power Ps of the most dominant side mode. Clearly,
the effect of MPN on system performance would depend on the MSR. Attempts have
therefore been made to estimate the dependence of the MPN-induced power penalty on
the MSR [84]–[98].

A major difference between the multimode and nearly single-mode semiconduc-
tor lasers is related to the statistics associated with mode-partition fluctuations. In a
multimode laser, both main and side modes are above threshold and their fluctuations
are well described by a Gaussian probability density function. By contrast, side modes
in a DFB semiconductor laser are typically below threshold, and the optical power
associated with them follows an exponential distribution given by [84]

p(Ps) = P̄−1
s exp[−(Ps/P̄s)], (5.4.8)

where P̄s is the average value of the random variable Ps.
The effect of side-mode fluctuations on system performance can be appreciated

by considering an ideal receiver. Let us assume that the relative delay ∆T = DL∆λ
between the main and side modes is large enough that the side mode appears outside
the bit slot (i.e., ∆T > 1/B or BLD∆λL > 1, where ∆λL is the mode spacing). The
decision circuit of the receiver would make an error for 0 bits if the side-mode power Ps

were to exceed the decision threshold set at P̄m/2, where P̄m is the average main-mode
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power. Furthermore, the two modes are anticorrelated in such a way that the main-
mode power drops below P̄m/2 whenever side-mode power exceeds P̄m/2, so that the
total power remains nearly constant [85]. Thus, an error would occur even for “1” bits
whenever Ps > P̄m/2. Since the two terms in Eq. (4.5.2) make equal contributions, the
BER is given by [84]

BER =
∫ ∞

P̄m/2
p(Ps)dPs = exp

(
− P̄m

2P̄s

)
= exp

(
−Rms

2

)
. (5.4.9)

The BER depends on the MSR defined as Rms = P̄m/P̄s and exceeds 10−9 when MSR <
42.

To calculate the MPN-induced power penalty in the presence of receiver noise,
one should follow the analysis in Section 4.5.1 and add an additional noise term that
accounts for side-mode fluctuations. For a p–i–n receiver the BER is found to be [85]

BER =
1
2

erfc

(
Q√

2

)
+ exp

(
−Rms

2
+

R2
ms

4Q2

)[
1− 1

2
erfc

(
Q√

2
− Rms

Q
√

2

)]
, (5.4.10)

where the parameter Q is defined by Eq. (4.5.10). In the limit of an infinite MSR, Eq.
(5.4.10) reduces to Eq. (4.5.9). For a noise-free receiver (Q = ∞), Eq. (5.4.10) reduces
to Eq. (5.4.9). Figure 5.9 shows the BER versus the power penalty at a BER of 10 −9 as
a function of MSR. As expected, the power penalty becomes infinite for MSR values
below 42, since the 10−9 BER cannot be realized irrespective of the power received.
The penalty can be reduced to a negligible level (<0.1 dB) for MSR values in excess
of 100 (20 dB).

The experimental measurements of the BER in several transmission experiments
show that a BER floor above the 10−9 level can occur even for DFB lasers which ex-
hibit a MSR in excess of 30 dB under continuous-wave (CW) operation [88]–[91].
The reason behind the failure of apparently good lasers is related to the possibility of
side-mode excitation under transient conditions occurring when the laser is repeatedly
turned on and off to generate the bit stream. When the laser is biased below threshold
and modulated at a high bit rate (B ≥ 1 Gb/s), the probability of side-mode excitation
above P̄m/2 is much higher than that predicted by Eq. (5.4.8). Considerable atten-
tion has been paid to calculate, both analytically and numerically, the probability of
the transient excitation of side modes and its dependence on various device parame-
ters [87]–[98]. An important device parameter is found to be the gain margin between
the main and side modes. The gain margin should exceed a critical value which de-
pends on the bit rate. The critical value is about 5–6 cm−1 at 500 Mb/s [88] but can
exceed 15 cm−1 at high bit rates, depending on the bias and modulation currents [93].
The bias current plays a critical role. Numerical simulations show that the best perfor-
mance is achieved when the DFB laser is biased close to but slightly below threshold
to avoid the bit-pattern effects [98]. Moreover, the effects of MPN are independent of
the bit rate as long as the gain margin exceeds a certain value. The required value of
gain margin exceeds 25 cm−1 for the 5-GHz modulation frequency. Phase-shifted DFB
lasers have a large built-in gain margin and have been developed for this purpose.
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Figure 5.9: Effect of MPN on bit-error rate of DFB lasers for several values of MSR. Intersection
of the dashed line with the solid curves provides MPN-induced power penalty. (After Ref. [85];
c©1985 IEEE; reprinted with permission.)

5.4.4 Frequency Chirping

Frequency chirping is an important phenomenon that is known to limit the performance
of 1.55-µm lightwave systems even when a DFB laser with a large MSR is used to gen-
erate the digital bit stream [99]–[112]. As discussed in Section 3.5.3, intensity modula-
tion in semiconductor lasers is invariably accompanied by phase modulation because of
the carrier-induced change in the refractive index governed by the linewidth enhance-
ment factor. Optical pulses with a time-dependent phase shift are called chirped. As a
result of the frequency chirp imposed on an optical pulse, its spectrum is considerably
broadened. Such spectral broadening affects the pulse shape at the fiber output because
of fiber dispersion and degrades system performance.

An exact calculation of the chirp-induced power penalty δ c is difficult because fre-
quency chirp depends on both the shape and the width of the optical pulse [101]–[104].
For nearly rectangular pulses, experimental measurements of time-resolved pulse spec-
tra show that frequency chirp occurs mainly near the leading and trailing edges such
that the leading edge shifts toward the blue while the trailing edge shifts toward the
red. Because of the spectral shift, the power contained in the chirped portion of the
pulse moves out of the bit slot when the pulse propagates inside the optical fiber. Such
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Figure 5.10: Chirp-induced power penalty as a function of BLD∆λc for several values of the
parameter Btc, where ∆λc is the wavelength shift occurring because of frequency chirp and tc is
the duration of such a wavelength shift.

a power loss decreases the SNR at the receiver and results in power penalty. In a simple
model the chirp-induced power penalty is given by [100]

δc = −10 log10(1−4BLD∆λc), (5.4.11)

where ∆λc is the spectral shift associated with frequency chirping. This equation ap-
plies as long as LD∆λc < tc, where tc is the chirp duration. Typically, tc is 100–200 ps,
depending on the relaxation-oscillation frequency, since chirping lasts for about one-
half of the relaxation-oscillation period. By the time LD∆λ c equals tc, the power
penalty stops increasing because all the chirped power has left the bit interval. For
LD∆λc > tc, the product LD∆λc in Eq. (5.4.11) should be replaced by t c.

The model above is overly simplistic, as it does not take into account pulse shap-
ing at the receiver. A more accurate calculation based on raised-cosine filtering (see
Section 4.3.2) leads to the following expression [107]:

δc = −20 log10{1− (4π2/3−8)B2LD∆λctc[1+(2B/3)(LD∆λc− tc)]}. (5.4.12)

The receiver is assumed to contain a p–i–n photodiode. The penalty is larger for an
APD, depending on the excess-noise factor of the APD. Figure 5.10 shows the power
penalty δc as a function of the parameter combination BLD∆λ c for several values of the
parameter Btc, which is a measure of the fraction of the bit period over which chirping
occurs. As expected, δc increases with both the chirp ∆λc and the chirp duration tc. The
power penalty can be kept below 1 dB if the system is designed such that BLD∆λ c <
0.1 and Btc < 0.2. A shortcoming of this model is that ∆λc and tc appear as free
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Figure 5.11: Chirp-induced power penalty as a function of |β2|B2L for several values of the
chirp parameter C. The Gaussian optical pulse is assumed to be linearly chirped over its entire
width.

parameters and must be determined for each laser through experimental measurements
of the frequency chirp. In practice, ∆λ c itself depends on the bit rate B and increases
with it.

For lightwave systems operating at high bit rates (B > 2 Gb/s), the bit duration is
generally shorter than the total duration 2t c over which chirping is assumed to occur in
the foregoing model. The frequency chirp in that case increases almost linearly over
the entire pulse width (or bit slot). A similar situation occurs even at low bit rates if the
optical pulses do not contain sharp leading and trailing edges but have long rise and fall
times (Gaussian-like shape rather than a rectangular shape). If we assume a Gaussian
pulse shape and a linear chirp, the analysis of Section 2.4.2 can be used to estimate the
chirp-induced power penalty. Equation (2.4.16) shows that the chirped Gaussian pulse
remains Gaussian but its peak power decreases because of dispersion-induced pulse
broadening. Defining the power penalty as the increase (in dB) in the received power
that would compensate the peak-power reduction, δ c is given by

δc = 10log10 fb, (5.4.13)

where fb is the broadening factor given by Eq. (2.4.22) with β 3 = 0. The RMS width σ0

of the input pulse should be such that 4σ0 ≤ 1/B. Choosing the worst-case condition
σ0 = 1/4B, the power penalty is given by

δc = 5log10[(1+ 8Cβ2B2L)2 +(8β2B2L)2]. (5.4.14)

Figure 5.11 shows the chirp-induced power penalty as a function of |β 2|B2L for
several values of the chirp parameter C. The parameter β 2 is taken to be negative,
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Figure 5.12: Power penalty as a function of the extinction ratio. (After Ref. [105]; c©1987
IEEE; reprinted with permission.)

as is the case for 1.55-µm lightwave systems. The C = 0 curve corresponds to the
case of a chirp-free pulse. The power penalty is negligible (<0.1 dB) in this ideal
case as long as |β2|B2L < 0.05. However, the penalty can exceed 5 dB if the pulses
transmitted are chirped such that C =−6. To keep the penalty below 0.1 dB, the system
should be designed with |β2|B2L < 0.002. For |β2| = 20 ps2/km, B2L is limited to 100
(Gb/s)2-km. Interestingly, system performance is improved for positive values of C
since the optical pulse then goes through an initial compression phase (see Section
2.4). Unfortunately, C is negative for semiconductor lasers; it can be approximated by
−βc, where βc is the linewidth enhancement factor with positive values of 2–6.

It is important to stress that the analytic results shown in Figs. 5.10 and 5.11 pro-
vide only a rough estimate of the power penalty. In practice, the chirp-induced power
penalty depends on many system parameters. For instance, several system experiments
have shown that the effect of chirp can be reduced by biasing the semiconductor laser
above threshold [103]. However, above-threshold biasing increases that extinction ratio
rex, defined in Eq. (4.6.1) as rex = P0/P1, where P0 and P1 are the powers received for bit
0 and bit 1, respectively. As discussed in Section 4.6.1, an increase in r ex decreases the
receiver sensitivity and leads to its own power penalty. Clearly, r ex cannot be increased
indefinitely in an attempt to reduce the chirp penalty. The total system performance
can be optimized by designing the system so that it operates with an optimum value
of rex that takes into account the trade-off between the chirp and the extinction ratio.
Numerical simulations are often used to understand such trade-offs in actual lightwave
systems [110]–[113]. Figure 5.12 shows the power penalty as a function of the extinc-
tion ratio rex by simulating numerically the performance of a 1.55-µm lightwave sys-
tem transmitting at 4 Gb/s over a 100-km-long fiber. The total penalty can be reduced
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below 2 dB by operating the system with an extinction ratio of about 0.1. The optimum
values of rex and the total penalty are sensitive to many other laser parameters such as
the active-region width. A semiconductor laser with a wider active region is found to
have a larger chirp penalty [105]. The physical phenomenon behind this width depen-
dence appears to be the nonlinear gain [see Eq. (3.3.40)] and the associated damping of
relaxation oscillations. In general, rapid damping of relaxation oscillations decreases
the effect of frequency chirp and improves system performance [113].

The origin of chirp in semiconductor lasers is related to carrier-induced index
changes governed by the linewidth enhancement factor β c. The frequency chirp would
be absent for a laser with βc = 0. Unfortunately, βc cannot be made zero for semi-
conductor lasers, although it can be reduced by adopting a multiquantum-well (MQW)
design [114]–[118]. The use of a MQW active region reduces β c by about a factor
of 2. In one 1.55-µm experiment [120], the 10-Gb/s signal could be transmitted over
60–70 km, despite the high dispersion of standard telecommunication fiber, by biasing
the laser above threshold. The MQW DFB laser used in the experiment had β c ≈ 3.
A further reduction in βc occurs for strained quantum wells [118]. Indeed, β c ≈ 1 has
been measured in modulation-doped strained MQW lasers [119]. Such lasers exhibit
low chirp under direct modulation at bit rates as high as 10 Gb/s.

An alternative scheme eliminates the laser-chirp problem completely by operating
the laser continuously and using an external modulator to generate the bit stream. This
approach has become practical with the development of optical transmitters in which
a modulator is integrated monolithically with a DFB laser (see Section 3.6.4). The
chirp parameter C is close to zero in such transmitters. As shown by the C = 0 curve in
Fig. 5.11, the dispersion penalty is below 2 dB in that case even when |β 2|B2L is close to
0.2. Moreover, an external modulator can be used to modulate the phase of the optical
carrier in such a way that β2C < 0 in Eq. (5.4.14). As seen in Fig. 5.11, the chirp-
induced power penalty becomes negative over a certain range of |β 2|B2L, implying
that such frequency chirping is beneficial to combat the effects of dispersion. In a
1996 experiment [121], the 10-Gb/s signal was transmitted penalty free over 100 km
of standard telecommunication fiber by using a modulator-integrated transmitter such
that C was effectively positive. By using β2 ≈ −20 ps2/km, it is easy to verify that
|β2|B2L = 0.2 for this experiment, a value that would have produced a power penalty
of more than 8 dB if the DFB laser were modulated directly.

5.4.5 Reflection Feedback and Noise

In most fiber-optic communication systems, some light is invariably reflected back
because of refractive-index discontinuities occurring at splices, connectors, and fiber
ends. The effects of such unintentional feedback have been studied extensively [122]–
[140] because they can degrade the performance of lightwave systems considerably.
Even a relatively small amount of optical feedback affects the operation of semicon-
ductor lasers [126] and can lead to excess noise in the transmitter output. Even when
an isolator is used between the transmitter and the fiber, multiple reflections between
splices and connectors can generate additional intensity noise and degrade receiver per-
formance [128]. This subsection is devoted to the effect of reflection-induced noise on
receiver sensitivity.
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Most reflections in a fiber link originate at glass–air interfaces whose reflectivity
can be estimated by using R f = (n f − 1)2/(n f + 1)2, where n f is the refractive index
of the fiber material. For silica fibers R f = 3.6% (−14.4 dB) if we use n f = 1.47.
This value increases to 5.3% for polished fiber ends since polishing can create a thin
surface layer with a refractive index of about 1.6. In the case of multiple reflections
occurring between two splices or connectors, the reflection feedback can increase con-
siderably because the two reflecting surfaces act as mirrors of a Fabry–Perot interfer-
ometer. When the resonance condition is satisfied, the reflectivity increases to 14%
for unpolished surfaces and to over 22% for polished surfaces. Clearly, a considerable
fraction of the signal transmitted can be reflected back unless precautions are taken to
reduce the optical feedback. A common technique for reducing reflection feedback is
to use index-matching oil or gel near glass–air interfaces. Sometimes the tip of the
fiber is curved or cut at an angle so that the reflected light deviates from the fiber axis.
Reflection feedback can be reduced to below 0.1% by such techniques.

Semiconductor lasers are extremely sensitive to optical feedback [133]; their oper-
ating characteristics can be affected by feedback as small as −80 dB [126]. The most
dramatic effect of feedback is on the laser linewidth, which can narrow or broaden by
several order of magnitude, depending on the exact location of the surface where feed-
back originates [122]. The reason behind such a sensitivity is related to the fact that the
phase of the reflected light can perturb the laser phase significantly even for relatively
weak feedback levels. Such feedback-induced phase changes are detrimental mainly
for coherent communication systems. The performance of direct-detection lightwave
systems is affected by intensity noise rather than phase noise.

Optical feedback can increase the intensity noise significantly. Several experiments
have shown a feedback-induced enhancement of the intensity noise occurring at fre-
quencies corresponding to multiples of the external-cavity mode spacing [123]–[125].
In fact, there are several mechanisms through which the relative intensity noise (RIN)
of a semiconductor laser can be enhanced by the external optical feedback. In a simple
model [127], the feedback-induced enhancement of the intensity noise is attributed to
the onset of multiple, closely spaced, external-cavity longitudinal modes whose spac-
ing is determined by the distance between the laser output facet and the glass–air inter-
face where feedback originates. The number and the amplitudes of the external-cavity
modes depend on the amount of feedback. In this model, the RIN enhancement is
due to intensity fluctuations of the feedback-generated side modes. Another source
of RIN enhancement has its origin in the feedback-induced chaos in semiconductor
lasers. Numerical simulations of the rate equations show that the RIN can be enhanced
by 20 dB or more when the feedback level exceeds a certain value [134]. Even though
the feedback-induced chaos is deterministic in nature, it manifests as an apparent RIN
increase.

Experimental measurements of the RIN and the BER in the presence of optical
feedback confirm that the feedback-induced RIN enhancement leads to a power penalty
in lightwave systems [137]–[140]. Figure 5.13 shows the results of the BER measure-
ments for a VCSEL operating at 958 nm. Such a laser operates in a single longitu-
dinal mode because of an ultrashort cavity length (∼ 1 µm) and exhibits a RIN near
−130 dB/Hz in the absence of reflection feedback. However, the RIN increases by as
much as 20 dB when the feedback exceeds the −30-dB level. The BER measurements
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Figure 5.13: Experimentally measured BER at 500 Mb/s for a VCSEL under optical feedback.
The BER is measured at several feedback levels. (After Ref. [139]; c©1993 IEEE; reprinted with
permission.)

at a bit rate of 500 Mb/s show a power penalty of 0.8 dB at a BER of 10−9 for −30-dB
feedback, and the penalty increases rapidly at higher feedback levels [139].

The power penalty can be calculated by following the analysis of Section 4.6.2 and
is given by

δref = −10 log10(1− r2
effQ

2), (5.4.15)

where reff is the effective intensity noise over the receiver bandwidth ∆ f and is obtained
from

r2
eff =

1
2π

∫ ∞

−∞
RIN(ω)dω = 2(RIN)∆ f . (5.4.16)

In the case of feedback-induced external-cavity modes, r eff can be calculated by
using a simple model and is found to be [127]

r2
eff ≈ r2

I + N/(MSR)2, (5.4.17)

where rI is the relative noise level in the absence of reflection feedback, N is the number
of external-cavity modes, and MSR is the factor by which the external-cavity modes
remain suppressed. Figure 5.14 shows the reflection-noise power penalty as a function
of MSR for several values of N by choosing rI = 0.01. The penalty is negligible in the
absence of feedback (N = 0). However, it increases with an increase in N and a decrease
in MSR. In fact, the penalty becomes infinite when MSR is reduced below a critical
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Figure 5.14: Feedback-induced power penalty as a function of MSR for several values of N and
rI = 0.01. Reflection feedback into the laser is assumed to generate N side modes of the same
amplitude.

value. Thus, reflection feedback can degrade system performance to the extent that
the system cannot achieve the desired BER despite an indefinite increase in the power
received. Such reflection-induced BER floors have been observed experimentally [125]
and indicate the severe impact of reflection noise on the performance of lightwave
systems. An example of the reflection-induced BER floor is seen in Fig. 5.13, where
the BER remains above 10−9 for feedback levels in excess of −25 dB. Generally
speaking, most lightwave systems operate satisfactorily when the reflection feedback
is below −30 dB. In practice, the problem can be nearly eliminated by using an optical
isolator within the transmitter module.

Even when an isolator is used, reflection noise can be a problem for lightwave sys-
tems. In long-haul fiber links making use of optical amplifiers, fiber dispersion can
convert the phase noise to intensity noise, leading to performance degradation [130].
Similarly, two reflecting surfaces anywhere along the fiber link act as a Fabry–Perot
interferometer which can convert phase noise into intensity noise [128]. Such a con-
version can be understood by noting that multiple reflections inside a Fabry–Perot inter-
ferometer lead to a phase-dependent term in the transmitted intensity which fluctuates
in response to phase fluctuations. As a result, the RIN of the signal incident on the
receiver is higher than that occurring in the absence of reflection feedback. Most of
the RIN enhancement occurs over a narrow frequency band whose spectral width is
governed by the laser linewidth (∼100 MHz). Since the total noise is obtained by inte-
grating over the receiver bandwidth, it can affect system performance considerably at
bit rates larger than the laser linewidth. The power penalty can still be calculated by
using Eq. (5.4.15). A simple model that includes only two reflections between the re-
flecting interfaces shows that reff is proportional to (R1R2)1/2, where R1 and R2 are the
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Figure 5.15: Steps involved in computer modeling of fiber-optic communication systems.

reflectivities of the two interfaces [128]. Figure 4.19 can be used to estimate the power
penalty. It shows that power penalty can become infinite and lead to BER floors when
reff exceeds 0.2. Such BER floors have been observed experimentally [128]. They can
be avoided only by eliminating or reducing parasitic reflections along the entire fiber
link. It is therefore necessary to employ connectors and splices that reduce reflections
through the use of index matching or other techniques.

5.5 Computer-Aided Design

The design of a fiber-optic communication system involves optimization of a large
number of parameters associated with transmitters, optical fibers, in-line amplifiers,
and receivers. The design aspects discussed in Section 5.2 are too simple to provide
the optimized values for all system parameters. The power and the rise-time budgets
are only useful for obtaining a conservative estimate of the transmission distance (or
repeater spacing) and the bit rate. The system margin in Eq. (5.2.4) is used as a ve-
hicle to include various sources of power penalties discussed in Section 5.4. Such a
simple approach fails for modern high-capacity systems designed to operate over long
distances using optical amplifiers.

An alternative approach uses computer simulations and provides a much more real-
istic modeling of fiber-optic communication systems [141]–[156]. The computer-aided
design techniques are capable of optimizing the whole system and can provide the op-
timum values of various system parameters such that the design objectives are met at
a minimum cost. Figure 5.15 illustrates the various steps involved in the simulation
process. The approach consists of generating an optical bit pattern at the transmitter,
transmitting it through the fiber link, detecting it at the receiver, and then analyzing it
through the tools such as the eye diagram and the Q factor.
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Each step in the block diagram shown in Fig. 5.15 can be carried out numerically
by using the material given in Chapters 2–4. The input to the optical transmitter is a
pseudorandom sequence of electrical pulses which represent 1 and 0 bits. The length N
of the pseudorandom bit sequence determines the computing time and should be chosen
judiciously. Typically, N = 2M, where M is in the range 6–10. The optical bit stream
can be obtained by solving the rate equations that govern the modulation response
of semiconductor lasers (see Section 3.5). The equations governing the modulation
response should be used if an external modulator is used. Chirping is automatically
included in both cases. Deformation of the optical bit stream during its transmission
through the optical fiber is calculated by solving the NLS equation (5.3.1). The noise
added by optical amplifiers should be included at the location of each amplifier.

The optical signal is converted into the electrical domain at the receiver. The shot
and thermal noise is adding through a fluctuating term with Gaussian statistics. The
electrical bit stream is shaped by passing it through a filter whose bandwidth is also
a design parameter. An eye diagram is constructed using the filtered bit stream. The
effect of varying system parameters can be studied by monitoring the eye degradation
or by calculating the Q parameter given in Eq. (4.5.11). Such an approach can be
used to obtain the power penalty associated with various mechanisms discussed in
Section 5.4. It can also be used to investigate trade-offs that would optimize the overall
system performance. An example is shown in Fig. 5.12, where the dependence of
the calculated system penalty on the frequency chirp and extinction ratio is found.
Numerical simulations reveal the existence of an optimum extinction ratio for which
the system penalty is minimum.

Computer-aided design has another important role to play. A long-haul lightwave
system may contain many repeaters, both optical and electrical. Transmitters, receivers,
and amplifiers used at repeaters, although chosen to satisfy nominal specifications, are
never identical. Similarly, fiber cables are constructed by splicing many different pieces
(typical length 4–8 km) which have slightly different loss and dispersion characteris-
tics. The net result is that many system parameters vary around their nominal values.
For example, the dispersion parameter D, responsible not only for pulse broadening
but also for other sources of power penalty, can vary significantly in different sections
of the fiber link because of variations in the zero-dispersion wavelength and the trans-
mitter wavelength. A statistical approach is often used to estimate the effect of such
inherent variations on the performance of a realistic lightwave system [146]–[150]. The
idea behind such an approach is that it is extremely unlikely that all system parameters
would take their worst-case values at the same time. Thus, repeater spacing can be
increased well above its worst-case value if the system is designed to operate reliably
at the specific bit rate with a high probability (say 99.9%).

The importance of computer-aided design for fiber-optic communication systems
became apparent during the 1990s when the dispersive and nonlinear effects in optical
fibers became of paramount concern with increasing bit rates and transmission dis-
tances. All modern lightwave systems are designed using numerical simulations, and
several software packages are available commercially. Appendix E provides details on
the simulation package available on the CD-ROM included with this book (Courtesy
OptiWave Corporation). The reader is encouraged to use it for a better understanding
of the material covered in this book.
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Problems

5.1 A distribution network uses an optical bus to distribute the signal to 10 users.
Each optical tap couples 10% of the power to the user and has 1-dB insertion
loss. Assuming that the station 1 transmits 1 mW of power over the optical bus,
calculate the power received by the stations 8, 9, and 10.

5.2 A cable-television operator uses an optical bus to distribute the video signal to
its subscribers. Each receiver needs a minimum of 100 nW to operate satisfacto-
rily. Optical taps couple 5% of the power to each subscriber. Assuming 0.5 dB
insertion loss for each tap and 1 mW transmitter power, estimate the number of
subscribers that can be added to the optical bus?

5.3 A star network uses directional couplers with 0.5-dB insertion loss to distribute
data to its subscribers. If each receiver requires a minimum of 100 nW and each
transmitter is capable of emitting 0.5 mW, calculate the maximum number of
subscribers served by the network.

5.4 Make the power budget and calculate the maximum transmission distance for a
1.3-µm lightwave system operating at 100 Mb/s and using an LED for launching
0.1 mW of average power into the fiber. Assume 1-dB/km fiber loss, 0.2-dB
splice loss every 2 km, 1-dB connector loss at each end of fiber link, and 100-
nW receiver sensitivity. Allow 6-dB system margin.

5.5 A 1.3-µm long-haul lightwave system is designed to operate at 1.5 Gb/s. It is
capable of coupling 1 mW of average power into the fiber. The 0.5-dB/km fiber-
cable loss includes splice losses. The connectors at each end have 1-dB losses.
The InGaAs p–i–n receiver has a sensitivity of 250 nW. Make the power budget
and estimate the repeater spacing.

5.6 Prove that the rise time Tr and the 3-dB bandwidth ∆ f of a RC circuit are related
by Tr∆ f = 0.35.

5.7 Consider a super-Gaussian optical pulse with the power distribution

P(t) = P0 exp[−(t/T0)2m],

where the parameter m controls the pulse shape. Derive an expression for the
rise time Tr of such a pulse. Calculate the ratio Tr/TFWHM, where TFWHM is the
full width at half maximum, and show that for a Gaussian pulse (m = 1) this ratio
equals 0.716.

5.8 Prove that for a Gaussian optical pulse, the rise time Tr and the 3-dB optical
bandwidth ∆ f are related by Tr∆ f = 0.316.

5.9 Make the rise-time budget for a 0.85-µm, 10-km fiber link designed to operate at
50 Mb/s. The LED transmitter and the Si p–i–n receiver have rise times of 10 and
15 ns, respectively. The graded-index fiber has a core index of 1.46, ∆ = 0.01,
and D = 80 ps/(km-nm). The LED spectral width is 50 nm. Can the system be
designed to operate with the NRZ format?
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5.10 A 1.3-µm lightwave system is designed to operate at 1.7 Gb/s with a repeater
spacing of 45 km. The single-mode fiber has a dispersion slope of 0.1 ps/(km-
nm2) in the vicinity of the zero-dispersion wavelength occurring at 1.308 µm.
Calculate the wavelength range of multimode semiconductor lasers for which the
mode-partition-noise power penalty remains below 1 dB. Assume that the RMS
spectral width of the laser is 2 nm and the mode-partition coefficient k = 0.7.

5.11 Generalize Eq. (5.4.5) for the case of APD receivers by including the excess-
noise factor in the form F(M) = Mx.

5.12 Consider a 1.55-µm lightwave system operating at 1 Gb/s by using multimode
semiconductor lasers of 2 nm (RMS) spectral width. Calculate the maximum
transmission distance that would keep the mode-partition-noise power penalty
below 2 dB. Use k = 0.8 for the mode-partition coefficient.

5.13 Follow the rate-equation analysis of Section 3.3.8 (see also Ref. [84]) to prove
that the side-mode power Ps follows an exponential probability density function
given by Eq. (5.4.8).

5.14 Use Eq. (5.4.14) to determine the maximum transmission distance for a 1.55-µm
lightwave system operating at 4 Gb/s such that the chirp-induced power penalty
is below 1 dB. Assume that C =−6 for the single-mode semiconductor laser and
β2 = −20 ps2/km for the single-mode fiber.

5.15 Repeat Problem 5.14 for the case of 8-Gb/s bit rate.

5.16 Use the results of Problem 4.16 to obtain an expression of the reflection-induced
power penalty in the case of a finite extinction ratio rex. Reproduce the penalty
curves shown in Fig. 5.13 for the case rex = 0.1.

5.17 Consider a Fabry–Perot interferometer with two surfaces of reflectivity R 1 and
R2. Follow the analysis of Ref. [128] to derive an expression of the relative
intensity noise RIN(ω) of the transmitted light as a function of the linewidth of
the incident light. Assume that R1 and R2 are small enough that it is enough to
consider only a single reflection at each surface.

5.18 Follow the analysis of Ref. [142] to obtain an expression for the total receiver
noise by including thermal noise, shot noise, intensity noise, mode-partition
noise, chirp noise, and reflection noise.
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Chapter 6

Optical Amplifiers

As seen in Chapter 5, the transmission distance of any fiber-optic communication sys-
tem is eventually limited by fiber losses. For long-haul systems, the loss limitation
has traditionally been overcome using optoelectronic repeaters in which the optical
signal is first converted into an electric current and then regenerated using a transmit-
ter. Such regenerators become quite complex and expensive for wavelength-division
multiplexed (WDM) lightwave systems. An alternative approach to loss management
makes use of optical amplifiers, which amplify the optical signal directly without re-
quiring its conversion to the electric domain. Several kinds of optical amplifiers were
developed during the 1980s, and the use of optical amplifiers for long-haul lightwave
systems became widespread during the 1990s. By 1996, optical amplifiers were a part
of the fiber-optic cables laid across the Atlantic and Pacific oceans. This chapter is
devoted to optical amplifiers. In Section 6.1 we discuss general concepts common
to all optical amplifiers. Semiconductor optical amplifiers are considered in Section
6.2, while Section 6.3 focuses on Raman amplifiers. Section 6.4 is devoted to fiber
amplifiers made by doping the fiber core with a rare-earth element. The emphasis is
on the erbium-doped fiber amplifiers, used almost exclusively for 1.55-µm lightwave
systems. System applications of optical amplifiers are discussed in Section 6.5.

6.1 Basic Concepts

Most optical amplifiers amplify incident light through stimulated emission, the same
mechanism that is used by lasers (see Section 3.1). Indeed, an optical amplifier is
nothing but a laser without feedback. Its main ingredient is the optical gain realized
when the amplifier is pumped (optically or electrically) to achieve population inversion.
The optical gain, in general, depends not only on the frequency (or wavelength) of the
incident signal, but also on the local beam intensity at any point inside the amplifier.
Details of the frequency and intensity dependence of the optical gain depend on the
amplifier medium. To illustrate the general concepts, let us consider the case in which
the gain medium is modeled as a homogeneously broadened two-level system. The
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gain coefficient of such a medium can be written as [1]

g(ω) =
g0

1+(ω −ω0)2T 2
2 + P/Ps

, (6.1.1)

where g0 is the peak value of the gain, ω is the optical frequency of the incident signal,
ω0 is the atomic transition frequency, and P is the optical power of the signal being
amplified. The saturation power Ps depends on gain-medium parameters such as the
fluorescence time T1 and the transition cross section; its expression for different kinds
of amplifiers is given in the following sections. The parameter T2 in Eq. (6.1.1), known
as the dipole relaxation time, is typically quite small (<1 ps). The fluorescence time T1,
also called the population relaxation time, varies in the range 100 ps–10 ms, depending
on the gain medium. Equation (6.1.1) can be used to discuss important characteristics
of optical amplifiers, such as the gain bandwidth, amplification factor, and output satu-
ration power.

6.1.1 Gain Spectrum and Bandwidth

Consider the unsaturated regime in which P/Ps � 1 throughout the amplifier. By ne-
glecting the term P/Ps in Eq. (6.1.1), the gain coefficient becomes

g(ω) =
g0

1+(ω −ω0)2T 2
2

. (6.1.2)

This equation shows that the gain is maximum when the incident frequency ω coincides
with the atomic transition frequency ω0. The gain reduction for ω �= ω0 is governed
by a Lorentzian profile that is a characteristic of homogeneously broadened two-level
systems [1]. As discussed later, the gain spectrum of actual amplifiers can deviate con-
siderably from the Lorentzian profile. The gain bandwidth is defined as the full width
at half maximum (FWHM) of the gain spectrum g(ω). For the Lorentzian spectrum,
the gain bandwidth is given by ∆ωg = 2/T2, or by

∆νg =
∆ωg

2π
=

1
πT2

. (6.1.3)

As an example, ∆νg ∼ 5 THz for semiconductor optical amplifiers for which T2 ∼ 60 fs.
Amplifiers with a relatively large bandwidth are preferred for optical communication
systems because the gain is then nearly constant over the entire bandwidth of even a
multichannel signal.

The concept of amplifier bandwidth is commonly used in place of the gain band-
width. The difference becomes clear when one considers the amplifier gain G, known
as the amplification factor and defined as

G = Pout/Pin, (6.1.4)

where Pin and Pout are the input and output powers of the continuous-wave (CW) signal
being amplified. We can obtain an expression for G by using

dP
dz

= gP, (6.1.5)
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Figure 6.1: Lorentzian gain profile g(ω) and the corresponding amplifier-gain spectrum G(ω)
for a two-level gain medium.

where P(z) is the optical power at a distance z from the input end. A straightforward
integration with the initial condition P(0) = Pin shows that the signal power grows
exponentially as

P(z) = Pin exp(gz). (6.1.6)

By noting that P(L) = Pout and using Eq. (6.1.4), the amplification factor for an ampli-
fier of length L is given by

G(ω) = exp[g(ω)L], (6.1.7)

where the frequency dependence of both G and g is shown explicitly. Both the amplifier
gain G(ω) and the gain coefficient g(ω) are maximum when ω = ω 0 and decrease with
the signal detuning ω −ω0. However, G(ω) decreases much faster than g(ω). The
amplifier bandwidth ∆νA is defined as the FWHM of G(ω) and is related to the gain
bandwidth ∆νg as

∆νA = ∆νg

[
ln2

ln(G0/2)

]1/2

, (6.1.8)

where G0 = exp(g0L). Figure 6.1 shows the gain profile g(ω) and the amplification
factor G(ω) by plotting g/g0 and G/G0 as a function of (ω −ω0)T2. The amplifier
bandwidth is smaller than the gain bandwidth, and the difference depends on the am-
plifier gain itself.
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Figure 6.2: Saturated amplifier gain G as a function of the output power (normalized to the
saturation power) for several values of the unsaturated amplifier gain G0.

6.1.2 Gain Saturation

The origin of gain saturation lies in the power dependence of the g(ω) in Eq. (6.1.1).
Since g is reduced when P becomes comparable to Ps, the amplification factor G de-
creases with an increase in the signal power. This phenomenon is called gain saturation.
Consider the case in which incident signal frequency is exactly tuned to the gain peak
(ω = ω0). The detuning effects can be incorporated in a straightforward manner. By
substituting g from Eq. (6.1.1) in Eq. (6.1.5), we obtain

dP
dz

=
g0P

1+ P/Ps
. (6.1.9)

This equation can easily be integrated over the amplifier length. By using the initial
condition P(0) = Pin together with P(L) = Pout = GPin, we obtain the following implicit
relation for the large-signal amplifier gain:

G = G0 exp

(
−G−1

G
Pout

Ps

)
. (6.1.10)

Equation (6.1.10) shows that the amplification factor G decreases from its unsatu-
rated value G0 when Pout becomes comparable to Ps. Figure 6.2 shows the saturation
characteristics by plotting G as a function of Pout/Ps for several values of G0. A quantity
of practical interest is the output saturation power Ps

out, defined as the output power for
which the amplifier gain G is reduced by a factor of 2 (or by 3 dB) from its unsaturated
value G0. By using G = G0/2 in Eq. (6.1.10),

Ps
out =

G0 ln 2
G0 −2

Ps. (6.1.11)
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Here, Ps
out is smaller than Ps by about 30%. Indeed, by noting that G 0 � 2 in practice

(G0 = 1000 for 30-dB amplifier gain), Ps
out ≈ (ln2)Ps ≈ 0.69Ps. As seen in Fig. 6.2,

Ps
out becomes nearly independent of G0 for G0 > 20 dB.

6.1.3 Amplifier Noise

All amplifiers degrade the signal-to-noise ratio (SNR) of the amplified signal because
of spontaneous emission that adds noise to the signal during its amplification. The
SNR degradation is quantified through a parameter Fn, called the amplifier noise figure
in analogy with the electronic amplifiers (see Section 4.4.1) and defined as [2]

Fn =
(SNR)in

(SNR)out
, (6.1.12)

where SNR refers to the electric power generated when the optical signal is converted
into an electric current. In general, Fn depends on several detector parameters that gov-
ern thermal noise associated with the detector (see Section 4.4.1). A simple expression
for Fn can be obtained by considering an ideal detector whose performance is limited
by shot noise only [2].

Consider an amplifier with the gain G such that the output and input powers are
related by Pout = GPin. The SNR of the input signal is given by

(SNR)in =
〈I〉2

σ2
s

=
(RPin)2

2q(RPin)∆ f
=

Pin

2hν∆ f
, (6.1.13)

where 〈I〉 = RPin is the average photocurrent, R = q/hν is the responsivity of an ideal
photodetector with unit quantum efficiency (see Section 4.1), and

σ2
s = 2q(RPin)∆ f (6.1.14)

is obtained from Eq. (4.4.5) for the shot noise by setting the dark current I d = 0. Here
∆ f is the detector bandwidth. To evaluate the SNR of the amplified signal, one should
add the contribution of spontaneous emission to the receiver noise.

The spectral density of spontaneous-emission-inducednoise is nearly constant (white
noise) and can be written as [2]

Ssp(ν) = (G−1)nsphν, (6.1.15)

where ν is the optical frequency. The parameter n sp is called the spontaneous-emission
factor (or the population-inversion factor) and is given by

nsp = N2/(N2 −N1), (6.1.16)

where N1 and N2 are the atomic populations for the ground and excited states, respec-
tively. The effect of spontaneous emission is to add fluctuations to the amplified signal;
these are converted to current fluctuations during the photodetection process.

It turns out that the dominant contribution to the receiver noise comes from the beat-
ing of spontaneous emission with the signal [2]. The spontaneously emitted radiation
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mixes with the amplified signal and produces the current I = R|√GEin + Esp|2 at the
photodetector of responsivity R. Noting that E in and Esp oscillate at different frequen-
cies with a random phase difference, it is easy to see that the beating of spontaneous
emission with the signal will produce a noise current ∆I = 2R(GPin)1/2|Esp|cosθ ,
where θ is a rapidly varying random phase. Averaging over the phase, and neglect-
ing all other noise sources, the variance of the photocurrent can be written as

σ2 ≈ 4(RGPin)(RSsp)∆ f , (6.1.17)

where cos2 θ was replaced by its average value 1
2 . The SNR of the amplified signal is

thus given by

(SNR)out =
〈I〉2

σ2 =
(RGPin)2

σ2 ≈ GPin

4Ssp∆ f
. (6.1.18)

The amplifier noise figure can now be obtained by substituting Eqs. (6.1.13) and
(6.1.18) in Eq. (6.1.12). If we also use Eq. (6.1.15) for Ssp,

Fn = 2nsp(G−1)/G ≈ 2nsp. (6.1.19)

This equation shows that the SNR of the amplified signal is degraded by 3 dB even for
an ideal amplifier for which nsp = 1. For most practical amplifiers, Fn exceeds 3 dB
and can be as large as 6–8 dB. For its application in optical communication systems,
an optical amplifier should have Fn as low as possible.

6.1.4 Amplifier Applications

Optical amplifiers can serve several purposes in the design of fiber-optic communica-
tion systems: three common applications are shown schematically in Fig. 6.3. The
most important application for long-haul systems consists of using amplifiers as in-line
amplifiers which replace electronic regenerators (see Section 5.1). Many optical ampli-
fiers can be cascaded in the form of a periodic chain as long as the system performance
is not limited by the cumulative effects of fiber dispersion, fiber nonlinearity, and am-
plifier noise. The use of optical amplifiers is particularly attractive for WDM lightwave
systems as all channels can be amplified simultaneously.

Another way to use optical amplifiers is to increase the transmitter power by placing
an amplifier just after the transmitter. Such amplifiers are called power amplifiers or
power boosters, as their main purpose is to boost the power transmitted. A power
amplifier can increase the transmission distance by 100 km or more depending on the
amplifier gain and fiber losses. Transmission distance can also be increased by putting
an amplifier just before the receiver to boost the received power. Such amplifiers are
called optical preamplifiers and are commonly used to improve the receiver sensitivity.
Another application of optical amplifiers is to use them for compensating distribution
losses in local-area networks. As discussed in Section 5.1, distribution losses often
limit the number of nodes in a network. Many other applications of optical amplifiers
are discussed in Chapter 8 devoted to WDM lightwave systems.
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Figure 6.3: Three possible applications of optical amplifiers in lightwave systems: (a) as in-line
amplifiers; (b) as a booster of transmitter power; (c) as a preamplifier to the receiver.

6.2 Semiconductor Optical Amplifiers

All lasers act as amplifiers close to but before reaching threshold, and semiconductor
lasers are no exception. Indeed, research on semiconductor optical amplifiers (SOAs)
started soon after the invention of semiconductor lasers in 1962. However, it was
only during the 1980s that SOAs were developed for practical applications, motivated
largely by their potential applications in lightwave systems [3]–[8]. In this section we
discuss the amplification characteristics of SOAs and their applications.

6.2.1 Amplifier Design

The amplifier characteristics discussed in Section 6.1 were for an optical amplifier
without feedback. Such amplifiers are called traveling-wave (TW) amplifiers to em-
phasize that the amplified signal travels in the forward direction only. Semiconductor
lasers experience a relatively large feedback because of reflections occurring at the
cleaved facets (32% reflectivity). They can be used as amplifiers when biased be-
low threshold, but multiple reflections at the facets must be included by considering a
Fabry–Perot (FP) cavity. Such amplifiers are called FP amplifiers. The amplification
factor is obtained by using the standard theory of FP interferometers and is given by [4]

GFP(ν) =
(1−R1)(1−R2)G(ν)

(1−G
√

R1R2)2 + 4G
√

R1R2 sin2[π(ν −νm)/∆νL]
, (6.2.1)
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where R1 and R2 are the facet reflectivities, νm represents the cavity-resonance frequen-
cies [see Eq. (3.3.5)], and ∆νL is the longitudinal-mode spacing, also known as the free
spectral range of the FP cavity. The single-pass amplification factor G corresponds to
that of a TW amplifier and is given by Eq. (6.1.7) when gain saturation is negligible.
Indeed, GFP reduces to G when R1 = R2 = 0.

As evident from Eq. (6.2.1), GFP(ν) peaks whenever ν coincides with one of the
cavity-resonance frequencies and drops sharply in between them. The amplifier band-
width is thus determined by the sharpness of the cavity resonance. One can calculate
the amplifier bandwidth from the detuning ν − νm for which GFP drops by 3 dB from
its peak value. The result is given by

∆νA =
2∆νL

π
sin−1

(
1−G

√
R1R2

(4G
√

R1R2)1/2

)
. (6.2.2)

To achieve a large amplification factor, G
√

R1R2 should be quite close to 1. As seen
from Eq. (6.2.2), the amplifier bandwidth is then a small fraction of the free spectral
range of the FP cavity (typically, ∆νL ∼ 100 GHz and ∆νA < 10 GHz). Such a small
bandwidth makes FP amplifiers unsuitable for most lightwave system applications.

TW-type SOAs can be made if the reflection feedback from the end facets is sup-
pressed. A simple way to reduce the reflectivity is to coat the facets with an antire-
flection coating. However, it turns out that the reflectivity must be extremely small
(<0.1%) for the SOA to act as a TW amplifier. Furthermore, the minimum reflectivity
depends on the amplifier gain itself. One can estimate the tolerable value of the facet
reflectivity by considering the maximum and minimum values of G FP from Eq. (6.2.1)
near a cavity resonance. It is easy to verify that their ratio is given by

∆G =
Gmax

FP

Gmin
FP

=
(

1+ G
√

R1R2

1−G
√

R1R2

)2

. (6.2.3)

If ∆G exceeds 3 dB, the amplifier bandwidth is set by the cavity resonances rather
than by the gain spectrum. To keep ∆G < 2, the facet reflectivities should satisfy the
condition

G
√

R1R2 < 0.17. (6.2.4)

It is customary to characterize the SOA as a TW amplifier when Eq. (6.2.4) is satisfied.
A SOA designed to provide a 30-dB amplification factor (G = 1000) should have facet
reflectivities such that

√
R1R2 < 1.7×10−4.

Considerable effort is required to produce antireflection coatings with reflectivities
less than 0.1%. Even then, it is difficult to obtain low facet reflectivities in a predictable
and regular manner. For this reason, alternative techniques have been developed to
reduce the reflection feedback in SOAs. In one method, the active-region stripe is tilted
from the facet normal, as shown in Fig. 6.4(a). Such a structure is referred to as the
angled-facet or tilted-stripe structure [9]. The reflected beam at the facet is physically
separated from the forward beam because of the angled facet. Some feedback can still
occur, as the optical mode spreads beyond the active region in all semiconductor laser
devices. In practice, the combination of an antireflection coating and the tilted stripe
can produce reflectivities below 10−3 (as small as 10−4 with design optimization). In
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Figure 6.4: (a) Tilted-stripe and (b) buried-facet structures for nearly TW semiconductor optical
amplifiers.

an alternative scheme [10] a transparent region is inserted between the active-layer ends
and the facets [see Fig. 6.4(b)]. The optical beam spreads in this window region before
arriving at the semiconductor–air interface. The reflected beam spreads even further on
the return trip and does not couple much light into the thin active layer. Such a structure
is called buried-facet or window-facet structure and has provided reflectivities as small
as 10−4 when used in combination with antireflection coatings.

6.2.2 Amplifier Characteristics

The amplification factor of SOAs is given by Eq. (6.2.1). Its frequency dependence
results mainly from the frequency dependence of G(ν) when condition (6.2.4) is sat-
isfied. The measured amplifier gain exhibits ripples reflecting the effects of residual
facet reflectivities. Figure 6.5 shows the wavelength dependence of the amplifier gain
measured for a SOA with the facet reflectivities of about 4×10−4. Condition (6.2.4) is
well satisfied as G

√
R1R2 ≈ 0.04 for this amplifier. Gain ripples were negligibly small

as the SOA operated in a nearly TW mode. The 3-dB amplifier bandwidth is about
70 nm because of a relatively broad gain spectrum of SOAs (see Section 3.3.1).

To discuss gain saturation, consider the peak gain and assume that it increases lin-
early with the carrier population N as (see Section 3.3.1)

g(N) = (Γσg/V )(N −N0), (6.2.5)
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Figure 6.5: Amplifier gain versus signal wavelength for a semiconductor optical amplifier whose
facets are coated to reduce reflectivity to about 0.04%. (After Ref. [3]; c©1987 IEEE; reprinted
with permission.)

where Γ is the confinement factor, σg is the differential gain, V is the active volume,
and N0 is the value of N required at transparency. The gain has been reduced by Γ to
account for spreading of the waveguide mode outside the gain region of SOAs. The
carrier population N changes with the injection current I and the signal power P as
indicated in Eq. (3.5.2). Expressing the photon number in terms of the optical power,
this equation can be written as

dN
dt

=
I
q
− N

τc
− σg(N −N0)

σmhν
P, (6.2.6)

where τc is the carrier lifetime and σm is the cross-sectional area of the waveguide
mode. In the case of a CW beam, or pulses much longer than τ c, the steady-state
value of N can be obtained by setting dN/dt = 0 in Eq. (6.2.6). When the solution is
substituted in Eq. (6.2.5), the optical gain is found to saturate as

g =
g0

1+ P/Ps
, (6.2.7)

where the small-signal gain g0 is given by

g0 = (Γσg/V )(Iτc/q−N0), (6.2.8)

and the saturation power Ps is defined as

Ps = hνσm/(σgτc). (6.2.9)

A comparison of Eqs. (6.1.1) and (6.2.7) shows that the SOA gain saturates in the same
way as that for a two-level system. Thus, the output saturation power P s

out is obtained
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from Eq. (6.1.11) with Ps given by Eq. (6.2.9). Typical values of P s
out are in the range

5–10 mW.

The noise figure Fn of SOAs is larger than the minimum value of 3 dB for several
reasons. The dominant contribution comes from the spontaneous-emission factor n sp.
For SOAs, nsp is obtained from Eq. (6.1.16) by replacing N2 and N1 by N and N0, re-
spectively. An additional contribution results from internal losses (such as free-carrier
absorption or scattering loss) which reduce the available gain from g to g−α int. By
using Eq. (6.1.19) and including this additional contribution, the noise figure can be
written as [6]

Fn = 2

(
N

N −N0

)(
g

g−αint

)
. (6.2.10)

Residual facet reflectivities increase Fn by an additional factor that can be approximated
by 1+ R1G, where R1 is the reflectivity of the input facet [6]. In most TW amplifiers,
R1G � 1, and this contribution can be neglected. Typical values of Fn for SOAs are in
the range 5–7 dB.

An undesirable characteristic of SOAs is their polarization sensitivity. The ampli-
fier gain G differs for the transverse electric and magnetic (TE, TM) modes by as much
as 5–8 dB simply because both G and σg are different for the two orthogonally polar-
ized modes. This feature makes the amplifier gain sensitive to the polarization state
of the input beam, a property undesirable for lightwave systems in which the state of
polarization changes with propagation along the fiber (unless polarization-maintaining
fibers are used). Several schemes have been devised to reduce the polarization sensi-
tivity [10]–[15]. In one scheme, the amplifier is designed such that the width and the
thickness of the active region are comparable. A gain difference of less than 1.3 dB be-
tween TE and TM polarizations has been realized by making the active layer 0.26 µm
thick and 0.4 µm wide [10]. Another scheme makes use of a large-optical-cavity struc-
ture; a gain difference of less than 1 dB has been obtained with such a structure [11].

Several other schemes reduce the polarization sensitivity by using two amplifiers
or two passes through the same amplifier. Figure 6.6 shows three such configurations.
In Fig. 6.6(a), the TE-polarized signal in one amplifier becomes TM polarized in the
second amplifier, and vice versa. If both amplifiers have identical gain characteristics,
the twin-amplifier configuration provides signal gain that is independent of the signal
polarization. A drawback of the series configuration is that residual facet reflectivi-
ties lead to mutual coupling between the two amplifiers. In the parallel configuration
shown in Fig. 6.6(b) the incident signal is split into a TE- and a TM-polarized signal,
each of which is amplified by separate amplifiers. The amplified TE and TM signals
are then combined to produce the amplified signal with the same polarization as that
of the input beam [12]. The double-pass configuration of Fig. 6.6(c) passes the signal
through the same amplifier twice, but the polarization is rotated by 90 ◦ between the
two passes [13]. Since the amplified signal propagates in the backward direction, a
3-dB fiber coupler is needed to separate it from the incident signal. Despite a 6-dB loss
occurring at the fiber coupler (3 dB for the input signal and 3 dB for the amplified sig-
nal) this configuration provides high gain from a single amplifier, as the same amplifier
supplies gain on the two passes.
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Figure 6.6: Three configurations used to reduce the polarization sensitivity of semiconductor
optical amplifiers: (a) twin amplifiers in series; (b) twin amplifiers in parallel; and (c) double
pass through a single amplifier.

6.2.3 Pulse Amplification

One can adapt the formulation developed in Section 2.4 for pulse propagation in optical
fibers to the case of SOAs by making a few changes. The dispersive effects are not
important for SOAs because of negligible material dispersion and a short amplifier
length (<1 mm in most cases). The amplifier gain can be included by adding the term
gA/2 on the right side of Eq. (2.4.7). By setting β 2 = β3 = 0, the amplitude A(z,t) of
the pulse envelope then evolves as [18]

∂A
∂ z

+
1
vg

∂A
∂ t

=
1
2
(1− iβc)gA, (6.2.11)

where carrier-induced index changes are included through the linewidth enhancement
factor βc (see Section 3.5.2). The time dependence of g is governed by Eqs. (6.2.5) and
(6.2.6). The two equations can be combined to yield

∂g
∂ t

=
g0 −g

τc
− g|A|2

Esat
, (6.2.12)

where the saturation energy Esat is defined as

Esat = hν(σm/σg), (6.2.13)

and g0 is given by Eq. (6.2.8). Typically E sat ∼ 1 pJ.
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Equations (6.2.11) and (6.2.12) govern amplification of optical pulses in SOAs.
They can be solved analytically for pulses whose duration is short compared with the
carrier lifetime (τp � τc). The first term on the right side of Eq. (6.2.12) can then be
neglected during pulse amplification. By introducing the reduced time τ = t − z/v g

together with A =
√

Pexp(iφ), Eqs. (6.2.11) and (6.2.12) can be written as [18]

∂P
∂ z

= g(z,τ)P(z,τ), (6.2.14)

∂φ
∂ z

= − 1
2 βcg(z,τ), (6.2.15)

∂g
∂τ

= −g(z,τ)P(z,τ)/Esat. (6.2.16)

Equation (6.2.14) can easily be integrated over the amplifier length L to yield

Pout(τ) = Pin(τ)exp[h(τ)], (6.2.17)

where Pin(τ) is the input power and h(τ) is the total integrated gain defined as

h(τ) =
∫ L

0
g(z,τ)dz. (6.2.18)

If Eq. (6.2.16) is integrated over the amplifier length after replacing gP by ∂P/∂ z, h(τ)
satisfies [18]

dh
dτ

= − 1
Esat

[Pout(τ)−Pin(τ)] = −Pin(τ)
Esat

(eh −1). (6.2.19)

Equation (6.2.19) can easily be solved to obtain h(τ). The amplification factor G(τ) is
related to h(τ) as G = exp(h) and is given by [1]

G(τ) =
G0

G0 − (G0 −1)exp[−E0(τ)/Esat]
, (6.2.20)

where G0 is the unsaturated amplifier gain and E0(τ) =
∫ τ
−∞ Pin(τ)dτ is the partial

energy of the input pulse defined such that E0(∞) equals the input pulse energy E in.
The solution (6.2.20) shows that the amplifier gain is different for different parts of

the pulse. The leading edge experiences the full gain G 0 as the amplifier is not yet sat-
urated. The trailing edge experiences the least gain since the whole pulse has saturated
the amplifier gain. The final value of G(τ) after passage of the pulse is obtained from
Eq. (6.2.20) by replacing E0(τ) by Ein. The intermediate values of the gain depend on
the pulse shape. Figure 6.7 shows the shape dependence of G(τ) for super-Gaussian
input pulses by using

Pin(t) = P0 exp[−(τ/τp)2m], (6.2.21)

where m is the shape parameter. The input pulse is Gaussian for m = 1 but becomes
nearly rectangular as m increases. For comparison purposes, the input energy is held
constant for different pulse shapes by choosing E in/Esat = 0.1. The shape dependence
of the amplification factor G(τ) implies that the output pulse is distorted, and distortion
is itself shape dependent.
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Figure 6.7: Time-dependent amplification factor for super-Gaussian input pulses of input energy
such that Ein/Esat = 0.1. The unsaturated value G0 is 30 dB in all cases. The input pulse is
Gaussian for m = 1 but becomes nearly rectangular as m increases.

As seen from Eq. (6.2.15), gain saturation leads to a time-dependent phase shift
across the pulse. This phase shift is found by integrating Eq. (6.2.15) over the amplifier
length and is given by

φ(τ) = − 1
2 βc

∫ L

0
g(z,τ)dz = − 1

2 βch(τ) = − 1
2 βc ln[G(τ)]. (6.2.22)

Since the pulse modulates its own phase through gain saturation, this phenomenon is
referred to as saturation-induced self-phase modulation [18]. The frequency chirp is
related to the phase derivative as

∆νc = − 1
2π

dφ
dτ

=
βc

4π
dh
dτ

= −βcPin(τ)
4πEsat

[G(τ)−1], (6.2.23)

where Eq. (6.2.19) was used. Figure 6.8 shows the chirp profiles for several input pulse
energies when a Gaussian pulse is amplified in a SOA with 30-dB unsaturated gain.
The frequency chirp is larger for more energetic pulses simply because gain saturation
sets in earlier for such pulses.

Self-phase modulation and the associated frequency chirp can affect lightwave sys-
tems considerably. The spectrum of the amplified pulse becomes considerably broad
and contains several peaks of different amplitudes [18]. The dominant peak is shifted
toward the red side and is broader than the input spectrum. It is also accompanied
by one or more satellite peaks. Figure 6.9 shows the expected shape and spectrum of
amplified pulses when a Gaussian pulse of energy such that E in/Esat = 0.1 is amplified
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Figure 6.8: Frequency chirp imposed across the amplified pulse for several values of Ein/Esat. A
Gaussian input pulse is assumed together with G0 = 30 dB and βc = 5. (After Ref. [19]; c©1989
IEEE; reprinted with permission.)

by a SOA. The temporal and spectral changes depend on amplifier gain and are quite
significant for G0 = 30 dB. The experiments performed by using picosecond pulses
from mode-locked semiconductor lasers confirm this behavior [18]. In particular, the
spectrum of amplified pulses is found to be shifted toward the red side by 50–100 GHz,
depending on the amplifier gain. Spectral distortion in combination with the frequency
chirp would affect the transmission characteristics when amplified pulses are propa-
gated through optical amplifiers.

It turns out that the frequency chirp imposed by the SOA is opposite in nature com-
pared with that imposed by directly modulated semiconductor lasers. If we also note
that the chirp is nearly linear over a considerable portion of the amplified pulse (see
Fig. 6.8), it is easy to understand that the amplified pulse would pass through an initial
compression stage when it propagates in the anomalous-dispersion region of optical
fibers (see Section 2.4.2). Such a compression was observed in an experiment [19] in
which 40-ps optical pulses were first amplified in a 1.52-µm SOA and then propagated
through 18 km of single-mode fiber with β 2 = −18 ps2/km. This compression mecha-
nism can be used to design fiber-optic communication systems in which in-line SOAs
are used to compensate simultaneously for both fiber loss and dispersion by operating
SOAs in the saturation region so that they impose frequency chirp on the amplified
pulse. The basic concept was demonstrated in 1989 in an experiment [20] in which a
16-Gb/s signal was transmitted over 70 km by using an SOA. In the absence of the
SOA or when the SOA was operated in the unsaturated regime, the system was dis-
persion limited to the extent that the signal could not be transmitted over more than
20 km.

The preceding analysis considers a single pulse. In a lightwave system, the signal
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Figure 6.9: (a) Shape and (b) spectrum at the output of a semiconductor optical amplifier with
G0 = 30 dB and βc = 5 for a Gaussian input pulse of energy Ein/Esat = 0.1. The dashed curves
show for comparison the shape and spectrum of the input pulse.

consists of a random sequence of 1 and 0 bits. If the energy of each 1 bit is large
enough to saturate the gain partially, the following bit will experience less gain. The
gain will recover partially if the bit 1 is preceded by one or more 0 bits. In effect, the
gain of each bit in an SOA depends on the bit pattern. This phenomenon becomes quite
problematic for WDM systems in which several pulse trains pass through the amplifier
simultaneously. It is possible to implement a gain-control mechanism that keeps the
amplifier gain pinned at a constant value. The basic idea is to make the SOA oscillate at
a controlled wavelength outside the range of interest (typically below 1.52 µm). Since
the gain remains clamped at the threshold value for a laser, the signal is amplified by
the same factor for all pulses.

6.2.4 System Applications

The use of SOAs as a preamplifier to the receiver is attractive since it permits mono-
lithic integration of the SOA with the receiver. As seen in Fig. 6.3(c), in this application
the signal is optically amplified before it falls on the receiver. The preamplifier boosts
the signal to such a high level that the receiver performance is limited by shot noise
rather than by thermal noise. The basic idea is similar to the case of avalanche pho-
todiodes (APDs), which amplify the signal in the electrical domain. However, just
as APDs add additional noise (see Section 4.4.3), preamplifiers also degrade the SNR
through spontaneous-emission noise. A relatively large noise figure of SOAs (Fn = 5–
7 dB) makes them less than ideal as a preamplifier. Nonetheless, they can improve the
receiver sensitivity considerably. SOAs can also be used as power amplifiers to boost
the transmitter power. It is, however, difficult to achieve powers in excess of 10 mW
because of a relatively small value of the output saturation power (∼ 5 mW).

SOAs were used as in-line amplifiers in several system experiments before 1990.
In a 1988 experiment, a signal at 1 Gb/s was transmitted over 313 km by using four
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cascaded SOAs [21]. SOAs have also been employed to overcome distribution losses
in the local-area network (LAN) applications. In one experiment, an SOA was used as
a dual-function device [22]. It amplified five channels, but at the same time the SOA
was used to monitor the network performance through a baseband control channel. The
100-Mb/s baseband control signal modulated the carrier density of the amplifier, which
in turn produced a corresponding electric signal that was used for monitoring.

Although SOAs can be used to amplify several channels simultaneously, they suffer
from a fundamental problem related to their relatively fast response. Ideally, the signal
in each channel should be amplified by the same amount. In practice, several nonlinear
phenomena in SOAs induce interchannel crosstalk, an undesirable feature that should
be minimized for practical lightwave systems. Two such nonlinear phenomena are
cross-gain saturation and four-wave mixing (FWM). Both of them originate from the
stimulated recombination term in Eq. (6.2.6). In the case of multichannel amplification,
the power P in this equation is replaced with

P =
1
2

∣∣∣∣∣
M

∑
j=1

A j exp(−iω jt)+ c.c.

∣∣∣∣∣
2

, (6.2.24)

where c.c. stands for the complex conjugate, M is the number of channels, A j is the
amplitude, and ω j is the carrier frequency of the jth channel. Because of the coher-
ent addition of individual channel fields, Eq. (6.2.24) contains time-dependent terms
resulting from beating of the signal in different channels, i.e.,

P =
M

∑
j=1

Pj +
M

∑
j=1

M

∑
k �= j

2
√

PjPk cos(Ω jkt + φ j −φk), (6.2.25)

where A j =
√

Pj exp(iφ j) was assumed together with Ω jk = ω j − ωk. When Eq.
(6.2.25) is substituted in Eq. (6.2.6), the carrier population is also found to oscillate
at the beat frequency Ω jk. Since the gain and the refractive index both depend on N,
they are also modulated at the frequency Ω jk; such a modulation creates gain and index
gratings, which induce interchannel crosstalk by scattering a part of the signal from one
channel to another. This phenomenon can also be viewed as FWM [16].

The origin of cross-gain saturation is also evident from Eq. (6.2.25). The first term
on the right side shows that the power P in Eq. (6.2.7) should be replaced by the total
power in all channels. Thus, the gain of a specific channel is saturated not only by
its own power but also by the power of neighboring channels, a phenomenon known
as cross-gain saturation. It is undesirable in WDM systems since the amplifier gain
changes with time depending on the bit pattern of neighboring channels. As a result, the
amplified signal appears to fluctuate more or less randomly. Such fluctuations degrade
the effective SNR at the receiver. The interchannel crosstalk occurs regardless of the
channel spacing. It can be avoided only by reducing the channel powers to low enough
values that the SOA operates in the unsaturated regime. Interchannel crosstalk induced
by FWM occurs for all WDM lightwave systems irrespective of the modulation format
used [23]–[26]. Its impact is most severe for coherent systems because of a relatively
small channel spacing [25]. FWM can occur even for widely spaced channels through
intraband nonlinearities [17] occurring at fast time scales (<1 ps).
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Figure 6.10: Schematic of a fiber-based Raman amplifier in the forward-pumping configuration.

It is clear that SOAs suffer from several drawbacks which make their use as in-line
amplifiers impractical. A few among them are polarization sensitivity, interchannel
crosstalk, and large coupling losses. The unsuitability of SOAs led to a search for
alternative amplifiers during the 1980s, and two types of fiber-based amplifiers using
the Raman effect and rare-earth dopants were developed. The following two sections
are devoted to these two types of amplifiers. It should be stressed that SOAs have found
many other applications. They can be used for wavelength conversion and can act as a
fast switch for wavelength routing in WDM networks. They are also being pursued for
metropolitan-area networks as a low-cost alternative to fiber amplifiers.

6.3 Raman Amplifiers

A fiber-based Raman amplifier uses stimulated Raman scattering (SRS) occurring in
silica fibers when an intense pump beam propagates through it [27]–[29]. The main
features of SRS have been discussed in Sections 2.6. SRS differs from stimulated emis-
sion in one fundamental aspect. Whereas in the case of stimulated emission an incident
photon stimulates emission of another identical photon without losing its energy, in the
case of SRS the incident pump photon gives up its energy to create another photon
of reduced energy at a lower frequency (inelastic scattering); the remaining energy is
absorbed by the medium in the form of molecular vibrations (optical phonons). Thus,
Raman amplifiers must be pumped optically to provide gain. Figure 6.10 shows how
a fiber can be used as a Raman amplifier. The pump and signal beams at frequencies
ωp and ωs are injected into the fiber through a fiber coupler. The energy is transferred
from the pump beam to the signal beam through SRS as the two beams copropagate in-
side the fiber. The pump and signal beams counterpropagate in the backward-pumping
configuration commonly used in practice.

6.3.1 Raman Gain and Bandwidth

The Raman-gain spectrum of silica fibers is shown in Figure 2.18; its broadband nature
is a consequence of the amorphous nature of glass. The Raman-gain coefficient g R is
related to the optical gain g(z) as g = gRIp(z), where Ip is the pump intensity. In terms
of the pump power Pp, the gain can be written as

g(ω) = gR(ω)(Pp/ap), (6.3.1)
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Figure 6.11: Raman-gain spectra (ratio gR/ap) for standard (SMF), dispersion-shifted (DSF)
and dispersion-compensating (DCF) fibers. Normalized gain profiles are also shown. (After
Ref. [30]; c©2001 IEEE; reprinted with permission.)

where ap is the cross-sectional area of the pump beam inside the fiber. Since a p can
vary considerably for different types of fibers, the ratio gR/ap is a measure of the
Raman-gain efficiency [30]. This ratio is plotted in Fig. 6.11 for three different fibers.
A dispersion-compensating fiber (DCF) can be 8 times more efficient than a standard
silica fiber (SMF) because of its smaller core diameter. The frequency dependence of
the Raman gain is almost the same for the three kinds of fibers as evident from the
normalized gain spectra shown in Fig. 6.11. The gain peaks at a Stokes shift of about
13.2 THz. The gain bandwidth ∆νg is about 6 THz if we define it as the FWHM of the
dominant peak in Fig. 6.11.

The large bandwidth of fiber Raman amplifiers makes them attractive for fiber-
optic communication applications. However, a relatively large pump power is required
to realize a large amplification factor. For example, if we use Eq. (6.1.7) by assuming
operation in the unsaturated region, gL ≈ 6.7 is required for G = 30 dB. By using
gR = 6×10−14 m/W at the gain peak at 1.55 µm and a p = 50 µm2, the required pump
power is more than 5 W for 1-km-long fiber. The required power can be reduced for
longer fibers, but then fiber losses must be included. In the following section we discuss
the theory of Raman amplifiers including both fiber losses and pump depletion.

6.3.2 Amplifier Characteristics

It is necessary to include the effects of fiber losses because of a long fiber length re-
quired for Raman amplifiers. Variations in the pump and signal powers along the am-
plifier length can be studied by solving the two coupled equations given in Section
2.6.1. In the case of forward pumping, these equations take the form

dPs/dz = −αsPs +(gR/ap)PpPs, (6.3.2)

dPp/dz = −αpPp − (ωp/ωs)(gR/ap)PsPp, (6.3.3)

where αs and αp represent fiber losses at the signal and pump frequencies ω s and
ωp, respectively. The factor ω p/ωs results from different energies of pump and signal
photons and disappears if these equations are written in terms of photon numbers.
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Consider first the case of small-signal amplification for which pump depletion can
be neglected [the last term in Eq. (6.3.3)]. Substituting Pp(z) = Pp(0)exp(−αpz) in Eq.
(6.3.2), the signal power at the output of an amplifier of length L is given by

Ps(L) = Ps(0)exp(gRP0Leff/ap −αsL), (6.3.4)

where P0 = Pp(0) is the input pump power and Leff is defined as

Leff = [1− exp(−αpL)]/αp. (6.3.5)

Because of fiber losses at the pump wavelength, the effective length of the amplifier is
less than the actual length L; Leff ≈ 1/αp for αpL � 1. Since Ps(L) = Ps(0)exp(−αsL)
in the absence of Raman amplification, the amplifier gain is given by

GA =
Ps(L)

Ps(0)exp(−αsL)
= exp(g0L), (6.3.6)

where the small-signal gain g0 is defined as

g0 = gR

(
P0

ap

)(
Leff

L

)
≈ gRP0

apαpL
. (6.3.7)

The last relation holds for αpL � 1. The amplification factor GA becomes length in-
dependent for large values of α pL. Figure 6.12 shows variations of GA with P0 for
several values of input signal powers for a 1.3-km-long Raman amplifier operating at
1.064 µm and pumped at 1.017 µm. The amplification factor increases exponentially
with P0 initially but then starts to deviate for P0 > 1 W because of gain saturation. De-
viations become larger with an increase in Ps(0) as gain saturation sets in earlier along
the amplifier length. The solid lines in Fig. 6.12 are obtained by solving Eqs. (6.3.2)
and (6.3.3) numerically to include pump depletion.

The origin of gain saturation in Raman amplifiers is quite different from SOAs.
Since the pump supplies energy for signal amplification, it begins to deplete as the
signal power Ps increases. A decrease in the pump power Pp reduces the optical gain
as seen from Eq. (6.3.1). This reduction in gain is referred to as gain saturation. An
approximate expression for the saturated amplifier gain Gs can be obtained assuming
αs = αp in Eqs. (6.3.2) and (6.3.3). The result is given by [29]

Gs =
1+ r0

r0 + G−(1+r0)
A

, r0 =
ωp

ωs

Ps(0)
Pp(0)

. (6.3.8)

Figure 6.13 shows the saturation characteristics by plotting Gs/GA as a function of
GAr0 for several values of GA. The amplifier gain is reduced by 3 dB when GAr0 ≈ 1.
This condition is satisfied when the power of the amplified signal becomes comparable
to the input pump power P0. In fact, P0 is a good measure of the saturation power.
Since typically P0 ∼ 1 W, the saturation power of fiber Raman amplifiers is much larger
than that of SOAs. As typical channel powers in a WDM system are ∼1 mW, Raman
amplifiers operate in the unsaturated or linear regime, and Eq. (6.3.7) can be used in
place of Eq. (6.3.8)
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Figure 6.12: Variation of amplifier gain G0 with pump power P0 in a 1.3-km-long Raman am-
plifier for three values of the input power. Solid lines show the theoretical prediction. (After
Ref. [31]; c©1981 Elsevier; reprinted with permission.)

Noise in Raman amplifiers stems from spontaneous Raman scattering. It can be
included in Eq. (6.3.2) by replacing Ps in the last term with Ps + Psp, where Psp =
2nsphνs∆νR is the total spontaneous Raman power over the entire Raman-gain band-
width ∆νR. The factor of 2 accounts for the two polarization directions. The fac-
tor nsp(Ω) equals [1− exp(−h̄Ωs/kBT )]−1, where kBT is the thermal energy at room
temperature (about 25 meV). In general, the added noise is much smaller for Raman
amplifiers because of the distributed nature of the amplification.

6.3.3 Amplifier Performance

As seen in Fig. 6.12, Raman amplifiers can provide 20-dB gain at a pump power of
about 1 W. For the optimum performance, the frequency difference between the pump
and signal beams should correspond to the peak of the Raman gain in Fig. 6.11 (occur-
ring at about 13 THz). In the near-infrared region, the most practical pump source is a
diode-pumped Nd:YAG laser operating at 1.06 µm. For such a pump laser, the max-
imum gain occurs for signal wavelengths near 1.12 µm. However, the wavelengths
of most interest for fiber-optic communication systems are near 1.3 and 1.5 µm. A
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Figure 6.13: Gain–saturation characteristics of Raman amplifiers for several values of the un-
saturated amplifier gain GA.

Nd:YAG laser can still be used if a higher-order Stokes line, generated through cas-
caded SRS, is used as a pump. For instance, the third-order Stokes line at 1.24 µm can
act as a pump for amplifying the 1.3-µm signal. Amplifier gains of up to 20 dB were
measured in 1984 with this technique [32]. An early application of Raman amplifiers
was as a preamplifier for improving the receiver sensitivity [33].

The broad bandwidth of Raman amplifiers is useful for amplifying several channels
simultaneously. As early as 1988 [34], signals from three DFB semiconductor lasers
operating in the range 1.57–1.58 µm were amplified simultaneously using a 1.47-µm
pump. This experiment used a semiconductor laser as a pump source. An amplifier gain
of 5 dB was realized at a pump power of only 60 mW. In another interesting experi-
ment [35], a Raman amplifier was pumped by a 1.55-µm semiconductor laser whose
output was amplified using an erbium-doped fiber amplifier. The 140-ns pump pulses
had 1.4 W peak power at the 1-kHz repetition rate and were capable of amplifying
1.66-µm signal pulses by more than 23 dB through SRS in a 20-km-long dispersion-
shifted fiber. The 200 mW peak power of 1.66-µm pulses was large enough for their
use for optical time-domain reflection measurements commonly used for supervising
and maintaining fiber-optic networks [36].

The use of Raman amplifiers in the 1.3-µm spectral region has also attracted atten-
tion [37]–[40]. However, a 1.24-µm pump laser is not readily available. Cascaded SRS
can be used to generate the 1.24-µm pump light. In one approach, three pairs of fiber
gratings are inserted within the fiber used for Raman amplification [37]. The Bragg
wavelengths of these gratings are chosen such that they form three cavities for three
Raman lasers operating at wavelengths 1.117, 1.175, and 1.24 µm that correspond to
first-, second-, and third-order Stokes lines of the 1.06-µm pump. All three lasers are
pumped by using a diode-pumped Nd-fiber laser through cascaded SRS. The 1.24-µm



248 CHAPTER 6. OPTICAL AMPLIFIERS

laser then pumps the Raman amplifier and amplifies a 1.3-µm signal. The same idea
of cascaded SRS was used to obtain 39-dB gain at 1.3 µm by using WDM couplers in
place of fiber gratings [38]. Such 1.3-µm Raman amplifiers exhibit high gains with a
low noise figure (about 4 dB) and are also suitable as an optical preamplifier for high-
speed optical receivers. In a 1996 experiment, such a receiver yielded the sensitivity of
151 photons/bit at a bit rate of 10 Gb/s [39]. The 1.3-µm Raman amplifiers can also be
used to upgrade the capacity of existing fiber links from 2.5 to 10 Gb/s [40].

Raman amplifiers are called lumped or distributed depending on their design. In
the lumped case, a discrete device is made by spooling 1–2 km of a especially prepared
fiber that has been doped with Ge or phosphorus for enhancing the Raman gain. The
fiber is pumped at a wavelength near 1.45 µm for amplification of 1.55-µm signals.
In the case of distributed Raman amplification, the same fiber that is used for signal
transmission is also used for signal amplification. The pump light is often injected in
the backward direction and provides gain over relatively long lengths (>20 km). The
main drawback in both cases from the system standpoint is that high-power lasers are
required for pumping. Early experiments often used a tunable color-center laser as a
pump; such lasers are too bulky for system applications. For this reason, Raman am-
plifiers were rarely used during the 1990s after erbium-doped fiber amplifiers became
available. The situation changed by 2000 with the availability of compact high-power
semiconductor and fiber lasers.

The phenomenon that limits the performance of distributed Raman amplifiers most
turns out to be Rayleigh scattering [41]–[45]. As discussed in Section 2.5, Rayleigh
scattering occurs in all fibers and is the fundamental loss mechanism for them. A
small part of light is always backscattered because of this phenomenon. Normally, this
Rayleigh backscattering is negligible. However, it can be amplified over long lengths
in fibers with distributed gain and affects the system performance in two ways. First,
a part of backward propagating noise appears in the forward direction, enhancing the
overall noise. Second, double Rayleigh scattering of the signal creates a crosstalk
component in the forward direction. It is this Rayleigh crosstalk, amplified by the
distributed Raman gain, that becomes the major source of power penalty. The fraction
of signal power propagating in the forward direction after double Rayleigh scattering
is the Rayleigh crosstalk. This fraction is given by [43]

fDRS = r2
s

∫ z

0
dz1 G−2(z1)

∫ L

z1

G2(z2)dz2, (6.3.9)

where rs ∼ 10−4 km−1 is the Rayleigh scattering coefficient and G(z) is the Raman gain
at a distance z in the backward-pumping configuration for an amplifier of length L. The
crosstalk level can exceed 1% (−20-dB crosstalk) for L > 80 km and G(L) > 10. Since
this crosstalk accumulates over multiple amplifiers, it can lead to large power penalties
for undersea lightwave systems with long lengths.

Raman amplifiers can work at any wavelength as long as the pump wavelength
is suitably chosen. This property, coupled with their wide bandwidth, makes Raman
amplifiers quite suitable for WDM systems. An undesirable feature is that the Raman
gain is somewhat polarization sensitive. In general, the gain is maximum when the
signal and pump are polarized along the same direction but is reduced when they are
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orthogonally polarized. The polarization problem can be solved by pumping a Raman
amplifier with two orthogonally polarized lasers. Another requirement for WDM sys-
tems is that the gain spectrum be relatively uniform over the entire signal bandwidth so
that all channels experience the same gain. In practice, the gain spectrum is flattened by
using several pumps at different wavelengths. Each pump creates the gain that mimics
the spectrum shown in Fig. 6.11. The superposition of several such spectra then creates
relatively flat gain over a wide spectral region. Bandwidths of more than 100 nm have
been realized using multiple pump lasers [46]–[48] .

The design of broadband Raman amplifiers suitable for WDM applications requires
consideration of several factors. The most important among them is the inclusion of
pump–pump interactions. In general, multiple pump beams are also affected by the Ra-
man gain, and some power from each short-wavelength pump is invariably transferred
to long-wavelength pumps. An appropriate model that includes pump interactions,
Rayleigh backscattering, and spontaneous Raman scattering considers each frequency
component separately and solves the following set of coupled equations [48]:

dPf (ν)
dz

=
∫

µ>ν
gR(µ −ν)a−1

µ [Pf (µ)+ Pb(µ)][Pf (ν)+ 2hνnsp(µ −ν)]dµ

−
∫

µ<ν
gR(ν − µ)a−1

ν [Pf (µ)+ Pb(µ)][Pf (ν)+ 2hνnsp(ν − µ)]dµ ,

− α(ν)Pf (ν)+ rsPb(ν) (6.3.10)

where µ and ν denote optical frequencies, n sp(Ω) = [1− exp(−h̄Ω/kBT )]−1, and the
subscripts f and b denote forward- and backward-propagating waves, respectively. In
this equation, the first and second terms account for the Raman-induced power trans-
fer into and out of each frequency band. Fiber losses and Rayleigh backscattering are
included through the third and fourth terms, respectively. The noise induced by spon-
taneous Raman scattering is included by the temperature-dependent factor in the two
integrals. A similar equation can be written for the backward-propagating waves.

To design broadband Raman amplifiers, the entire set of such equations is solved
numerically to find the channel gains, and input pump powers are adjusted until the
gain is nearly the same for all channels. Figure 6.14 shows an example of the gain
spectrum measured for a Raman amplifier made by pumping a 25-km-long dispersion-
shifted fiber with 12 diode lasers. The frequencies and power levels of the pump lasers,
required to achieve a nearly flat gain profile, are also shown. Notice that all power
levels are under 100 mW. The amplifier provides about 10.5 dB gain over an 80-
nm bandwidth with a ripple of less than 0.1 dB. Such an amplifier is suitable for
dense WDM systems covering both the C and L bands. Several experiments have used
broadband Raman amplifiers to demonstrate transmission over long distances at high
bit rates. In one 3-Tb/s experiment, 77 channels, each operating at 42.7 Gb/s, were
transmitted over 1200 km by using the C and L bands simultaneously [49].

Several other nonlinear processes can provide gain inside silica fibers. An exam-
ple is provided by the parametric gain resulting from FWM [29]. The resulting fiber
amplifier is called a parametric amplifier and can have a gain bandwidth larger than
100 nm. Parametric amplifiers require a large pump power (typically >1 W) that may
be reduced using fibers with high nonlinearities. They also generate a phase-conjugated
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Figure 6.14: Measured gain profile of a Raman amplifier with nearly flat gain over an 80-nm
bandwidth. Pump frequencies and powers used are shown on the right. (After Ref. [30]; c©2001
IEEE; reprinted with permission.)

signal that can be useful for dispersion compensation (see Section 7.7). Fiber amplifiers
can also be made using stimulated Brillouin scattering (SBS) in place of SRS [29]. The
operating mechanism behind Brillouin amplifiers is essentially the same as that for fiber
Raman amplifiers in the sense that both amplifiers are pumped backward and provide
gain through a scattering process. Despite this formal similarity, Brillouin amplifiers
are rarely used in practice because their gain bandwidth is typically below 100 MHz.
Moreover, as the Stokes shift for SBS is ∼10 GHz, pump and signal wavelengths nearly
coincide. These features render Brillouin amplifiers unsuitable for WDM lightwave
systems although they can be exploited for other applications.

6.4 Erbium-Doped Fiber Amplifiers

An important class of fiber amplifiers makes use of rare-earth elements as a gain
medium by doping the fiber core during the manufacturing process (see Section 2.7).
Although doped-fiber amplifiers were studied as early as 1964 [50], their use became
practical only 25 years later, after the fabrication and characterization techniques were
perfected [51]. Amplifier properties such as the operating wavelength and the gain
bandwidth are determined by the dopants rather than by the silica fiber, which plays the
role of a host medium. Many different rare-earth elements, such as erbium, holmium,
neodymium, samarium, thulium, and ytterbium, can be used to realize fiber ampli-
fiers operating at different wavelengths in the range 0.5–3.5 µm. Erbium-doped fiber
amplifiers (EDFAs) have attracted the most attention because they operate in the wave-
length region near 1.55 µm [52]–[56]. Their deployment in WDM systems after 1995
revolutionized the field of fiber-optic communications and led to lightwave systems
with capacities exceeding 1 Tb/s. This section focuses on the main characteristics of
EDFAs.
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Figure 6.15: (a) Energy-level diagram of erbium ions in silica fibers; (b) absorption and gain
spectra of an EDFA whose core was codoped with germania. (After Ref. [64]; c©1991 IEEE;
reprinted with permission.)

6.4.1 Pumping Requirements

The design of an EDFA looks similar to that shown in Fig. 6.10 with the main differ-
ence that the fiber core contains erbium ions (Er3+). Pumping at a suitable wavelength
provides gain through population inversion. The gain spectrum depends on the pump-
ing scheme as well as on the presence of other dopants, such as germania and alumina,
within the fiber core. The amorphous nature of silica broadens the energy levels of
Er3+ into bands. Figure 6.15(a) shows a few energy levels of Er 3+ in silica glasses.
Many transitions can be used to pump an EDFA. Early experiments used the visible
radiation emitted from argon-ion, Nd:YAG, or dye lasers even though such pumping
schemes are relatively inefficient. From a practical standpoint the use of semiconductor
lasers is preferred.

Efficient EDFA pumping is possible using semiconductor lasers operating near
0.98- and 1.48-µm wavelengths. Indeed, the development of such pump lasers was
fueled with the advent of EDFAs. It is possible to realize 30-dB gain with only 10–
15 mW of absorbed pump power. Efficiencies as high as 11 dB/mW were achieved by
1990 with 0.98-µm pumping [57]. The pumping transition 4I15/2 → 4I9/2 can use high-
power GaAs lasers, and the pumping efficiency of about 1 dB/mW has been obtained
at 820 nm [58]. The required pump power can be reduced by using silica fibers doped
with aluminum and phosphorus or by using fluorophosphate fibers [59]. With the avail-
ability of visible semiconductor lasers, EDFAs can also be pumped in the wavelength
range 0.6–0.7 µm. In one experiment [60], 33-dB gain was realized at 27 mW of pump
power obtained from an AlGaInP laser operating at 670 nm. The pumping efficiency
was as high as 3 dB/mW at low pump powers. Most EDFAs use 980-nm pump lasers
as such lasers are commercially available and can provide more than 100 mW of pump
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power. Pumping at 1480 nm requires longer fibers and higher powers because it uses
the tail of the absorption band shown in Fig. 6.15(b).

EDFAs can be designed to operate in such a way that the pump and signal beams
propagate in opposite directions, a configuration referred to as backward pumping to
distinguish it from the forward-pumping configuration shown in Fig. 6.10. The per-
formance is nearly the same in the two pumping configurations when the signal power
is small enough for the amplifier to remain unsaturated. In the saturation regime, the
power-conversion efficiency is generally better in the backward-pumping configura-
tion [61], mainly because of the important role played by the amplified spontaneous
emission (ASE). In the bidirectional pumping configuration, the amplifier is pumped
in both directions simultaneously by using two semiconductor lasers located at the two
fiber ends. This configuration requires two pump lasers but has the advantage that the
population inversion, and hence the small-signal gain, is relatively uniform along the
entire amplifier length.

6.4.2 Gain Spectrum

The gain spectrum shown in Fig. 6.15 is the most important feature of an EDFA as it de-
termines the amplification of individual channels when a WDM signal is amplified. The
shape of the gain spectrum is affected considerably by the amorphous nature of silica
and by the presence of other codopants within the fiber core such as germania and alu-
mina [62]–[64]. The gain spectrum of erbium ions alone is homogeneously broadened;
its bandwidth is determined by the dipole relaxation time T2 in accordance with Eq.
(6.1.2). However, the spectrum is considerably broadened in the presence of randomly
located silica molecules. Structural disorders lead to inhomogeneous broadening of
the gain spectrum, whereas Stark splitting of various energy levels is responsible for
homogeneous broadening. Mathematically, the gain g(ω) in Eq. (6.1.2) should be av-
eraged over the distribution of atomic transition frequencies ω 0 such that the effective
gain is given by

geff(ω) =
∫ ∞

−∞
g(ω ,ω0) f (ω0)dω0, (6.4.1)

where f (ω0) is the distribution function whose form also depends on the presence of
other dopants within the fiber core.

Figure 6.15(b) shows the gain and absorption spectra of an EDFA whose core was
doped with germania [64]. The gain spectrum is quite broad and has a double-peak
structure. The addition of alumina to the fiber core broadens the gain spectrum even
more. Attempts have been made to isolate the contributions of homogeneous and inho-
mogeneous broadening through measurements of spectral hole burning. For germania-
doped EDFAs the contributions of homogeneous and inhomogeneous broadening are
relatively small [63]. In contrast, the gain spectrum of aluminosilicate glasses has
roughly equal contributions from homogeneous and inhomogeneous broadening mech-
anisms. The gain bandwidth of such EDFAs typically exceeds 35 nm.

The gain spectrum of EDFAs can vary from amplifier to amplifier even when core
composition is the same because it also depends on the amplifier length. The reason
is that the gain depends on both the absorption and emission cross sections having dif-
ferent spectral characteristics. The local inversion or local gain varies along the fiber
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length because of pump power variations. The total gain is obtained by integrating over
the amplifier length. This feature can be used to realize EDFAs that provide amplifica-
tion in the L band covering the spectral region 1570–1610 nm. The wavelength range
over which an EDFA can provide nearly constant gain is of primary interest for WDM
systems. This issue is discussed later in this section.

6.4.3 Simple Theory

The gain of an EDFA depends on a large number of device parameters such as erbium-
ion concentration, amplifier length, core radius, and pump power [64]–[68]. A three-
level rate-equation model commonly used for lasers [1] can be adapted for EDFAs. It
is sometimes necessary to add a fourth level to include the excited-state absorption. In
general, the resulting equations must be solved numerically.

Considerable insight can be gained by using a simple two-level model that is valid
when ASE and excited-state absorption are negligible. The model assumes that the
top level of the three-level system remains nearly empty because of a rapid transfer
of the pumped population to the excited state. It is, however, important to take into
account the different emission and absorption cross sections for the pump and signal
fields. The population densities of the two states, N1 and N2, satisfy the following two
rate equations [55]:

∂N2

∂ t
= (σa

pN1 −σ e
pN2)φp +(σa

s N1 −σ e
s N2)φs − N2

T1
, (6.4.2)

∂N1

∂ t
= (σ e

pN2 −σa
pN1)φp +(σ e

s N2 −σa
s N1)φs +

N2

T1
, (6.4.3)

where σ a
j and σ e

j are the absorption and emission cross sections at the frequency ω j

with j = p,s. Further, T1 is the spontaneous lifetime of the excited state (about 10 ms
for EDFAs). The quantities φp and φs represent the photon flux for the pump and
signal waves, defined such that φ j = Pj/(a jhν j), where Pj is the optical power, σ j is
the transition cross section at the frequency ν j, and a j is the cross-sectional area of the
fiber mode for j = p,s.

The pump and signal powers vary along the amplifier length because of absorption,
stimulated emission, and spontaneous emission. If the contribution of spontaneous
emission is neglected, Ps and Pp satisfy the simple equations

∂Ps

∂ z
= Γs(σ e

s N2 −σa
s N1)Ps −αPs, (6.4.4)

s
∂Pp

∂ z
= Γp(σ e

pN2 −σa
pN1)Pp −α ′Pp, (6.4.5)

where α and α ′ take into account fiber losses at the signal and pump wavelengths,
respectively. These losses can be neglected for typical amplifier lengths of 10–20 m.
However, they must be included in the case of distributed amplification discussed later.
The confinement factors Γs and Γp account for the fact that the doped region within the
core provides the gain for the entire fiber mode. The parameter s = ±1 in Eq. (6.4.5)
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Figure 6.16: Small-signal gain as a function of (a) pump power and (b) amplifier length for
an EDFA assumed to be pumped at 1.48 µm. (After Ref. [64]; c©1991 IEEE; reprinted with
permission.)

depending on the direction of pump propagation; s = −1 in the case of a backward-
propagating pump.

Equations (6.4.2)–(6.4.5) can be solved analytically, in spite of their complexity,
after some justifiable approximations [65]. For lumped amplifiers, the fiber length is
short enough that both α and α ′ can be set to zero. Noting that N1 +N2 = Nt where Nt is
the total ion density, only one equation, say Eq. (6.4.2) for N 2, need be solved. Noting
again that the absorption and stimulated-emission terms in the field and population
equations are related, the steady-state solution of Eq. (6.4.2), obtained by setting the
time derivative to zero, can be written as

N2(z) = − T1

adhνs

∂Ps

∂ z
− sT1

adhνp

∂Pp

∂ z
, (6.4.6)

where ad = Γsas = Γpap is the cross-sectional area of the doped portion of the fiber
core. Substituting this solution into Eqs. (6.4.4) and (6.4.5) and integrating them over
the fiber length, the powers Ps and Pp at the fiber output can be obtained in an analyt-
ical form. This model has been extended to include the ASE propagation in both the
forward and backward directions [68].

The total amplifier gain G for an EDFA of length L is obtained using

G = Γs exp

[∫ L

0
(σ e

s N2 −σa
s N1)dz

]
, (6.4.7)

where N1 = Nt −N2 and N2 is given by Eq. (6.4.6). Figure 6.16 shows the small-signal
gain at 1.55 µm as a function of the pump power and the amplifier length by using
typical parameter values. For a given amplifier length L, the amplifier gain initially
increases exponentially with the pump power, but the increase becomes much smaller
when the pump power exceeds a certain value [corresponding to the “knee” in Fig.
6.16(a)]. For a given pump power, the amplifier gain becomes maximum at an optimum
value of L and drops sharply when L exceeds this optimum value. The reason is that
the latter portion of the amplifier remains unpumped and absorbs the amplified signal.
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Since the optimum value of L depends on the pump power Pp, it is necessary to
choose both L and Pp appropriately. Figure 6.16(b) shows that a 35-dB gain can be
realized at a pump power of 5 mW for L = 30 m and 1.48-µm pumping. It is possible
to design amplifiers such that high gain is obtained for amplifier lengths as short as a
few meters. The qualitative features shown in Fig. 6.16 are observed in all EDFAs; the
agreement between theory and experiment is generally quite good [67]. The saturation
characteristics of EDFAs are similar to those shown in Figs. 6.13 for Raman amplifiers.
In general, the output saturation power is smaller than the output pump power expected
in the absence of signal. It can vary over a wide range depending on the EDFA design,
with typical values ∼10 mW. For this reason the output power levels of EDFAs are
generally limited to below 100 mW, although powers as high as 250 mW have been
obtained with a proper design [69].

The foregoing analysis assumes that both pump and signal waves are in the form
of CW beams. In practice, EDFAs are pumped by using CW semiconductor lasers, but
the signal is in the form of a pulse train (containing a random sequence of 1 and 0 bits),
and the duration of individual pulses is inversely related to the bit rate. The question
is whether all pulses experience the same gain or not. As discussed in Section 6.2, the
gain of each pulse depends on the preceding bit pattern for SOAs because an SOA can
respond on time scales of 100 ps or so. Fortunately, the gain remains constant with time
in an EDFA for even microsecond-long pulses. The reason is related to a relatively large
value of the fluorescence time associated with the excited erbium ions (T1 ∼ 10 ms).
When the time scale of signal-power variations is much shorter than T1, erbium ions
are unable to follow such fast variations. As single-pulse energies are typically much
below the saturation energy (∼10 µJ), EDFAs respond to the average power. As a
result, gain saturation is governed by the average signal power, and amplifier gain does
not vary from pulse to pulse even for a WDM signal.

In some applications such as packet-switched networks, signal power may vary on
a time scale comparable to T1. Amplifier gain in that case is likely to become time
dependent, an undesirable feature from the standpoint of system performance. A gain-
control mechanism that keeps the amplifier gain pinned at a constant value consists
of making the EDFA oscillate at a controlled wavelength outside the range of interest
(typically below 1.5 µm). Since the gain remains clamped at the threshold value for a
laser, the signal is amplified by the same factor despite variations in the signal power.
In one implementation of this scheme, an EDFA was forced to oscillate at 1.48 µm by
fabricating two fiber Bragg gratings acting as high-reflectivity mirrors at the two ends
of the amplifier [70].

6.4.4 Amplifier Noise

Amplifier noise is the ultimate limiting factor for system applications [71]–[74]. For
a lumped EDFA, the impact of ASE is quantified through the noise figure Fn given by
Fn = 2nsp. The spontaneous emission factor nsp depends on the relative populations N1

and N2 of the ground and excited states as nsp = N2/(N2 −N1). Since EDFAs operate
on the basis of a three-level pumping scheme, N1 �= 0 and nsp > 1. Thus, the noise
figure of EDFAs is expected to be larger than the ideal value of 3 dB.
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Figure 6.17: (a) noise figure and (b) amplifier gain as a function of the length for several pump-
ing levels. (After Ref. [74]; c©1990 IEE; reprinted with permission.)

The spontaneous-emission factor can be calculated for an EDFA by using the rate-
equation model discussed earlier. However, one should take into account the fact that
both N1 and N2 vary along the fiber length because of their dependence on the pump and
signal powers; hence nsp should be averaged along the amplifier length. As a result, the
noise figure depends both on the amplifier length L and the pump power P p, just as the
amplifier gain does. Figure 6.17(a) shows the variation of Fn with the amplifier length
for several values of Pp/Psat

p when a 1.53-µm signal is amplified with an input power of
1 mW. The amplifier gain under the same conditions is also shown in Fig. 6.17(b). The
results show that a noise figure close to 3 dB can be obtained for a high-gain amplifier
pumped such that Pp � Psat

p [71].

The experimental results confirm that Fn close to 3 dB is possible in EDFAs. A
noise figure of 3.2 dB was measured in a 30-m-long EDFA pumped at 0.98 µm with
11 mW of power [72]. A similar value was found for another EDFA pumped with
only 5.8 mW of pump power at 0.98 µm [73]. In general, it is difficult to achieve
high gain, low noise, and high pumping efficiency simultaneously. The main limitation
is imposed by the ASE traveling backward toward the pump and depleting the pump
power. Incorporation of an internal isolator alleviates this problem to a large extent.
In one implementation, 51-dB gain was realized with a 3.1-dB noise figure at a pump
power of only 48 mW [75].

The measured values of Fn are generally larger for EDFAs pumped at 1.48 µm. A
noise figure of 4.1 dB was obtained for a 60-m-long EDFA when pumped at 1.48 µm
with 24 mW of pump power [72]. The reason for a larger noise figure for 1.48-µm
pumped EDFAs can be understood from Fig. 6.17(a), which shows that the pump level
and the excited level lie within the same band for 1.48-µm pumping. It is difficult to
achieve complete population inversion (N1 ≈ 0) under such conditions. It is nonetheless
possible to realize Fn < 3.5 dB for pumping wavelengths near 1.46 µm.
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Relatively low noise levels of EDFAs make them an ideal choice for WDM light-
wave systems. In spite of low noise, the performance of long-haul fiber-optic commu-
nication systems employing multiple EDFAs is often limited by the amplifier noise.
The noise problem is particularly severe when the system operates in the anomalous-
dispersion region of the fiber because a nonlinear phenomenon known as the modu-
lation instability [29] enhances the amplifier noise [76] and degrades the signal spec-
trum [77]. Amplifier noise also introduces timing jitter. These issue are discussed later
in this chapter.

6.4.5 Multichannel Amplification

The bandwidth of EDFAs is large enough that they have proven to be the optical ampli-
fier of choice for WDM applications. The gain provided by them is nearly polarization
insensitive. Moreover, the interchannel crosstalk that cripples SOAs because of the
carrier-density modulation occurring at the channel spacing does not occur in EDFAs.
The reason is related to the relatively large value of T1 (about 10 ms) compared with
the carrier lifetime in SOAs (<1 ns). The sluggish response of EDFAs ensures that the
gain cannot be modulated at frequencies much larger than 10 kHz.

A second source of interchannel crosstalk is cross-gain saturation occurring be-
cause the gain of a specific channel is saturated not only by its own power (self-
saturation) but also by the power of neighboring channels. This mechanism of crosstalk
is common to all optical amplifiers including EDFAs [78]–[80]. It can be avoided by
operating the amplifier in the unsaturated regime. Experimental results support this
conclusion. In a 1989 experiment [78], negligible power penalty was observed when
an EDFA was used to amplify two channels operating at 2 Gb/s and separated by 2 nm
as long as the channel powers were low enough to avoid the gain saturation.

The main practical limitation of an EDFA stems from the spectral nonuniformity of
the amplifier gain. Even though the gain spectrum of an EDFA is relatively broad, as
seen in Fig. 6.15, the gain is far from uniform (or flat) over a wide wavelength range. As
a result, different channels of a WDM signal are amplified by different amounts. This
problem becomes quite severe in long-haul systems employing a cascaded chain of
EDFAs. The reason is that small variations in the amplifier gain for individual channels
grow exponentially over a chain of in-line amplifiers if the gain spectrum is the same
for all amplifiers. Even a 0.2-dB gain difference grows to 20 dB over a chain of 100
in-line amplifiers, making channel powers vary by a factor of 100, an unacceptable
variation range in practice. To amplify all channels by nearly the same amount, the
double-peak nature of the EDFA gain spectrum forces one to pack all channels near
one of the gain peaks. In a simple approach, input powers of different channels were
adjusted to reduce power variations at the receiver to an acceptable level [81]. This
technique may work for a small number of channels but becomes unsuitable for dense
WDM systems.

The entire bandwidth of 35–40 nm can be used if the gain spectrum is flattened
by introducing wavelength-selective losses through an optical filter. The basic idea
behind gain flattening is quite simple. If an optical filter whose transmission losses
mimic the gain profile (high in the high-gain region and low in the low-gain region) is
inserted after the doped fiber, the output power will become constant for all channels.
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Figure 6.18: Schematic of an EDFA designed to provide uniform gain over the 1530–1570-
nm bandwidth using an optical filter containing several long-period fiber gratings. The two-
stage design helps to reduce the noise level. (After Ref. [85]; c©1997 IEEE; reprinted with
permission.)

Although fabrication of such a filter is not simple, several gain-flattening techniques
have been developed [55]. For example, thin-film interference filters, Mach–Zehnder
filters, acousto-optic filters, and long-period fiber gratings have been used for flattening
the gain profile and equalizing channel gains [82]–[84].

The gain-flattening techniques can be divided into active and passive categories.
Most filter-based methods are passive in the sense that channel gains cannot be adjusted
in a dynamic fashion. The location of the optical filter itself requires some thought
because of high losses associated with it. Placing it before the amplifier increases the
noise while placing it after the amplifier reduces the output power. Often a two-stage
configuration shown in Fig. 6.18 is used. The second stage acts as a power amplifier
while the noise figure is mostly determined by the first stage whose noise is relatively
low because of its low gain. A combination of several long-period fiber gratings acting
as the optical filter in the middle of two stages resulted by 1977 in an EDFA whose
gain was flat to within 1 dB over the 40-nm bandwidth in the wavelength range of
1530–1570 nm [85].

Ideally, an optical amplifier should provide the same gain for all channels under
all possible operating conditions. This is not the case in general. For instance, if the
number of channels being transmitted changes, the gain of each channel will change
since it depends on the total signal power because of gain saturation. The active control
of channel gains is thus desirable for WDM applications. Many techniques have been
developed for this purpose. The most commonly used technique stabilizes the gain
dynamically by incorporating within the amplifier a laser that operates outside the used
bandwidth. Such devices are called gain-clamped EDFAs (as their gain is clamped by
a built-in laser) and have been studied extensively [86]–[91].

WDM lightwave systems capable of transmitting more than 80 channels appeared
by 1998. Such systems use the C and L bands simultaneously and need uniform ampli-
fier gain over a bandwidth exceeding 60 nm. Moreover, the use of the L band requires
optical amplifiers capable of providing gain in the wavelength range 1570–1610 nm.
It turns out that EDFAs can provide gain over this wavelength range, with a suitable
design. An L-band EDFA requires long fiber lengths (>100 m) to keep the inver-
sion level relatively low. Figure 6.19 shows an L-band amplifier with a two-stage
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Figure 6.19: Schematic of an L-band EDFA providing uniform gain over the 1570–1610-nm
bandwidth with a two-stage design. (After Ref. [92]; c©1999 IEEE; reprinted with permission.)

design [92]. The first stage is pumped at 980 nm and acts as a traditional EDFA (fiber
length 20–30 m) capable of providing gain in the range 1530–1570 nm. In contrast, the
second stage has 200-m-long doped fiber and is pumped bidirectionally using 1480-nm
lasers. An optical isolator between the two stages passes the ASE from the first stage
to the second stage (necessary for pumping the second stage) but blocks the backward-
propagating ASE from entering the first stage. Such cascaded, two-stage amplifiers can
provide flat gain over a wide bandwidth while maintaining a relatively low noise level.
As early as 1996, flat gain to within 0.5 dB was realized over the wavelength range of
1544–1561 nm [93]. The second EDFA was codoped with ytterbium and phosphorus
and was optimized such that it acted as a power amplifier. Since then, EDFAs providing
flat gain over the entire C and L bands have been made [55]. Raman amplification can
also be used for the L band. Combining Raman amplification with one or two EDFAs,
uniform gain can be realized over a 75-nm bandwidth covering the C and L bands [94].

A parallel configuration has also been developed for EDFAs capable of amplifying
over the C and L bands simultaneously [95]. In this approach, the incoming WDM
signal is split into two branches, which amplify the C-band and L-band signals sep-
arately using an optimized EDFA in each branch. The two-arm design has produced
a relatively uniform gain of 24 dB over a bandwidth as large as 80 nm when pumped
with 980-nm semiconductor lasers while maintaining a noise figure of about 6 dB [55].
The two-arm or two-stage amplifiers are complex devices and contain multiple compo-
nents, such as optical filters and isolators, within them for optimizing the amplifier per-
formance. An alternative approach to broadband EDFAs uses a fluoride fiber in place
of silica fibers as the host medium in which erbium ions are doped. Gain flatness over
a 76-nm bandwidth has been realized by doping a tellurite fiber with erbium ions [96].
Although such EDFAs are simpler in design compared with multistage amplifiers, they
suffer from the splicing difficulties because of the use of nonsilica glasses.

Starting in 2001, high-capacity lightwave systems began to use the short-wavelength
region—the so-called S band—extending from 1470 to 1520 nm [97]. Erbium ions
cannot provide gain in this spectral band. Thulium-doped fiber amplifiers have been
developed for this purpose, and they are capable of providing flat gain in the wave-
length range 1480–1510 nm when pumped using 1420-nm and 1560-nm semiconduc-
tor lasers [98]. Both lasers are needed to reach the 3F4 state of thulium ions. The gain
is realized on the 3F4 → 3H4 transition. Raman amplification can also be used for the
S band, and such amplifiers were under development in 2001.
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6.4.6 Distributed-Gain Amplifiers

Most EDFAs provide 20–25 dB amplification over a length ∼10 m through a relatively
high density of dopants (∼500 parts per million). Since such EDFAs compensate for
losses accumulated over 80–100 km in a relatively short distance of 10–20 m, they are
referred to as the lumped amplifiers. Similar to the case of Raman amplification, fiber
losses can also be compensated through distributed amplification. In this approach,
the transmission fiber itself is lightly doped (dopant density ∼50 parts per billion)
to provide the gain distributed over the entire fiber length such that it compensates for
fiber losses locally. Such an approach results in a virtually transparent fiber at a specific
wavelength when the fiber is pumped using the bidirectional pumping configuration.
The scheme is similar to that discussed in Section 6.3 for distributed Raman amplifiers,
except that the dopants provide the gain instead of the nonlinear phenomenon of SRS.
Although considerable research has been done on distributed EDFAs [99]–[106], this
scheme has not yet been used commercially as it requires special fibers.

Ideally, one would like to compensate for fiber losses in such a way that the signal
power does not change at all during propagation. Such a performance is, however,
never realized in practice as the pump power is not uniform along the fiber length
because of fiber losses at the pump wavelength. Pumping at 980 nm is ruled out because
fiber losses exceed 1 dB/km at that wavelength. The optimal pumping wavelength for
distributed EDFAs is 1.48 µm, where losses are about 0.25 dB/km. If we include pump
absorption by dopants, total pump losses typically exceed 0.4 dB/km, resulting in losses
of 10 dB for a fiber length of only 25 km. If the fiber is pumped unidirectionally by
injecting the pump beam from one end, nonuniform pumping leads to large variations
in the signal power. A bidirectional pumping configuration is therefore used in which
the fiber is pumped from both ends by using two 1.48-µm lasers. In general, variations
in the signal power due to nonuniform pumping can be kept small for a relatively short
fiber length of 10–15 km [99]. For practical reasons, it is important to increase the
fiber length close to 50 km or more so that the pumping stations could be spaced that
far apart. In a 1995 experiment, 11.5-ps pulses were transmitted over 93.4 km of a
distributed EDFA by injecting up to 90 mW of pump power from each end [104].
The signal power was estimated to vary by a factor of more than 10 because of the
nonuniform pumping.

The performance of distributed EDFAs depends on the signal wavelength since
both the noise figure and the pump power required to achieve transparency change
with the signal wavelength [103]. In a 1996 experiment, a 40-Gb/s return-to-zero (RZ)
signal was transmitted over 68 km by using 7.8-ps optical pulses [105]. The ASE noise
added to the signal is expected to be smaller than lumped EDFAs as the gain is rela-
tively small all along the fiber. Computer simulations show that the use of distributed
amplification for nonreturn-to-zero (NRZ) systems has the potential of doubling the
pump-station spacing in comparison with the spacing for the lumped amplifiers [106].
For long fiber lengths, one should consider the effect of SRS in distributed EDFAs
(pumped at 1.48 µm) because the pump-signal wavelength difference lies within the
Raman-gain bandwidth, and the signal experiences not only the gain provided by the
dopants but also the gain provided by SRS. The SRS increases the net gain and reduces
the noise figure for a given amount of pump power.
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6.5 System Applications

Fiber amplifiers have become an integral part of almost all fiber-optic communica-
tion systems installed after 1995 because of their excellent amplification characteristics
such as low insertion loss, high gain, large bandwidth, low noise, and low crosstalk. In
this section we first consider the use of EDFAs as preamplifiers at the receiver end and
then focus on the design issues for long-haul systems employing a cascaded chain of
optical amplifiers.

6.5.1 Optical Preamplification

Optical amplifiers are routinely used for improving the sensitivity of optical receivers
by preamplifying the optical signal before it falls on the photodetector. Preamplifica-
tion of the optical signal makes it strong enough that thermal noise becomes negligible
compared with the noise induced by the preamplifier. As a result, the receiver sen-
sitivity can be improved by 10–20 dB using an EDFA as a preamplifier [107]–[112].
In a 1990 experiment [107], only 152 photons/bit were needed for a lightwave system
operating at bit rates in the range 0.6–2.5 Gb/s. In another experiment [110], a receiver
sensitivity of −37.2 dBm (147 photons/bit) was achieved at the bit rate of 10 Gb/s. It
is even possible to use two preamplifiers in series; the receiver sensitivity improved
by 18.8 dB with this technique [109]. An experiment in 1992 demonstrated a record
sensitivity of −38.8 dBm (102 photons/bit) at 10 Gb/s by using two EDFAs [111].
Sensitivity degradation was limited to below 1.2 dB when the signal was transmitted
over 45 km of dispersion-shifted fiber.

To calculate the receiver sensitivity, we need to include all sources of current noise
at the receiver. The most important performance issue in designing optical preampli-
fiers is the contamination of the amplified signal by the ASE. Because of the incoherent
nature of spontaneous emission, the amplified signal is noisier than the input signal.
Following Sections 4.4.1 and 6.1.3, the photocurrent generated at the detector can be
written as

I = R|
√

GEs + Esp|2 + is + iT , (6.5.1)

where R is the photodetector responsivity, G is the amplifier gain, E s is the signal field,
Esp is the optical field associated with the ASE, and is and iT are current fluctuations
induced by the shot noise and thermal noise, respectively, within the receiver. The
average value of the current consists of

Ī = R(GPs + Psp), (6.5.2)

where Ps = |Es|2 is the optical signal before its preamplification, and Psp is the ASE
noise power added to the signal with the magnitude

Psp = |Esp|2 = Ssp∆νsp. (6.5.3)

The spectral density Ssp is given by Eq. (6.1.15) and ∆νsp is the effective bandwidth
of spontaneous emission set by the amplifier bandwidth or the filter bandwidth if an
optical filter is placed after the amplifier. Notice that Esp in Eq. (6.5.1) includes only
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the component of ASE that is copolarized with the signal as the orthogonally polarized
component cannot beat with the signal.

The current noise ∆I consists of fluctuations originating from the shot noise, ther-
mal noise, and ASE noise. The ASE-induced current noise has its origin in the beating
of Es with Esp and the beating of Esp with itself. To understand this beating phe-
nomenon more clearly, notice that the ASE field E sp is broadband and can be written
in the form

Esp =
∫ √

Ssp exp(φn − iωnt)dωn, (6.5.4)

where φn is the phase of the noise-spectral component at the frequency ω n, and the
integral extends over the entire bandwidth of the amplifier (or optical filter). Using
Es =

√
Ps exp(φs − iωst), the interference term in Eq. (6.5.1) consists of two parts and

leads to current fluctuations of the form

isig−sp = 2R
∫

(GPsSsp)1/2 cosθ1 dωn, isp−sp = 2R
∫ ∫

Ssp cosθ2 dωn dω ′
n, (6.5.5)

where θ1 = (ωs−ωn)t +φn−φs and θ2 = (ωn−ω ′
n)t +φ ′

n−φn are two rapidly varying
random phases. These two contributions to current noise are due to the beating of E s

with Esp and the beating of Esp with itself, respectively. Averaging over the random
phases, the total variance σ 2 = 〈(∆I)2〉 of current fluctuations can be written as [5]

σ2 = σ2
T + σ2

s + σ2
sig−sp + σ2

sp−sp, (6.5.6)

where σ 2
T is the thermal noise and the remaining three terms are [113]

σ2
s = 2q[R(GPs + Psp)]∆ f , (6.5.7)

σ2
sig−sp = 4R2GPsSsp∆ f , (6.5.8)

σ2
sp−sp = 4R2S2

sp∆νopt∆ f , (6.5.9)

where ∆νopt is the bandwidth of the optical filter and ∆ f is the electrical noise band-
width of the receiver. The shot-noise term σ 2

s is the same as in Section 4.4.1 except
that Psp has been added to GPs to account for the shot noise generated by spontaneous
emission.

The BER can be obtained by following the analysis of Section 4.5.1. As before, it
is given by

BER = 1
2 erfc(Q/

√
2), (6.5.10)

with the Q parameter

Q =
I1 − I0

σ1 + σ0
=

RG(2P̄rec)
σ1 + σ0

. (6.5.11)

Equation (6.5.11) is obtained by assuming zero extinction ratio (I 0 = 0) so that I1 =
RGP1 = RG(2P̄rec), where P̄rec is the receiver sensitivity for a given value of BER
(Q = 6 for BER = 10−9). The RMS noise currents σ1 and σ0 are obtained from Eqs.
(6.5.6)–(6.5.9) by setting Ps = P1 = 2P̄rec and Ps = 0, respectively.

The analysis can be simplified considerably by comparing the magnitude of various
terms in Eqs. (6.5.6). For this purpose it is useful to substitute S sp from Eq. (6.1.15),
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use R = ηq/hν and Eq. (6.1.19), and write Eqs. (6.5.7)–(6.5.9) in terms of the amplifier
noise figure Fn as

σ2
s = 2q2ηGPs∆ f/hν, (6.5.12)

σ2
sig−sp = 2(qηG)2FnPs∆ f/hν, (6.5.13)

σ2
sp−sp = (qηGFn)2∆νopt∆ f , (6.5.14)

where the RPsp term was neglected in Eq. (6.5.7) as it contributes negligibly to the shot
noise. A comparison of Eqs. (6.5.12) and (6.5.13) shows that σ 2

s can be neglected in
comparison with σ 2

sig−sp as it is smaller by a large factor ηGFn. The thermal noise σ 2
T

can also be neglected in comparison with the dominant terms. The noise currents σ 1

and σ0 are thus well approximated by

σ1 = (σ2
sig−sp + σ2

sp−sp)
1/2, σ0 = σsp−sp. (6.5.15)

The receiver sensitivity is obtained by substituting Eq. (6.5.15) in Eq. (6.5.11),
using Eqs. (6.5.13) and (6.5.14) with Ps = 2P̄rec, and solving for P̄rec. The result is

P̄rec = hνFn∆ f [Q2 + Q(∆νopt/∆ f )1/2]. (6.5.16)

The receiver sensitivity can also be written in terms of the average number of pho-
tons/bit, N̄p, by using P̄rec = N̄phνB. Taking ∆ f = B/2 as a typical value of the receiver
bandwidth, N̄p is given by

N̄p = 1
2 Fn[Q2 + Q(2∆νopt/B)1/2]. (6.5.17)

Equation (6.5.17) is a remarkably simple expression for the receiver sensitivity. It
shows clearly why amplifiers with a small noise figure must be used; the receiver sen-
sitivity degrades as Fn increases. It also shows how optical filters can improve the re-
ceiver sensitivity by reducing ∆νopt. Figure 6.20 shows N̄p as a function of ∆νopt/B for
several values of the noise figure Fn by using Q = 6, a value required to achieve a BER
of 10−9. The minimum optical bandwidth is equal to the bit rate to avoid blocking the
signal. The minimum value of Fn is 2 for an ideal amplifier (see Section 8.1.3). Thus,
by using Q = 6, the best receiver sensitivity from Eq. (6.5.17) is N̄p = 44.5 photons/bit.
This value should be compared with N̄p = 10 for an ideal receiver (see Section 4.5.3)
operating in the quantum-noise limit. Of course, N̄p = 10 is never realized in practice
because of thermal noise; typically, N̄p exceeds 1000 for p–i–n receivers without opti-
cal amplifiers. The analysis of this section shows that N̄p < 100 can be realized when
optical amplifiers are used to preamplify the signal received despite the degradation
caused by spontaneous-emission noise. The effect of a finite laser linewidth on the
receiver sensitivity has also been included with similar conclusions [114].

Improvements in the receiver sensitivity, realized with an EDFA acting as a pream-
plifier, can be used to increase the transmission distance of point-to-point fiber links
used for intercity and interisland communications. Another EDFA acting as a power
booster is often used to increase the launched power to levels as high as 100 mW. In
a 1992 experiment, a 2.5-Gb/s signal was transmitted over 318 km by such a tech-
nique [115]. Bit rate was later increased to 5 Gb/s in an experiment [116] that used two
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Figure 6.20: Receiver sensitivity versus optical-filter bandwidth for several values of the noise
figure Fn when an optical amplifier is used for preamplification of the received signal.

EDFAs to boost the signal power from −8 to 15.5 dBm (about 35 mW). This power
level is large enough that SBS becomes a problem. SBS can be suppressed through
phase modulation of the optical carrier that broadens the carrier linewidth to 200 MHz
or more. Direct modulation of lasers also helps through frequency chirping that broad-
ens the signal spectrum. In a 1996 experiment, a 10-Gb/s signal was transmitted over
442 km using two remotely pumped in-line amplifiers [117].

6.5.2 Noise Accumulation in Long-Haul Systems

Optical amplifiers are often cascaded to overcome fiber losses in a long-haul lightwave
system. The buildup of amplifier-induced noise is the most critical factor for such
systems. There are two reasons behind it. First, in a cascaded chain of optical amplifiers
(see Fig. 5.1), the ASE accumulates over many amplifiers and degrades the optical SNR
as the number of amplifiers increases [118]–[121]. Second, as the level of ASE grows,
it begins to saturate optical amplifiers and reduce the gain of amplifiers located further
down the fiber link. The net result is that the signal level drops further while the ASE
level increases. Clearly, if the number of amplifiers is large, the SNR will degrade so
much at the receiver that the BER will become unacceptable. Numerical simulations
show that the system is self-regulating in the sense that the total power obtained by
adding the signal and ASE powers remains relatively constant. Figure 6.21 shows this
self-regulating behavior for a cascaded chain of 100 amplifiers with 100-km spacing
and 35-dB small-signal gain. The power launched by the transmitter is 1 mW. The
other parameters are Ps

out = 8 mW, nsp = 1.3, and G0 exp(−αLA) = 3, where LA is the
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Figure 6.21: Variation of the signal power Ps and the ASE power PASE along a cascaded chain of
optical amplifiers. The total power PTOT becomes nearly constant after a few amplifiers. (After
Ref. [119]; c©1991 IEEE; reprinted with permission.)

amplifier spacing. The signal and ASE powers become comparable after 10,000 km,
indicating the SNR problem at the receiver.

To estimate the SNR associated with a long-haul lightwave system, we assume
that all amplifiers are spaced apart by a constant distance LA, and the amplifier gain
G ≡ exp(αLA) is just large enough to compensate for fiber losses in each fiber section.
The total ASE power for a chain of NA amplifiers is then obtained by multiplying Eq.
(6.5.3) with NA and is given by

Psp = 2NASsp∆νopt = 2nsphν0NA(G−1)∆νopt, (6.5.18)

where the factor of 2 accounts for the unpolarized nature of ASE. We can use this equa-
tion to find the optical SNR using SNRopt = Pin/Psp. However, optical SNR is not the
quantity that determines the receiver performance. As discussed earlier, the electrical
SNR is dominated by the signal-spontaneous beat noise generated at the photodetector.
If we include only this dominant contribution, the electrical SNR is related to optical
SNR as

SNRel =
R2P2

in

NAσ2
sig−sp

=
∆νopt

2∆ f
SNRopt (6.5.19)

if we use Eq. (6.5.8) with G = 1 assuming no net amplification of the input signal.
We can now evaluate the impact of multiple amplifiers. Clearly, the electrical SNR

can become quite small for large values of G and NA. For a fixed system length LT ,
the number of amplifiers depends on the amplifier spacing L A and can be reduced by
increasing it. However, a longer amplifier spacing will force one to increase the gain
of each amplifier since G = exp(αLA). Noting that NA = LT /LA = αLT / lnG, we find
that SNRel scales with G as lnG/(G−1) and can be increased by lowering the gain of
each amplifier. In practice, the amplifier spacing LA cannot be made too small because
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Figure 6.22: Maximum ASE-limited system length for a 10-Gb/s channel as a function of am-
plifier spacing LA for several values of input powers.

of cost considerations. To estimate the optimum value of L A, Fig. 6.22 shows the total
system length LT as a function of LA for several values of input powers Pin assuming
that an electrical SNR of 20 dB is required for the system to function properly and
using α = 0.2 dB/km, nsp = 1.6 (noise figure 5 dB), and ∆ f = 10 GHz. The main
point to note is that amplifier spacing becomes smaller as the system length increases.
Typically, LA is kept near 50 km for undersea systems but can be increased to 80 km or
so for terrestrial systems with link lengths under 3000 km. Although amplifier spacing
can be improved by increasing the input power Pin, in practice, the maximum power
that can be launched is limited by the onset of various nonlinear effects. We turn to this
issue next.

6.5.3 ASE-Induced Timing Jitter

The amplifier noise can also induce timing jitter in the bit stream by shifting optical
pulses from their original time slot in a random fashion. Such jitter was first studied
in 1986 in the context of solitons and is called the Gordon–Haus jitter [122]. It was
later recognized that timing jitter can occur with any transmission format [NRZ, RZ,
or chirped RZ (CRZ)] and imposes a fundamental limitation on all long-haul systems
designed with a cascaded chain of optical amplifiers [123]–[126].

The physical origin of ASE-induced jitter can be understood by noting that optical
amplifiers affect not only the amplitude but also the phase of the amplified signal as
apparent from Eq. (6.5.32) or Eq. (6.5.34). Time-dependent variations in the optical
phase lead to a change in the signal frequency by a small amount. Since the group
velocity depends on the frequency because of dispersion, the speed at which a soliton
propagates through the fiber is affected by each amplifier in a random fashion. Such
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random speed changes produce random shifts in the pulse position at the receiver and
are responsible for the timing jitter.

Timing jitter induced by the ASE noise can be calculated using the moment method.
According to this method, changes in the pulse position q and the frequency Ω along
the link length are calculated using [125]

q(z) =
1
E

∫ ∞

−∞
t|A(z,t)|2 dt, (6.5.20)

Ω(z) =
i

2E

∫ ∞

−∞

(
A∗ ∂A

∂ t
−A

∂A∗

∂ t

)
dt, (6.5.21)

where E =
∫ ∞
−∞ |A|2 dt represents the pulse energy.

The NLS equation can be used to find how T and W evolve along the fiber link.
Differentiating Eqs. (6.5.20) and (6.5.21) with respect to z and using Eq. (6.5.31), we
obtain [126]

dΩ
dz

= ∑
i

δΩi δ (z− zi), (6.5.22)

dq
dz

= β2Ω +∑
i

δqi δ (z− zi), (6.5.23)

where δΩi and δqi are the random frequency and position changes imparted by noise at
the ith amplifier and the sum is over the total number NA of amplifiers. These equations
show that frequency fluctuations induced by an amplifier become temporal fluctuations
because of GVD; no jitter occurs when β2 = 0.

Equations (6.5.22) and (6.5.23) can be integrated in a straightforward manner. For a
cascaded chain of NA amplifiers with spacing LA, the pulse position at the last amplifier
is given by

q f =
NA

∑
n=1

δqn + β̄2LA

NA

∑
n=1

n−1

∑
i=1

δΩi, (6.5.24)

where β̄2 is the average value of the GVD. Timing jitter is calculated from this equa-
tion using σ 2

t = 〈q2
f 〉−〈q f 〉2 together with 〈q f 〉= 0. The average can be performed by

noting that fluctuations at two different amplifiers are not correlated. However, the tim-
ing jitter depends not only on the variances of position and frequency fluctuations but
also on the cross-correlation function 〈δq δΩ〉 at the same amplifier. These quantities
depend on the pulse amplitude A(zi,t) at the amplifier location zi (see Section 9.5).

Consider a low-power lightwave system employing the CRZ format and assume
that the input pulse is in the form of a chirped Gaussian pulse. As seen in Section 2.4,
the pulse maintains its Gaussian shape on propagation such that

A(z,t) = aexp[iφ − iΩ(t −q)− (1+ iC)(t−q)2/2T 2], (6.5.25)

where the amplitude a, phase φ , frequency Ω, position q, chirp C, and width T all are
functions of z. The variances and cross-correlation of δq i and Ωi at the location of the
ith amplifier are found to be [126]

〈(δΩ)2〉 = (Ssp/E0)[(1+C2
i )/T 2

i ], (6.5.26)
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Figure 6.23: ASE-induced timing jitter as a function of system length for several values of the
average dispersion β̄2.

〈(δq)2〉 = (Ssp/E0)T 2
i , 〈δΩδq)〉 = (Ssp/E0)Ci, (6.5.27)

where E0 is the input pulse energy and Ci and Ti are the chirp and width at z = zi. These
quantities can be calculated easily using the theory of Section 2.4. Note that the ratio
(1+C2

i )/T 2
i is related to the spectral width that does not change if the nonlinear effects

are negligible. It can be replaced by T −2
m , where Tm is the minimum width occurring

when the pulse is unchirped.
Many lightwave systems employ the postcompensation technique in which a fiber

is placed at the end of the last amplifier to reduce the net accumulated dispersion (see
Section 7.4). Using Eqs. (6.5.24)–(6.5.27), the timing jitter for a CRZ system employ-
ing postcompensation is found to be [126]

σ2
t = (Ssp/E0)T 2

m

[
NA + NA(NAd +C0 + d f )2] , (6.5.28)

where C0 is the input chirp, d = β̄2LA/T 2
m , and d f = β2 f L f /T 2

m for a postcompensation
fiber of length L f and dispersion β2 f . Several points are noteworthy. First, if post-
compensation is not used (d f = 0), the dominant term in Eq. (6.5.28) varies as N 3

Ad2.
This is the general feature of the ASE jitter resulting from frequency fluctuations [122].
Second, if the average dispersion of the fiber link is zero, the cubic term vanishes, and
the jitter increases only linearly with NA. Third, the smallest value of the jitter occurs
when NAd +C0 + d f = 0. This condition corresponds to zero net dispersion over the
entire link, including the fiber used to chirp the pulse initially.

The average dispersion of the fiber link can lead to considerable timing jitter in
CRZ systems when postcompensation is not used. Figure 6.23 shows the timing jitter
as a function of the total system length LT = NALA for a 10-Gb/s system using four
values of β̄2 with Tm = 30 ps, LA = 50 km, C0 = 0.2, and Ssp/E0 = 10−4. The ASE-
induced jitter becomes a significant fraction of the pulse width for values of | β̄2| as
small as 0.2 ps2/km because of the cubic dependence of σ 2

t on the system length LT .
Such jitter would lead to large power penalties, as discussed in Section 4.6.3, if left
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uncontrolled. The tolerable value of the jitter can be estimated assuming the Gaussian
statistics for q so that

p(q) = (2πσ 2
t )−1/2 exp(−q2/2σ 2

t ). (6.5.29)

The BER can be calculated following the method of Section 4.5. If we assume that
an error occurs whenever the pulse has moved out of the bit slot, we need to find the
accumulated probability for |q| to exceed TB/2, where TB ≡ 1/B is the bit slot. This
probability is found to be

BER = 2
∫ ∞

TB/2
p(q)dq = erfc

(
TB

2
√

2σt

)
≈ 4σt√

2πTB
exp

(
− T 2

B

8σ 2
t

)
, (6.5.30)

where erfc stands for the complimentary error function defined in Eq. (4.5.5). To re-
duce the BER below 10−9 for σt/TB should be less than 8% of the bit slot, resulting
in a tolerable value of the jitter of 8 ps for 10-Gb/s systems and only 2 ps for 40-Gb/s
systems. Clearly, the average dispersion of a fiber link should nearly vanish if the sys-
tem is designed not to be limited by the ASE-induced jitter. This can be accomplished
through dispersion management discussed in Chapter 7.

6.5.4 Accumulated Dispersive and Nonlinear Effects

Many single-channel experiments performed during the early 1990s demonstrated the
benefits of in-line amplifiers for increasing the transmission distance of point-to-point
fiber links [127]–[132]. These experiments showed that fiber dispersion becomes the
limiting factor in periodically amplified long-haul systems. Indeed, the experiments
were possible only because the system was operated close to the zero-dispersion wave-
length of the fiber link. Moreover, the zero-dispersion wavelength varied along the link
in such a way that the total dispersion over the entire link length was quite small at the
operating wavelength of 1.55 µm. By 1992, the total system length could be increased
to beyond 10,000 km using such dispersion-management techniques. In a 1992 exper-
iment [130], a 2.5-Gb/s signal was transmitted over 10,073 km using 199 EDFAs. An
effective transmission distance of 21,000 km at 2.5 Gb/s and of 14,300 km at 5 Gb/s
was demonstrated using a recirculating fiber loop [133].

A crude estimate of dispersion-limited LT can be obtained if the input power is low
enough that one can neglect the nonlinear effects during signal transmission. Since
amplifiers compensate only for fiber losses, dispersion limitations discussed in Section
5.2.2 and shown in Fig. 5.4 apply for each channel of a WDM system if L is replaced
by LT . From Eq. (5.2.3), the dispersion limit for systems making use of standard fibers
(β2 ≈−20 ps2/km at 1.55 µm) is B2LT < 3000 (Gb/s)2-km: The distance is limited to
below 30 km at 10 Gb/s for such fibers. An increase by a factor of 20 can be realized by
using dispersion-shifted fibers. To extend the distance to beyond 5000 km at 10 Gb/s,
the average GVD along the link should be smaller than β̄2 = −0.1 ps2/km.

The preceding estimate is crude since it does not include the impact of the non-
linear effects. Even though power levels are relatively modest for each channel, the
nonlinear effects can become quite important because of their accumulation over long
distances [29]. Moreover, amplifier noise often forces one to increase the channel
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power to more than 1 mW in order to maintain a high SNR (or a high Q factor). The
accumulation of the nonlinear effects then limits the system length L T [134]–[147].
For single-channel systems, the most dominant nonlinear phenomenon that limits the
system performance is self-phase modulation (SPM). An estimate of the power limita-
tion imposed by the SPM can be obtained from Eq. (2.6.15). In general, the condition
φNL � 1 limits the total link length to LT � LNL, where the nonlinear length is defined
as LNL = (γP̄)−1. Typically, γ ∼ 1 W−1/km, and the link length is limited to below
1000 km even for P̄ = 1 mW.

The estimate of the SPM-limited distance is too simplistic to be accurate since it
completely ignores the role of fiber dispersion. In fact, since the dispersive and non-
linear effects act on the optical signal simultaneously, their mutual interplay becomes
quite important. As discussed in Section 5.3, it is necessary to solve the nonlinear
Schrödinger equation

∂A
∂ z

+
iβ2

2
∂ 2A
∂ t2 = iγ|A|2A− α

2
A (6.5.31)

numerically, while including the gain and ASE noise at the location of each ampli-
fier. Such an approach is indeed used to quantify the impact of nonlinear effects on
the performance of periodically amplified lightwave systems [134]–[148]. A com-
mon technique solves Eq. (6.5.31) in each fiber segment using the split-step Fourier
method [56]. At each optical amplifier, the noise is added using

Aout(t) =
√

GAin(t)+ an(t), (6.5.32)

where G is the amplification factor. The spontaneous-emission noise field a n added by
the amplifier vanishes on average but its second moment satisfies

〈an(t)an(t ′)〉 = Sspδ (t − t ′), (6.5.33)

where the noise spectral density Ssp is given by Eq. (6.1.15).
In practice, Eq. (6.5.32) is often implemented in the frequency domain as

Ãout(ν) =
√

GÃin(ν)+ ãn(ν), (6.5.34)

where a tilde represents the Fourier transform. The noise ã n(ν) is assumed to be fre-
quency independent (white noise) over the whole amplifier bandwidth, or the filter
bandwidth if an optical filter is used after each amplifier. Mathematically, ã n(ν) is a
complex Gaussian random variable whose real and imaginary parts have the spectral
density Ssp/2. The system performance is quantified through the Q factor as defined in
Eq. (4.5.10) and related directly to the BER through Eq. (4.5.9).

As an example of the numerical results, the curve (a) in Fig. 6.24 shows variations
of the Q factor with the average input power for a NRZ, single-channel lightwave
system designed to operate at 5 Gb/s over 9000 km of constant-dispersion fibers [D =
1 ps/(km-nm)] with 40-km amplifier spacing [134]. Since Q < 6 for all input powers,
such a system cannot operate reliably in the absence of in-line filters (Q > 6 is required
for a BER of < 10−9). An optical filter of 150-GHz bandwidth, inserted after every
amplifier, reduces the ASE for the curve (b). In the presence of optical filters, Q > 6 can
be realized only at a specific value of the average input power (about 0.5 mW). This



6.5. SYSTEM APPLICATIONS 271

Figure 6.24: Q factor as a function of the average input power for a 9000-km fiber link: (a)
5-Gb/s system; (b) improvement realized with 150-GHz optical filters; (c) 6-Gb/s operation
near the zero-dispersion wavelength; (d) 10-Gb/s system with dispersion management. (After
Ref. [134]; c©1996 IEEE; reprinted with permission.)

behavior can be understood by noting that as the input power increases, the system
performance improves initially because of a better SNR but becomes worse at high
input powers as the nonlinear effects (SPM) begins to dominate.

The role of dispersion can be minimized either by operating close to the zero-
dispersion wavelength of the fiber or by using a dispersion management technique in
which the fiber GVD alternates its sign in such a way that the average dispersion is
close to zero (see Chapter 7). In both cases, the GVD parameter β 2 fluctuates because
of unintentional variations in the zero-dispersion wavelength of various fiber segments.
The curve (c) in Fig. 6.24 is drawn for a 6-Gb/s system for the case of a Gaussian
distribution of β2 with a standard deviation of 0.3 ps2/km. The filter bandwidth is
taken to be 60 GHz [134]. The curve (d) shows the dispersion-managed case for a 10-
Gb/s system with a filter bandwidth of 50 GHz. All other parameters remain the same.
Clearly, system performance can improve considerably with dispersion management,
although the input pump power needs to be optimized in each case.

6.5.5 WDM-Related Impairments

The advantages of EDFAs for WDM systems were demonstrated as early as 1990 [149]–
[154]. In a 1993 experiment, four channels were transmitted over 1500 km using 22
cascaded amplifiers [150]. By 1996, 55 channels, spaced apart by 0.8 nm and each
operating at 20 Gb/s, were transmitted over 150 km by using two in-line amplifiers,
resulting in a total bit rate of 1.1 Tb/s and the BL product of 165 (Tb/s)-km [151].
For submarine applications, one needs to transmit a large number of channels over a
distance of more than 5000 km. Such systems employ a large number of cascaded
amplifiers and are affected most severely by the amplifier noise. Already in 1996,
transmission at 100 Gb/s (20 channels at 5 Gb/s) over a distance of 9100 km was pos-
sible using the polarization-scrambling and forward-error correction techniques [152].
By 2001, transmission at 2.4 Tb/s (120 channels at 20 Gb/s) over 6200 km has been
realized within the C band using EDFAs every 50 km [154]. The adjacent channels
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were orthogonally polarized for reducing the nonlinear effects resulting from a rela-
tively small channel spacing of 42 GHz. This technique is referred to as polarization
multiplexing and is quite useful for WDM systems.

The two major nonlinear phenomena affecting the performance of WDM systems
are the cross-phase modulation (XPM) and four-wave mixing (FWM). FWM can be
avoided by using dispersion management such that the GVD is locally high all along
the fiber but quite small on average. The SPM and XPM then become the most limiting
factors for WDM systems. The XPM effects within an EDFA are normally negligible
because of a small length of doped fiber used. The situation changes for the L-band
amplifiers, which operate in the 1570- to 1610-nm wavelength region and require fiber
lengths in excess of 100 m. The effective core area of doped fibers used in such am-
plifiers is relatively small, resulting in larger values of the nonlinear parameter γ and
enhanced XPM-induced phase shifts. As a result, the XPM can lead to considerable
power fluctuations within an L-band amplifier [155]–[160]. A new feature is that such
XPM effects are independent of the channel spacing and can occur over the entire band-
width of the amplifier [156]. The reason for this behavior is that all XPM effects occur
before pulses walk off because of group-velocity mismatch. The effects of FWM are
also enhanced in L-band amplifiers because of their long lengths [161].

Problems

6.1 The Lorentzian gain profile of an optical amplifier has a FWHM of 1 THz. Cal-
culate the amplifier bandwidths when it is operated to provide 20- and 30-dB
gain. Neglect gain saturation.

6.2 An optical amplifier can amplify a 1-µW signal to the 1-mW level. What is the
output power when a 1-mW signal is incident on the same amplifier? Assume
that the saturation power is 10 mW.

6.3 Explain the concept of noise figure for an optical amplifier. Why does the SNR
of the amplified signal degrade by 3 dB even for an ideal amplifier?

6.4 A 250-µm-long semiconductor laser is used as an FP amplifier by biasing it
below threshold. Calculate the amplifier bandwidth by assuming 32% reflectivity
for both facets and 30-dB peak gain. The group index n g = 4. How much does the
bandwidth change when both facets are coated to reduce the facet reflectivities
to 1%?

6.5 Complete the derivation of Eq. (6.2.3) starting from Eq. (6.2.1). What should
be the facet reflectivities to ensure traveling-wave operation of a semiconductor
optical amplifier designed to provide 20-dB gain. Assume that R 1 = 2R2.

6.6 A semiconductor optical amplifier is used to amplify two channels separated by
1 GHz. Each channel can be amplified by 30 dB in isolation. What are the
channel gains when both channels are amplified simultaneously? Assume that
Pin/Ps = 10−3, τc = 0.5 ns, and βc = 5.

6.7 Integrate Eq. (6.2.19) to obtain the time-dependent saturated gain given by Eq.
(6.2.20). Plot G(τ) for a 10-ps square pulse using G 0 = 30 dB and Es = 10 pJ.
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6.8 Explain why semiconductor optical amplifiers impose a chirp on the pulse during
amplification. Derive an expression for the imposed chirp when a Gaussian pulse
is incident on the amplifier. Use Eq. (6.2.21) with m = 1 for the input pulse.

6.9 Discuss the origin of gain saturation in fiber Raman amplifiers. Solve Eqs. (6.3.2)
and (6.3.3) with αs = αp and derive Eq. (6.3.8) for the saturated gain.

6.10 A Raman amplifier is pumped in the backward direction using 1 W of power.
Find the output power when a 1-µW signal is injected into the 5-km-long ampli-
fier. Assume losses of 0.2 and 0.25 dB/km at the signal and pump wavelengths,
respectively, Aeff = 50 µm2, and gR = 6×10−14 m/W. Neglect gain saturation.

6.11 Explain the gain mechanism in EDFAs. Use Eqs. (6.4.2) and (6.4.3) to derive an
expression for the small-signal gain in the steady state.

6.12 Discuss how EDFAs can be used to provide gain in the L band. How can you
use them to provide amplification over the both C and L bands?

6.13 Starting from Eq. (6.5.11), derive Eq. (6.5.16) for the sensitivity of a direct-
detection receiver when an EDFA is used as a preamplifier.

6.14 Calculate the receiver sensitivity at a BER of 10−9 and 10−12 by using Eq.
(6.5.16). Assume that the receiver operates at 1.55 µm with 3-GHz bandwidth.
The preamplifier has a noise figure of 4 dB, and a 1-nm optical filter is installed
between the preamplifier and the detector.

6.15 Calculate the optical SNR at the output end of a 4000-km lightwave system de-
signed using 50 EDFAs with 4.5-dB noise figure. Assume a fiber-cable loss of
0.25 dB/km at 1.55 µm. A 2-nm-bandwidth optical filter is inserted after every
amplifier to reduce the noise.

6.16 Find the electrical SNR for the system of the preceding problem for a receiver of
8-GHz bandwidth.

6.17 Why does ASE induce timing jitter in lightwave systems? How would you de-
sign the system to reduce the jitter?

6.18 Use the moment method to find an expression for the timing jitter for a lightwave
system employing the CRZ format.
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Chapter 7

Dispersion Management

It should be clear from Chapter 6 that with the advent of optical amplifiers, fiber losses
are no longer a major limiting factor for optical communication systems. Indeed, mod-
ern lightwave systems are often limited by the dispersive and nonlinear effects rather
than fiber losses. In some sense, optical amplifiers solve the loss problem but, at the
same time, worsen the dispersion problem since, in contrast with electronic regener-
ators, an optical amplifier does not restore the amplified signal to its original state.
As a result, dispersion-induced degradation of the transmitted signal accumulates over
multiple amplifiers. For this reason, several dispersion-management schemes were de-
veloped during the 1990s to address the dispersion problem [1]. In this chapter we
review these techniques with emphasis on the underlying physics and the improve-
ment realized in practice. In Section 7.1 we explain why dispersion management is
needed. Sections 7.2 and 7.3 are devoted to the methods used at the transmitter or re-
ceiver for managing the dispersion. In Sections 7.4–7.6 we consider the use of several
high-dispersion optical elements along the fiber link. The technique of optical phase
conjugation, also known as midspan spectral inversion, is discussed in Section 7.7.
Section 7.8 is devoted to dispersion management in long-haul systems. Section 7.9
focuses on high-capacity systems by considering broadband, tunable, and higher-order
compensation techniques. Polarization-mode dispersion (PMD) compensation is also
discussed in this section.

7.1 Need for Dispersion Management

In Section 2.4 we have discussed the limitations imposed on the system performance
by dispersion-induced pulse broadening. As shown by the dashed line in Fig. 2.13, the
group-velocity dispersion (GVD) effects can be minimized using a narrow-linewidth
laser and operating close to the zero-dispersion wavelength λ ZD of the fiber. How-
ever, it is not always practical to match the operating wavelength λ with λ ZD. An
example is provided by the third-generation terrestrial systems operating near 1.55 µm
and using optical transmitters containing a distributed feedback (DFB) laser. Such
systems generally use the existing fiber-cable network installed during the 1980s and
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consisting of more than 50 million kilometers of the “standard” single-mode fiber with
λZD ≈ 1.31 µm. Since the dispersion parameter D ≈ 16 ps/(km-nm) in the 1.55-µm re-
gion of such fibers, the GVD severely limits the performance when the bit rate exceeds
2 Gb/s (see Fig. 2.13). For a directly modulated DFB laser, we can use Eq. (2.4.26) for
estimating the maximum transmission distance so that

L < (4B|D|sλ )−1, (7.1.1)

where sλ is the root-mean-square (RMS) width of the pulse spectrum broadened con-
siderably by frequency chirping (see Section 3.5.3). Using D = 16 ps/(km-nm) and
sλ = 0.15 nm in Eq. (7.1.1), lightwave systems operating at 2.5 Gb/s are limited to
L ≈ 42 km. Indeed, such systems use electronic regenerators, spaced apart by about 40
km, and cannot benefit from the availability of optical amplifiers. Furthermore, their
bit rate cannot be increased beyond 2.5 Gb/s because the regenerator spacing becomes
too small to be feasible economically.

System performance can be improved considerably by using an external modulator
and thus avoiding spectral broadening induced by frequency chirping. This option has
become practical with the commercialization of transmitters containing DFB lasers
with a monolithically integrated modulator. The sλ = 0 line in Fig. 2.13 provides the
dispersion limit when such transmitters are used with the standard fibers. The limiting
transmission distance is then obtained from Eq. (2.4.31) and is given by

L < (16|β2|B2)−1, (7.1.2)

where β2 is the GVD coefficient related to D by Eq. (2.3.5). If we use a typical value
β2 = −20 ps2/km at 1.55 µm, L < 500 km at 2.5 Gb/s. Although improved consid-
erably compared with the case of directly modulated DFB lasers, this dispersion limit
becomes of concern when in-line amplifiers are used for loss compensation. Moreover,
if the bit rate is increased to 10 Gb/s, the GVD-limited transmission distance drops to
30 km, a value so low that optical amplifiers cannot be used in designing such light-
wave systems. It is evident from Eq. (7.1.2) that the relatively large GVD of standard
single-mode fibers severely limits the performance of 1.55-µm systems designed to use
the existing telecommunication network at a bit rate of 10 Gb/s or more.

A dispersion-management scheme attempts to solve this practical problem. The
basic idea behind all such schemes is quite simple and can be understood by using the
pulse-propagation equation derived in Section 2.4.1 and written as

∂A
∂ z

+
iβ2

2
∂ 2A
∂ t2 − β3

6
∂ 3A
∂ t3 = 0, (7.1.3)

where A is the pulse-envelope amplitude. The effects of third-order dispersion are
included by the β3 term. In practice, this term can be neglected when |β 2| exceeds
0.1 ps2/km. Equation (7.1.3) has been solved in Section 2.4.2, and the solution is given
by Eq. (2.4.15). In the specific case of β3 = 0 the solution becomes

A(z,t) =
1

2π

∫ ∞

−∞
Ã(0,ω)exp

(
i
2

β2zω2 − iωt

)
dω , (7.1.4)
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where Ã(0,ω) is the Fourier transform of A(0,t).
Dispersion-induced degradation of the optical signal is caused by the phase factor

exp(iβ2zω2/2), acquired by spectral components of the pulse during its propagation in
the fiber. All dispersion-management schemes attempt to cancel this phase factor so
that the input signal can be restored. Actual implementation can be carried out at the
transmitter, at the receiver, or along the fiber link. In the following sections we consider
the three cases separately.

7.2 Precompensation Schemes

This approach to dispersion management modifies the characteristics of input pulses at
the transmitter before they are launched into the fiber link. The underlying idea can be
understood from Eq. (7.1.4). It consists of changing the spectral amplitude Ã(0,ω) of
the input pulse in such a way that GVD-induced degradation is eliminated, or at least
reduced substantially. Clearly, if the spectral amplitude is changed as

Ã(0,ω) → Ã(0,ω)exp(−iω2β2L/2), (7.2.1)

where L is the fiber length, GVD will be compensated exactly, and the pulse will retain
its shape at the fiber output. Unfortunately, it is not easy to implement Eq. (7.2.1)
in practice. In a simple approach, the input pulse is chirped suitably to minimize the
GVD-induced pulse broadening. Since the frequency chirp is applied at the transmitter
before propagation of the pulse, this scheme is called the prechirp technique.

7.2.1 Prechirp Technique

A simple way to understand the role of prechirping is based on the theory presented in
Section 2.4 where propagation of chirped Gaussian pulses in optical fibers is discussed.
The input amplitude is taken to be

A(0,t) = A0 exp

[
−1+ iC

2

(
t

T0

)2
]

, (7.2.2)

where C is the chirp parameter. As seen in Fig. 2.12, for values of C such that β 2C < 0,
the input pulse initially compresses in a dispersive fiber. Thus, a suitably chirped pulse
can propagate over longer distances before it broadens outside its allocated bit slot.
As a rough estimate of the improvement, consider the case in which pulse broadening
by a factor of up to

√
2 is acceptable. By using Eq. (2.4.17) with T1/T0 =

√
2, the

transmission distance is given by

L =
C +

√
1+ 2C2

1+C2 LD, (7.2.3)

where LD = T 2
0 /|β2| is the dispersion length. For unchirped Gaussian pulses, C = 0

and L = LD. However, L increases by 36% for C = 1. Note also that L < LD for
large values of C. In fact, the maximum improvement by a factor of

√
2 occurs for
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Figure 7.1: Schematic of the prechirp technique used for dispersion compensation: (a) FM
output of the DFB laser; (b) pulse shape produced by external modulator; and (c) prechirped
pulse used for signal transmission. (After Ref. [9]; c©1994 IEEE; reprinted with permission.)

C = 1/
√

2. These features clearly illustrate that the prechirp technique requires careful
optimization. Even though the pulse shape is rarely Gaussian in practice, the prechirp
technique can increase the transmission distance by a factor of about 2 when used
with care. As early as 1986, a super-Gaussian model [2] suitable for nonreturn-to-zero
(NRZ) transmission predicted such an improvement, a feature also evident in Fig. 2.14,
which shows the results of numerical simulations for chirped super-Gaussian pulses.

The prechirp technique was considered during the 1980s in the context of directly
modulated semiconductor lasers [2]–[5]. Such lasers chirp the pulse automatically
through the carrier-induced index changes governed by the linewidth enhancement fac-
tor βc (see Section 3.5.3). Unfortunately, the chirp parameter C is negative (C = −β c)
for directly modulated semiconductor lasers. Since β 2 in the 1.55-µm wavelength re-
gion is also negative for standard fibers, the condition β 2C < 0 is not satisfied. In
fact, as seen in Fig. 2.12, the chirp induced during direct modulation increases GVD-
induced pulse broadening, thereby reducing the transmission distance drastically. Sev-
eral schemes during the 1980s considered the possibility of shaping the current pulse
appropriately in such a way that the transmission distance improved over that realized
without current-pulse shaping [3]–[5].

In the case of external modulation, optical pulses are nearly chirp-free. The prechirp
technique in this case imposes a frequency chirp with a positive value of the chirp pa-
rameter C so that the condition β2C < 0 is satisfied. Several schemes have been pro-
posed for this purpose [6]–[12]. In a simple approach shown schematically in Fig. 7.1,
the frequency of the DFB laser is first frequency modulated (FM) before the laser out-
put is passed to an external modulator for amplitude modulation (AM). The resulting
optical signal exhibits simultaneous AM and FM [9]. From a practical standpoint, FM
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of the optical carrier can be realized by modulating the current injected into the DFB
laser by a small amount (∼ 1 mA). Although such a direct modulation of the DFB laser
also modulates the optical power sinusoidally, the magnitude is small enough that it
does not interfere with the detection process.

It is clear from Fig. 7.1 that FM of the optical carrier, followed by external AM,
generates a signal that consists of chirped pulses. The amount of chirp can be deter-
mined as follows. Assuming that the pulse shape is Gaussian, the optical signal can be
written as

E(0,t) = A0 exp(−t2/T 2
0 )exp[−iω0(1+ δ sinωmt)t], (7.2.4)

where the carrier frequency ω0 of the pulse is modulated sinusoidally at the frequency
ωm with a modulation depth δ . Near the pulse center, sin(ωmt) ≈ ωmt, and Eq. (7.2.4)
becomes

E(0,t) ≈ A0 exp

[
−1+ iC

2

(
t

T0

)2
]

exp(−iω0t), (7.2.5)

where the chirp parameter C is given by

C = 2δωmω0T 2
0 . (7.2.6)

Both the sign and magnitude of the chirp parameter C can be controlled by changing
the FM parameters δ and ωm.

Phase modulation of the optical carrier also leads to a positive chirp, as can be
verified by replacing Eq. (7.2.4) with

E(0,t) = A0 exp(−t2/T 2
0 )exp[−iω0t + iδ cos(ωmt)] (7.2.7)

and using cos x ≈ 1− x2/2. An advantage of the phase-modulation technique is that
the external modulator itself can modulate the carrier phase. The simplest solution is
to employ an external modulator whose refractive index can be changed electronically
in such a way that it imposes a frequency chirp with C > 0 [6]. As early as 1991,
a 5-Gb/s signal was transmitted over 256 km [7] using a LiNbO 3 modulator such that
values of C were in the range 0.6–0.8. These experimental values are in agreement with
the Gaussian-pulse theory on which Eq. (7.2.3) is based. Other types of semiconduc-
tor modulators, such as an electroabsorption modulator [8] or a Mach–Zehnder (MZ)
modulator [10], can also chirp the optical pulse with C > 0, and have indeed been used
to demonstrate transmission beyond the dispersion limit [11]. With the development
of DFB lasers containing a monolithically integrated electroabsorption modulator, the
implementation of the prechirp technique has become quite practical. In a 1996 exper-
iment, a 10-Gb/s NRZ signal was transmitted over 100 km of standard fiber using such
a transmitter [12].

7.2.2 Novel Coding Techniques

Simultaneous AM and FM of the optical signal is not essential for dispersion compen-
sation. In a different approach, referred to as dispersion-supported transmission, the
frequency-shift keying (FSK) format is used for signal transmission [13]–[17]. The
FSK signal is generated by switching the laser wavelength by a constant amount ∆λ
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Figure 7.2: Dispersion compensation using FSK coding: (a) Optical frequency and power of the
transmitted signal; (b) frequency and power of the received signal and the electrically decoded
data. (After Ref. [13]; c©1994 IEEE; reprinted with permission.)

between 1 and 0 bits while leaving the power unchanged (see Chapter 10). During
propagation inside the fiber, the two wavelengths travel at slightly different speeds.
The time delay between the 1 and 0 bits is determined by the wavelength shift ∆λ and
is given by ∆T = DL∆λ , as shown in Eq. (2.3.4). The wavelength shift ∆λ is chosen
such that ∆T = 1/B. Figure 7.2 shows schematically how the one-bit delay produces
a three-level optical signal at the receiver. In essence, because of fiber dispersion, the
FSK signal is converted into a signal whose amplitude is modulated. The signal can be
decoded at the receiver by using an electrical integrator in combination with a decision
circuit [13].

Several transmission experiments have shown the usefulness of the dispersion-
supported transmission scheme [13]–[15]. All of these experiments were concerned
with increasing the transmission distance of a 1.55-µm lightwave system operating at
10 Gb/s or more over the standard fibers. In 1994, transmission of a 10-Gb/s signal
over 253 km of standard fiber was realized [13]. By 1998, in a 40-Gb/s field trial,
the signal was transmitted over 86 km of standard fiber [15]. These values should be
compared with the prediction of Eq. (7.1.2). Clearly, the transmission distance can be
improved by a large factor by using the FSK technique when the system is properly
designed [17].

Another approach for increasing the transmission distance consists of transmitting
an optical signal whose bandwidth at a given bit rate is smaller compared with that of
the standard on–off coding technique. One scheme makes use of the duobinary coding,
which can reduce the signal bandwidth by 50% [18]. In the simplest duobinary scheme,
the two successive bits in the digital bit stream are summed, forming a three-level
duobinary code at half the bit rate. Since the GVD-induced degradation depends on the
signal bandwidth, the transmission distance should improve for a reduced-bandwidth
signal. This is indeed found to be the case experimentally [19]–[24].

In a 1994 experiment designed to compare the binary and duobinary schemes, a
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Figure 7.3: Streak-camera traces of the 16-Gb/s signal transmitted over 70 km of standard fiber
(a) with and (b) without SOA-induced chirp. Bottom trace shows the background level in each
case. (After Ref. [26]; c©1989 IEE; reprinted with permission.)

10-Gb/s signal could be transmitted over distances 30 to 40 km longer by replacing
binary coding with duobinary coding [19]. The duobinary scheme can be combined
with the prechirping technique. Indeed, transmission of a 10-Gb/s signal over 160 km
of a standard fiber has been realized by combining duobinary coding with an external
modulator capable of producing a frequency chirp with C > 0 [19]. Since chirping in-
creases the signal bandwidth, it is hard to understand why it would help. It appears that
phase reversals occurring in practice when a duobinary signal is generated are primarily
responsible for improvement realized with duobinary coding [20]. A new dispersion-
management scheme, called the phase-shaped binary transmission, has been proposed
to take advantage of phase reversals [21]. The use of duobinary transmission increases
signal-to-noise requirements and requires decoding at the receiver. Despite these short-
comings, it is useful for upgrading the existing terrestrial lightwave systems to bit rates
of 10 Gb/s and more [22]–[24].

7.2.3 Nonlinear Prechirp Techniques

A simple nonlinear prechirp technique, demonstrated in 1989, amplifies the trans-
mitter output using a semiconductor optical amplifier (SOA) operating in the gain-
saturation regime [25]–[29]. As discussed in Section 6.2.4, gain saturation leads to
time-dependent variations in the carrier density, which, in turn, chirp the amplified
pulse through carrier-induced variations in the refractive index. The amount of chirp
is given by Eq. (6.2.23) and depends on the input pulse shape. As seen in Fig. 6.8, the
chirp is nearly linear over most of the pulse. The SOA not only amplifies the pulse
but also chirps it such that the chirp parameter C > 0. Because of this chirp, the input
pulse can be compressed in a fiber with β2 < 0. Such a compression was observed in
an experiment in which 40-ps input pulses were compressed to 23 ps when they were
propagated over 18 km of standard fiber [25].

The potential of this technique for dispersion compensation was demonstrated in
a 1989 experiment by transmitting a 16-Gb/s signal, obtained from a mode-locked
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external-cavity semiconductor laser, over 70 km of fiber [26]. Figure 7.3 compares the
streak-camera traces of the signal obtained with and without dispersion compensation.
From Eq. (7.1.2), in the absence of amplifier-induced chirp, the transmission distance
at 16 Gb/s is limited by GVD to about 14 km for a fiber with D = 15 ps/(km-nm). The
use of the amplifier in the gain-saturation regime increased the transmission distance
fivefold, a feature that makes this approach to dispersion compensation quite attractive.
It has an added benefit that it can compensate for the coupling and insertion losses that
invariably occur in a transmitter by amplifying the signal before it is launched into the
optical fiber. Moreover, this technique can be used for simultaneous compensation of
fiber losses and GVD if SOAs are used as in-line amplifiers [29].

A nonlinear medium can also be used to prechirp the pulse. As discussed in Section
2.6, the intensity-dependent refractive index chirps an optical pulse through the phe-
nomenon of self-phase modulation (SPM). Thus, a simple prechirp technique consists
of passing the transmitter output through a fiber of suitable length before launching it
into the fiber link. Using Eq. (2.6.13), the optical signal at the fiber input is given by

A(0,t) =
√

P(t)exp[iγLmP(t)], (7.2.8)

where P(t) is the power of the pulse, Lm is the length of the nonlinear medium, and γ is
the nonlinear parameter. In the case of Gaussian pulses for which P(t)= P0 exp(−t2/T 2

0 ),
the chirp is nearly linear, and Eq. (7.2.8) can be approximated by

A(0,t) ≈
√

P0 exp

[
−1+ iC

2

(
t

T0

)2
]

exp(−iγLmP0), (7.2.9)

where the chirp parameter is given by C = 2γLmP0. For γ > 0, the chirp parameter C is
positive, and is thus suitable for dispersion compensation.

Since γ > 0 for silica fibers, the transmission fiber itself can be used for chirping the
pulse. This approach was suggested in a 1986 study [30]. It takes advantage of higher-
order solitons which pass through a stage of initial compression (see Chapter 9) . Figure
7.4 shows the GVD-limited transmission distance as a function of the average launch
power for 4- and 8-Gb/s lightwave systems. It indicates the possibility of doubling
the transmission distance by optimizing the average power of the input signal to about
3 mW.

7.3 Postcompensation Techniques

Electronic techniques can be used for compensation of GVD within the receiver. The
philosophy behind this approach is that even though the optical signal has been de-
graded by GVD, one may be able to equalize the effects of dispersion electronically
if the fiber acts as a linear system. It is relatively easy to compensate for dispersion
if a heterodyne receiver is used for signal detection (see Section 10.1). A heterodyne
receiver first converts the optical signal into a microwave signal at the intermediate fre-
quency ωIF while preserving both the amplitude and phase information. A microwave
bandpass filter whose impulse response is governed by the transfer function

H(ω) = exp[−i(ω −ωIF)2β2L/2], (7.3.1)
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Figure 7.4: Dispersion-limited transmission distance as a function of launch power for Gaus-
sian (m = 1) and super-Gaussian (m = 3) pulses at bit rates of 4 and 8 Gb/s. Horizontal lines
correspond to the linear case. (After Ref. [30]; c©1986 IEE; reprinted with permission.)

where L is the fiber length, should restore to its original form the signal received. This
conclusion follows from the standard theory of linear systems (see Section 4.3.2) by us-
ing Eq. (7.1.4) with z = L. This technique is most practical for dispersion compensation
in coherent lightwave systems [31]. In a 1992 transmission experiment, a 31.5-cm-long
microstrip line was used for dispersion equalization [32]. Its use made it possible to
transmit the 8-Gb/s signal over 188 km of standard fiber having a dispersion of 18.5
ps/(km-nm). In a 1993 experiment, the technique was extended to homodyne detection
using single-sideband transmission [33], and the 6-Gb/s signal could be recovered at
the receiver after propagating over 270 km of standard fiber. Microstrip lines can be
designed to compensate for GVD acquired over fiber lengths as long as 4900 km for a
lightwave system operating at a bit rate of 2.5 Gb/s [34].

As discussed in Chapter 10, use of a coherent receiver is often not practical. An
electronic dispersion equalizer is much more practical for a direct-detection receiver. A
linear electronic circuit cannot compensate GVD in this case. The problem lies in the
fact that all phase information is lost during direct detection as a photodetector responds
to optical intensity only (see Chapter 4). As a result, no linear equalization technique
can recover a signal that has spread outside its allocated bit slot. Nevertheless, several
nonlinear equalization techniques have been developed that permit recovery of the de-
graded signal [35]–[38]. In one method, the decision threshold, normally kept fixed at
the center of the eye diagram (see Section 4.3.3), is varied depending on the preced-
ing bits. In another, the decision about a given bit is made after examining the analog
waveform over a multiple-bit interval surrounding the bit in question [35]. The main
difficulty with all such techniques is that they require electronic logic circuits, which
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must operate at the bit rate and whose complexity increases exponentially with the
number of bits over which an optical pulse has spread because of GVD-induced pulse
broadening. Consequently, electronic equalization is generally limited to low bit rates
and to transmission distances of only a few dispersion lengths.

An optoelectronic equalization technique based on a transversal filter has also been
proposed [39]. In this technique, a power splitter at the receiver splits the received
optical signal into several branches. Fiber-optic delay lines introduce variable delays
in different branches. The optical signal in each branch is converted into photocurrent
by using variable-sensitivity photodetectors, and the summed photocurrent is used by
the decision circuit. The technique can extend the transmission distance by about a
factor of 3 for a lightwave system operating at 5 Gb/s.

7.4 Dispersion-Compensating Fibers

The preceding techniques may extend the transmission distance of a dispersion-limited
system by a factor of 2 or so but are unsuitable for long-haul systems for which GVD
must be compensated along the transmission line in a periodic fashion. What one needs
for such systems is an all-optical, fiber-based, dispersion-management technique [40].
A special kind of fiber, known as the dispersion-compensating fiber (DCF), has been
developed for this purpose [41]–[44]. The use of DCF provides an all-optical technique
that is capable of compensating the fiber GVD completely if the average optical power
is kept low enough that the nonlinear effects inside optical fibers are negligible. It takes
advantage of the linear nature of Eq. (7.1.3).

To understand the physics behind this dispersion-management technique, consider
the situation in which each optical pulse propagates through two fiber segments, the
second of which is the DCF. Using Eq. (7.1.4) for each fiber section consecutively, we
obtain

A(L,t) =
1

2π

∫ ∞

−∞
Ã(0,ω)exp

[
i
2

ω2(β21L1 + β22L2)− iωt

]
dω , (7.4.1)

where L = L1 + L2 and β2 j is the GVD parameter for the fiber segment of length L j

( j = 1, 2). If the DCF is chosen such that the ω 2 phase term vanishes, the pulse will
recover its original shape at the end of DCF. The condition for perfect dispersion
compensation is thus β21L1 + β22L2 = 0, or

D1L1 + D2L2 = 0. (7.4.2)

Equation (7.4.2) shows that the DCF must have normal GVD at 1.55 µm (D 2 < 0)
because D1 > 0 for standard telecommunication fibers. Moreover, its length should be
chosen to satisfy

L2 = −(D1/D2)L1. (7.4.3)

For practical reasons, L2 should be as small as possible. This is possible only if the
DCF has a large negative value of D2.

Although the idea of using a DCF has been around since 1980 [40], it was only
after the advent of optical amplifiers around the 1990 that the development of DCFs
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accelerated in pace. There are two basic approaches to designing DCFs. In one ap-
proach, the DCF supports a single mode, but it is designed with a relatively small
value of the fiber parameter V given in Eq. (2.2.35). As discussed in Section 2.2.3
and seen in Fig. 2.7, the fundamental mode is weakly confined for V ≈ 1. As a large
fraction of the mode propagates inside the cladding layer, where the refractive index
is smaller, the waveguide contribution to the GVD is quite different and results in val-
ues of D ∼ −100 ps/(km-nm). A depressed-cladding design is often used in practice
for making DCFs [41]–[44]. Unfortunately, DCFs also exhibit relatively high losses
because of increase in bending losses (α = 0.4–0.6 dB/km). The ratio |D|/α is often
used as a figure of merit M for characterizing various DCFs [41]. By 1997, DCFs with
M > 250 ps/(nm-dB) have been fabricated.

A practical solution for upgrading the terrestrial lightwave systems making use of
the existing standard fibers consists of adding a DCF module (with 6–8 km of DCF)
to optical amplifiers spaced apart by 60–80 km. The DCF compensates GVD while
the amplifier takes care of fiber losses. This scheme is quite attractive but suffers from
two problems. First, insertion losses of a DCF module typically exceed 5 dB. Insertion
losses can be compensated by increasing the amplifier gain but only at the expense of
enhanced amplified spontaneous emission (ASE) noise. Second, because of a relatively
small mode diameter of DCFs, the effective mode area is only ∼20 µm 2. As the
optical intensity is larger inside a DCF at a given input power, the nonlinear effects are
considerably enhanced [44].

The problems associated with a DCF can be solved to a large extent by using a two-
mode fiber designed with values of V such that the higher-order mode is near cutoff
(V ≈ 2.5). Such fibers have almost the same loss as the single-mode fiber but can
be designed such that the dispersion parameter D for the higher-order mode has large
negative values [45]–[48]. Indeed, values of D as large as −770 ps/(km-nm) have been
measured for elliptical-core fibers [45]. A 1-km length of such a DCF can compensate
the GVD for a 40-km-long fiber link, adding relatively little to the total link loss.

The use of a two-mode DCF requires a mode-conversion device capable of con-
verting the energy from the fundamental mode to the higher-order mode supported by
the DCF. Several such all-fiber devices have been developed [49]–[51]. The all-fiber
nature of the mode-conversion device is important from the standpoint of compatibility
with the fiber network. Moreover, such an approach reduces the insertion loss. Addi-
tional requirements on a mode converter are that it should be polarization insensitive
and should operate over a broad bandwidth. Almost all practical mode-conversion de-
vices use a two-mode fiber with a fiber grating that provides coupling between the
two modes. The grating period Λ is chosen to match the mode-index difference δ n̄
of the two modes (Λ = λ/δ n̄) and is typically ∼ 100 µm. Such gratings are called
long-period fiber gratings [51]. Figure 7.5 shows schematically a two-mode DCF with
two long-period gratings. The measured dispersion characteristics of this DCF are
also shown [47]. The parameter D has a value of −420 ps/(km-nm) at 1550 nm and
changes considerably with wavelength. This is an important feature that allows for
broadband dispersion compensation [48]. In general, DCFs are designed such that |D|
increases with wavelength. The wavelength dependence of D plays an important role
for wavelength-division multiplexed (WDM) systems. This issue is discussed later in
Section 7.9.
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(a) (b)

Figure 7.5: (a) Schematic of a DCF made using a higher-order mode (HOM) fiber and two long-
period gratings (LPGs). (b) Dispersion spectrum of the DCF. (After Ref. [47]; c©2001 IEEE;
reprinted with permission.)

7.5 Optical Filters

A shortcoming of DCFs is that a relatively long length (> 5 km) is required to com-
pensate the GVD acquired over 50 km of standard fiber. This adds considerably to the
link loss, especially in the case of long-haul applications. For this reason, several other
all-optical schemes have been developed for dispersion management. Most of them
can be classified under the category of optical equalizing filters. Interferometric filters
are considered in this section while the next section is devoted to fiber gratings.

The function of optical filters is easily understood from Eq. (7.1.4). Since the GVD
affects the optical signal through the spectral phase exp(iβ 2zω2/2), it is evident that
an optical filter whose transfer function cancels this phase will restore the signal. Un-
fortunately, no optical filter (except for an optical fiber) has a transfer function suitable
for compensating the GVD exactly. Nevertheless, several optical filters have provided
partial GVD compensation by mimicking the ideal transfer function. Consider an op-
tical filter with the transfer function H(ω). If this filter is placed after a fiber of length
L, the filtered optical signal can be written using Eq. (7.1.4) as

A(L,t) =
1

2π

∫ ∞

−∞
Ã(0,ω)H(ω)exp

(
i
2

β2Lω2 − iωt

)
dω , (7.5.1)

By expanding the phase of H(ω) in a Taylor series and retaining up to the quadratic
term,

H(ω) = |H(ω)|exp[iφ(ω)] ≈ |H(ω)|exp[i(φ0 + φ1ω + 1
2 φ2ω2)], (7.5.2)

where φm = dmφ/dωm(m = 0,1, . . .) is evaluated at the optical carrier frequency ω0.
The constant phase φ0 and the time delay φ1 do not affect the pulse shape and can be
ignored. The spectral phase introduced by the fiber can be compensated by choosing an
optical filter such that φ2 = −β2L. The pulse will recover perfectly only if |H(ω)| = 1
and the cubic and higher-order terms in the Taylor expansion in Eq. (7.5.2) are negli-
gible. Figure 7.6 shows schematically how such an optical filter can be combined with
optical amplifiers such that both fiber losses and GVD can be compensated simultane-
ously. Moreover, the optical filter can also reduce the amplifier noise if its bandwidth
is much smaller than the amplifier bandwidth.
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Figure 7.6: Dispersion management in a long-haul fiber link using optical filters after each
amplifier. Filters compensate for GVD and also reduce amplifier noise.

Optical filters can be made using an interferometer which, by its very nature, is
sensitive to the frequency of the input light and acts as an optical filter because of its
frequency-dependent transmission characteristics. A simple example is provided by the
Fabry–Perot (FP) interferometer encountered in Sections 3.3.2 and 6.2.1 in the context
of a laser cavity. In fact, the transmission spectrum |HFP|2 of a FP interferometer
can be obtained from Eq. (6.2.1) by setting G = 1 if losses per pass are negligible.
For dispersion compensation, we need the frequency dependence of the phase of the
transfer function H(ω), which can be obtained by considering multiple round trips
between the two mirrors. A reflective FP interferometer, known as the Gires–Tournois
interferometer, is designed with a back mirror that is 100% reflective. Its transfer
function is given by [52]

HFP(ω) = H0
1+ r exp(−iωT )
1+ r exp(iωT )

, (7.5.3)

where the constant H0 takes into account all losses, |r|2 is the front-mirror reflectivity,
and T is the round-trip time within the FP cavity. Since |HFP(ω)| is frequency inde-
pendent, only the spectral phase is modified by the FP filter. However, the phase φ(ω)
of HFP(ω) is far from ideal. It is a periodic function that peaks at the FP resonances
(longitudinal-mode frequencies of Section 3.3.2). In the vicinity of each peak, a spec-
tral region exists in which the phase variation is nearly quadratic. By expanding φ(ω)
in a Taylor series, φ2 is given by

φ2 = 2T 2r(1− r)/(1+ r)3. (7.5.4)

As an example, for a 2-cm-long FP cavity with r = 0.8, φ2 ≈ 2200 ps2. Such a filter
can compensate the GVD acquired over 110 km of standard fiber. In a 1991 experi-
ment [53], such an all-fiber device was used to transmit a 8-Gb/s signal over 130 km
of standard fiber. The relatively high insertion loss of 8 dB was compensated by using
an optical amplifier. A loss of 6 dB was due to a 3-dB fiber coupler used to separate
the reflected signal from the incident signal. This amount can be reduced to about 1 dB
using an optical circulator, a three-port device that transfers power one port to another
in a circular fashion. Even then, relatively high losses and narrow bandwidths of FP
filters limit their use in practical lightwave systems.
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Figure 7.7: (a) A planar lightwave circuit made using of a chain of Mach–Zehnder interferome-
ters; (b) unfolded view of the device. (After Ref. [56]; c©1996 IEEE; reprinted with permission.)

A Mach–Zehnder (MZ) interferometer can also act as an optical filter. An all-fiber
MZ interferometer can be constructed by connecting two 3-dB directional couplers in
series, as shown schematically in Fig. 7.7(b). The first coupler splits the input signal
into two equal parts, which acquire different phase shifts if arm lengths are different,
before they interfere at the second coupler. The signal may exit from either of the two
output ports depending on its frequency and the arm lengths. It is easy to show that the
transfer function for the bar port is given by [54]

HMZ(ω) = 1
2 [1+ exp(iωτ)], (7.5.5)

where τ is the extra delay in the longer arm of the MZ interferometer.
A single MZ interferometer does not act as an optical equalizer but a cascaded chain

of several MZ interferometers forms an excellent equalizing filter [55]. Such filters
have been fabricated in the form of a planar lightwave circuit by using silica wave-
guides [56]. Figure 7.7(a) shows the device schematically. The device is 52×71 mm 2

in size and exhibits a chip loss of 8 dB. It consists of 12 couplers with asymmetric
arm lengths that are cascaded in series. A chromium heater is deposited on one arm
of each MZ interferometer to provide thermo-optic control of the optical phase. The
main advantage of such a device is that its dispersion-equalization characteristics can
be controlled by changing the arm lengths and the number of MZ interferometers.

The operation of the MZ filter can be understood from the unfolded view shown in
Fig. 7.7(b). The device is designed such that the higher-frequency components prop-
agate in the longer arm of the MZ interferometers. As a result, they experience more
delay than the lower-frequency components taking the shorter route. The relative delay
introduced by such a device is just the opposite of that introduced by an optical fiber
in the anomalous-dispersion regime. The transfer function H(ω) can be obtained an-
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alytically and is used to optimize the device design and performance [57]. In a 1994
implementation [58], a planar lightwave circuit with only five MZ interferometers pro-
vided a relative delay of 836 ps/nm. Such a device is only a few centimeters long,
but it is capable of compensating for 50 km of fiber dispersion. Its main limitations
are a relatively narrow bandwidth (∼ 10 GHz) and sensitivity to input polarization.
However, it acts as a programmable optical filter whose GVD as well as the operating
wavelength can be adjusted. In one device, the GVD could be varied from −1006 to
834 ps/nm [59].

7.6 Fiber Bragg Gratings

A fiber Bragg grating acts as an optical filter because of the existence of a stop band,
the frequency region in which most of the incident light is reflected back [51]. The
stop band is centered at the Bragg wavelength λB = 2n̄Λ, where Λ is the grating period
and n̄ is the average mode index. The periodic nature of index variations couples the
forward- and backward-propagating waves at wavelengths close to the Bragg wave-
length and, as a result, provides frequency-dependent reflectivity to the incident signal
over a bandwidth determined by the grating strength. In essence, a fiber grating acts as
a reflection filter. Although the use of such gratings for dispersion compensation was
proposed in the 1980s [60], it was only during the 1990s that fabrication technology
advanced enough to make their use practical.

7.6.1 Uniform-Period Gratings

We first consider the simplest type of grating in which the refractive index along the
length varies periodically as n(z) = n̄ + ng cos(2πz/Λ), where ng is the modulation
depth (typically ∼ 10−4). Bragg gratings are analyzed using the coupled-mode equa-
tions that describe the coupling between the forward- and backward-propagating waves
at a given frequency ω and are written as [51]

dA f /dz = iδA f + iκAb, (7.6.1)

dAb/dz = −iδAb − iκA f , (7.6.2)

where A f and Ab are the spectral amplitudes of the two waves and

δ =
2π
λ0

− 2π
λB

, κ =
πngΓ

λB
. (7.6.3)

Here δ is the detuning from the Bragg wavelength, κ is the coupling coefficient, and
the confinement factor Γ is defined as in Eq. (2.2.50).

The coupled-mode equations can be solved analytically owing to their linear nature.
The transfer function of the grating, acting as a reflective filter, is found to be [54]

H(ω) = r(ω) =
Ab(0)
A f (0)

=
iκ sin(qLg)

qcos(qLg)− iδ sin(qLg)
, (7.6.4)
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Figure 7.8: (a) Magnitude and (b) phase of the reflectivity plotted as a function of detuning δLg

for a uniform fiber grating with κLg = 2 (dashed curve) or κLg = 3 (solid curve).

where q2 = δ 2 − κ2 and Lg is the grating length. Figure 7.8 shows the reflectivity
|H(ω)|2 and the phase of H(ω) for κLg = 2 and 3. The grating reflectivity becomes
nearly 100% within the stop band for κLg = 3. However, as the phase is nearly linear
in that region, the grating-induced dispersion exists only outside the stop band. Noting
that the propagation constant β = βB ± q, where the choice of sign depends on the
sign of δ , and expanding β in a Taylor series as was done in Eq. (2.4.4) for fibers, the
dispersion parameters of a fiber grating are given by [54]

β g
2 = − sgn(δ )κ2/v2

g

(δ 2 −κ2)3/2
, β g

3 =
3|δ |κ2/v3

g

(δ 2 −κ2)5/2
, (7.6.5)

where vg is the group velocity of the pulse with the carrier frequency ω 0 = 2πc/λ0.
Figure 7.9 shows how β g

2 varies with the detuning parameter δ for values of κ in
the range 1 to 10 cm−1. The grating-induced GVD depends on the sign of detuning δ .
The GVD is anomalous on the high-frequency or “blue” side of the stop band where
δ is positive and the carrier frequency exceeds the Bragg frequency. In contrast, GVD
becomes normal (β g

2 > 0) on the low-frequency or “red” side of the stop band. The
red side can be used for compensating the anomalous GVD of standard fibers. Since
β g

2 can exceed 1000 ps2/cm, a single 2-cm-long grating can be used for compensating
the GVD of 100-km fiber. However, the third-order dispersion of the grating, reduced
transmission, and rapid variations of |H(ω)| close to the bandgap make use of uniform
fiber gratings for dispersion compensation far from being practical.

The problem can be solved by using the apodization technique in which the index
change ng is made nonuniform across the grating, resulting in z-dependent κ . In prac-
tice, such an apodization occurs naturally when an ultraviolet Gaussian beam is used to
write the grating holographically [51]. For such gratings, κ peaks in the center and ta-
pers down to zero at both ends. A better approach consists of making a grating such that
κ varies linearly over the entire length of the fiber grating. In a 1996 experiment [61],
such an 11-cm-long grating was used to compensate the GVD acquired by a 10-Gb/s
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Figure 7.9: Grating-induced GVD plotted as a function of δ for several values of the coupling
coefficient κ .

signal transmitted over 100 km of standard fiber. The coupling coefficient κ(z) varied
smoothly from 0 to 6 cm−1 over the grating length. Figure 7.10 shows the transmis-
sion characteristics of this grating, calculated by solving the coupled-mode equations
numerically. The solid curve shows the group delay related to the phase derivative
dφ/dω in Eq. (7.5.2). In a 0.1-nm-wide wavelength region near 1544.2 nm, the group
delay varies almost linearly at a rate of about 2000 ps/nm, indicating that the grating
can compensate for the GVD acquired over 100 km of standard fiber while providing
more than 50% transmission to the incident light. Indeed, such a grating compensated
GVD over 106 km for a 10-Gb/s signal with only a 2-dB power penalty at a bit-error
rate (BER) of 10−9 [61]. In the absence of the grating, the penalty was infinitely large
because of the existence of a BER floor.

Tapering of the coupling coefficient along the grating length can also be used for
dispersion compensation when the signal wavelength lies within the stop band and the
grating acts as a reflection filter. Numerical solutions of the coupled-mode equations
for a uniform-period grating for which κ(z) varies linearly from 0 to 12 cm −1 over
the 12-cm length show that the V-shaped group-delay profile, centered at the Bragg
wavelength, can be used for dispersion compensation if the wavelength of the incident
signal is offset from the center of the stop band such that the signal spectrum sees a
linear variation of the group delay. Such a 8.1-cm-long grating was capable of com-
pensating the GVD acquired over 257 km of standard fiber by a 10-Gb/s signal [62].
Although uniform gratings have been used for dispersion compensation [61]–[64], they
suffer from a relatively narrow stop band (typically < 0.1 nm) and cannot be used at
high bit rates.
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Figure 7.10: Transmittivity (dashed curve) and time delay (solid curve) as a function of wave-
length for a uniform-pitch grating for which κ(z) varies linearly from 0 to 6 cm−1 over the 11-cm
length. (After Ref. [61]; c©1996 IEE; reprinted with permission.)

7.6.2 Chirped Fiber Gratings

Chirped fiber gratings have a relatively broad stop band and were proposed for disper-
sion compensation as early as 1987 [65]. The optical period n̄Λ in a chirped grating is
not constant but changes over its length [51]. Since the Bragg wavelength (λ B = 2n̄Λ)
also varies along the grating length, different frequency components of an incident op-
tical pulse are reflected at different points, depending on where the Bragg condition is
satisfied locally. In essence, the stop band of a chirped fiber grating results from over-
lapping of many mini stop bands, each shifted as the Bragg wavelength shifts along the
grating. The resulting stop band can be as wide as a few nanometers.

It is easy to understand the operation of a chirped fiber grating from Fig. 7.11,
where the low-frequency components of a pulse are delayed more because of increasing
optical period (and the Bragg wavelength). This situation corresponds to anomalous
GVD. The same grating can provide normal GVD if it is flipped (or if the light is
incident from the right). Thus, the optical period n̄Λ of the grating should decrease for
it to provide normal GVD. From this simple picture, the dispersion parameter Dg of
a chirped grating of length Lg can be determined by using the relation TR = DgLg∆λ ,
where TR is the round-trip time inside the grating and ∆λ is the difference in the Bragg
wavelengths at the two ends of the grating. Since TR = 2n̄Lg/c, the grating dispersion
is given by a remarkably simple expression,

Dg = 2n̄/c(∆λ ). (7.6.6)

As an example, Dg ≈ 5× 107 ps/(km-nm) for a grating bandwidth ∆λ = 0.2 nm. Be-
cause of such large values of Dg, a 10-cm-long chirped grating can compensate for the
GVD acquired over 300 km of standard fiber.
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Figure 7.11: Dispersion compensation by a linearly chirped fiber grating: (a) index profile n(z)
along the grating length; (b) reflection of low and high frequencies at different locations within
the grating because of variations in the Bragg wavelength.

Chirped fiber gratings have been fabricated by using several different methods [51].
It is important to note that it is the optical period n̄Λ that needs to be varied along
the grating (z axis), and thus chirping can be induced either by varying the physical
grating period Λ or by changing the effective mode index n̄ along z. In the commonly
used dual-beam holographic technique, the fringe spacing of the interference pattern
is made nonuniform by using dissimilar curvatures for the interfering wavefronts [66],
resulting in Λ variations. In practice, cylindrical lenses are used in one or both arms
of the interferometer. In a double-exposure technique [67], a moving mask is used to
vary n̄ along z during the first exposure. A uniform-period grating is then written over
the same section of the fiber by using the phase-mask technique. Many other variations
are possible. For example, chirped fiber gratings have been fabricated by tilting or
stretching the fiber, by using strain or temperature gradients, and by stitching together
multiple uniform sections.

The potential of chirped fiber gratings for dispersion compensation was demon-
strated during the 1990s in several transmission experiments [68]–[73]. In 1994, GVD
compensation over 160 km of standard fiber at 10 and 20 Gb/s was realized [69]. In
1995, a 12-cm-long chirped grating was used to compensate GVD over 270 km of fiber
at 10 Gb/s [70]. Later, the transmission distance was increased to 400 km using a 10-
cm-long apodized chirped fiber grating [71]. This is a remarkable performance by an
optical filter that is only 10 cm long. Note also from Eq. (7.1.2) that the transmission
distance is limited to only 20 km in the absence of dispersion compensation.

Figure 7.12 shows the measured reflectivity and the group delay (related to the
phase derivative dφ/dω) as a function of the wavelength for the 10-cm-long grating
with a bandwidth ∆λ = 0.12 nm chosen to ensure that the 10-Gb/s signal fits within
the stop band of the grating. For such a grating, the period Λ changes by only 0.008%
over its entire length. Perfect dispersion compensation occurs in the spectral range
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Figure 7.12: Measured reflectivity and time delay for a linearly chirped fiber grating with a
bandwidth of 0.12 nm. (After Ref. [73]; c©1996 IEEE; reprinted with permission.)

over which dφ/dω varies linearly. The slope of the group delay (about 5000 ps/nm)
is a measure of the dispersion-compensation capability of the grating. Such a grating
can recover the 10-Gb/s signal by compensating the GVD acquired over 400 km of the
standard fiber. The chirped grating should be apodized in such a way that the coupling
coefficient peaks in the middle but vanishes at the grating ends. The apodization is
essential to remove the ripples that occur for gratings with a constant κ .

It is clear from Eq. (7.6.6) that Dg of a chirped grating is ultimately limited by
the bandwidth ∆λ over which GVD compensation is required, which in turn is deter-
mined by the bit rate B. Further increase in the transmission distance at a given bit rate
is possible only if the signal bandwidth is reduced or a prechirp technique is used at
the transmitter. In a 1996 system trial [72], prechirping of the 10-Gb/s optical signal
was combined with the two chirped fiber gratings, cascaded in series, to increase the
transmission distance to 537 km. The bandwidth-reduction technique can also be com-
bined with the grating. As discussed in Section 7.3, a duobinary coding scheme can
reduce the bandwidth by up to 50%. In a 1996 experiment, the transmission distance
of a 10-Gb/s signal was extended to 700 km by using a 10-cm-long chirped grating in
combination with a phase-alternating duobinary scheme [73]. The grating bandwidth
was reduced to 0.073 nm, too narrow for the 10-Gb/s signal but wide enough for the
reduced-bandwidth duobinary signal.

The main limitation of chirped fiber gratings is that they work as a reflection filter.
A 3-dB fiber coupler is sometimes used to separate the reflected signal from the incident
one. However, its use imposes a 6-dB loss that adds to other insertion losses. An
optical circulator can reduce insertion losses to below 2 dB and is often used in practice.
Several other techniques can be used. Two or more fiber gratings can be combined to
form a transmission filter, which provides dispersion compensation with relatively low
insertion losses [74]. A single grating can be converted into a transmission filter by
introducing a phase shift in the middle of the grating [75]. A Moiré grating, formed
by superimposing two chirped gratings formed on the same piece of fiber, also has a
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Figure 7.13: Schematic illustration of dispersion compensation by two fiber-based transmission
filters: (a) chirped dual-mode coupler; (b) tapered dual-core fiber. (After Ref. [77]; c©1994
IEEE; reprinted with permission.)

transmission peak within its stop band [76]. The bandwidth of such transmission filters
is relatively small.

7.6.3 Chirped Mode Couplers

This subsection focuses on two fiber devices that can act as a transmission filter suitable
for dispersion compensation. A chirped mode coupler is an all-fiber device designed
using the concept of chirped distributed resonant coupling [77]. Figure 7.13 shows the
operation of two such devices schematically. The basic idea behind a chirped mode
coupler is quite simple [78]. Rather than coupling the forward and backward propagat-
ing waves of the same mode (as is done in a fiber grating), the chirped grating couples
the two spatial modes of a dual-mode fiber. Such a device is similar to the mode con-
verter discussed in Section 7.4 in the context of a DCF except that the grating period
is varied linearly over the fiber length. The signal is transferred from the fundamental
mode to a higher-order mode by the grating, but different frequency components travel
different lengths before being transferred because of the chirped nature of the grating
that couples the two modes. If the grating period increases along the coupler length, the
coupler can compensate for the fiber GVD. The signal remains propagating in the for-
ward direction, but ends up in a higher-order mode of the coupler. A uniform-grating
mode converter can be used to reconvert the signal back into the fundamental mode.

A variant of the same idea uses the coupling between the fundamental modes
of a dual-core fiber with dissimilar cores [79]. If the two cores are close enough,
evanescent-wave coupling between the modes leads to a transfer of energy from one
core to another, similar to the case of a directional coupler. When the spacing between
the cores is linearly tapered, such a transfer takes place at different points along the
fiber, depending on the frequency of the propagating signal. Thus, a dual-core fiber
with the linearly tapered core spacing can compensate for fiber GVD. Such a device
keeps the signal propagating in the forward direction, although it is physically trans-
ferred to the neighboring core. This scheme can also be implemented in the form of
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a compact device by using semiconductor waveguides since the supermodes of two
coupled waveguides exhibit a large amount of GVD that is also tunable [80].

7.7 Optical Phase Conjugation

Although the use of optical phase conjugation (OPC) for dispersion compensation was
proposed in 1979 [81], it was only in 1993 that the OPC technique was implemented
experimentally; it has attracted considerable attention since then [82]–[103]. In con-
trast with other optical schemes discussed in this chapter, the OPC is a nonlinear optical
technique. This section describes the principle behind it and discusses its implementa-
tion in practical lightwave systems.

7.7.1 Principle of Operation

The simplest way to understand how OPC can compensate the GVD is to take the
complex conjugate of Eq. (7.1.3) and obtain

∂A∗

∂ z
− iβ2

2
∂ 2A∗

∂ t2 − β3

6
∂ 3A∗

∂ t3 = 0. (7.7.1)

A comparison of Eqs. (7.1.3) and (7.7.1) shows that the phase-conjugated field A∗ prop-
agates with the sign reversed for the GVD parameter β2. This observation suggests im-
mediately that, if the optical field is phase-conjugated in the middle of the fiber link, the
dispersion acquired over the first half will be exactly compensated in the second-half
section of the link. Since the β3 term does not change sign on phase conjugation, OPC
cannot compensate for the third-order dispersion. In fact, it is easy to show, by keeping
the higher-order terms in the Taylor expansion in Eq. (2.4.4), that OPC compensates
for all even-order dispersion terms while leaving the odd-order terms unaffected.

The effectiveness of midspan OPC for dispersion compensation can also be verified
by using Eq. (7.1.4). The optical field just before OPC is obtained by using z = L/2
in this equation. The propagation of the phase-conjugated field A ∗ in the second-half
section then yields

A∗(L,t) =
1

2π

∫ ∞

−∞
Ã∗

(
L
2
,ω

)
exp

(
i
4

β2Lω2 − iωt

)
dω , (7.7.2)

where Ã∗(L/2,ω) is the Fourier transform of A∗(L/2,t) and is given by

Ã∗(L/2,ω) = Ã∗(0,−ω)exp(−iω2β2L/4). (7.7.3)

By substituting Eq. (7.7.3) in Eq. (7.7.2), one finds that A(L,t) = A ∗(0,t). Thus, except
for a phase reversal induced by the OPC, the input field is completely recovered, and
the pulse shape is restored to its input form. Since the signal spectrum after OPC
becomes the mirror image of the input spectrum, the OPC technique is also referred to
as midspan spectral inversion.
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7.7.2 Compensation of Self-Phase Modulation

As discussed in Section 2.6, the nonlinear phenomenon of SPM leads to fiber-induced
chirping of the transmitted signal. Section 7.3 indicated that this chirp can be used to
advantage with a proper design. Optical solitons also use the SPM to their advantage
(see Chapter 9). However, in most lightwave systems, the SPM-induced nonlinear
effects degrade the signal quality, especially when the signal is propagated over long
distances using multiple optical amplifiers (see Section 6.5).

The OPC technique differs from all other dispersion-compensation schemes in one
important way: Under certain conditions, it can compensate simultaneously for both
the GVD and SPM. This feature of OPC was noted in the early 1980s [104] and has
been studied extensively after 1993 [97]. It is easy to show that both the GVD and
SPM are compensated perfectly in the absence of fiber losses. Pulse propagation in a
lossy fiber is governed by Eq. (5.3.1) or by

∂A
∂ z

+
iβ2

2
∂ 2A
∂ t2 = iγ|A|2A− α

2
A, (7.7.4)

where the β3 term is neglected and α accounts for the fiber losses. When α = 0,
A∗ satisfies the same equation when we take the complex conjugate of Eq. (7.7.4)
and change z to −z. As a result, midspan OPC can compensate for SPM and GVD
simultaneously.

Fiber losses destroy this important property of midspan OPC. The reason is intu-
itively obvious if we note that the SPM-induced phase shift is power dependent. As a
result, much larger phase shifts are induced in the first-half of the link than the second
half, and OPC cannot compensate for the nonlinear effects. Equation (7.7.4) can be
used to study the impact of fiber losses. By making the substitution

A(z,t) = B(z,t)exp(−αz/2), (7.7.5)

Eq. (7.7.4) can be written as

∂B
∂ z

+
iβ2

2
∂ 2B
∂ t2 = iγ(z)|B|2B, (7.7.6)

where γ(z) = γ exp(−αz). The effect of fiber losses is mathematically equivalent to
the loss-free case but with a z-dependent nonlinear parameter. By taking the complex
conjugate of Eq. (7.7.6) and changing z to −z, it is easy to see that perfect SPM com-
pensation can occur only if γ(z) = γ(L− z). This condition cannot be satisfied when
α 
= 0.

One may think that the problem can be solved by amplifying the signal after OPC
so that the signal power becomes equal to the input power before it is launched in the
second-half section of the fiber link. Although such an approach reduces the impact
of SPM, it does not lead to perfect compensation of it. The reason can be understood
by noting that propagation of a phase-conjugated signal is equivalent to propagating
a time-reversed signal [105]. Thus, perfect SPM compensation can occur only if the
power variations are symmetric around the midspan point where the OPC is performed
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so that γ(z) = γ(L− z) in Eq. (7.7.6). Optical amplification does not satisfy this prop-
erty. One can come close to SPM compensation if the signal is amplified often enough
that the power does not vary by a large amount during each amplification stage. This
approach is, however, not practical because it requires closely spaced amplifiers.

Perfect compensation of both GVD and SPM can be realized by using dispersion-
decreasing fibers for which β2 decreases along the fiber length. To see how such a
scheme can be implemented, assume that β2 in Eq. (7.7.6) is a function of z. By
making the transformation

ξ =
∫ z

0
γ(z)dz, (7.7.7)

Eq. (7.7.6) can be written as [97]

∂B
∂ξ

+
i
2

b(ξ )
∂ 2B
∂ t2 = i|B|2B, (7.7.8)

where b(ξ ) = β2(ξ )/γ(ξ ). Both GVD and SPM are compensated if b(ξ ) = b(ξL−ξ ),
where ξL is the value of ξ at z = L. This condition is automatically satisfied when
the dispersion decreases in exactly the same way as γ(z) so that β2(ξ ) = γ(ξ ) and
b(ξ ) = 1. Since fiber losses make γ(z) to decrease exponentially as exp(−αz), both
GVD and SPM can be compensated exactly in a dispersion-decreasing fiber whose
GVD decreases as exp(−αz). This approach is quite general and applies even when
in-line amplifiers are used.

7.7.3 Phase-Conjugated Signal

The implementation of the midspan OPC technique requires a nonlinear optical ele-
ment that generates the phase-conjugated signal. The most commonly used method
makes use of four-wave mixing (FWM) in a nonlinear medium. Since the optical fiber
itself is a nonlinear medium, a simple approach is to use a few-kilometer-long fiber
especially designed to maximize the FWM efficiency.

The FWM phenomenon in optical fibers has been studied extensively [106]. Its
use requires injection of a pump beam at a frequency ω p that is shifted from the sig-
nal frequency ωs by a small amount (∼ 0.5 THz). The fiber nonlinearity generates
the phase-conjugated signal at the frequency ω c = 2ωp −ωs provided that the phase-
matching condition kc = 2kp − ks is approximately satisfied, where k j = n(ω j)ωc/c
is the wave number for the optical field of frequency ω j. The phase-matching con-
dition can be approximately satisfied if the zero-dispersion wavelength of the fiber is
chosen to coincide with the pump wavelength. This was the approach adopted in the
1993 experiments in which the potential of OPC for dispersion compensation was first
demonstrated. In one experiment [82], the 1546-nm signal was phase conjugated by
using FWM in a 23-km-long fiber with pumping at 1549 nm. The 6-Gb/s signal was
transmitted over 152 km of standard fiber in a coherent transmission experiment em-
ploying the FSK format. In another experiment [83], a 10-Gb/s signal was transmitted
over 360 km. The midspan OPC was performed in a 21-km-long fiber by using a pump
laser whose wavelength was tuned exactly to the zero-dispersion wavelength of the
fiber. The pump and signal wavelengths differed by 3.8 nm. Figure 7.14 shows the
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Figure 7.14: Experimental setup for dispersion compensation through midspan spectral inver-
sion in a 21-km-long dispersion-shifted fiber. (After Ref. [83]; c©1993 IEEE; reprinted with
permission.)

experimental setup. A bandpass filter (BPF) is used to separate the phase-conjugated
signal from the pump.

Several factors need to be considered while implementing the midspan OPC tech-
nique in practice. First, since the signal wavelength changes from ω s to ωc = 2ωp−ωs

at the phase conjugator, the GVD parameter β2 becomes different in the second-half
section. As a result, perfect compensation occurs only if the phase conjugator is slightly
offset from the midpoint of the fiber link. The exact location L p can be determined by
using the condition β2(ωs)Lp = β2(ωc)(L−Lp), where L is the total link length. By
expanding β2(ωc) in a Taylor series around the signal frequency ω s, Lp is found to be

Lp

L
=

β2 + δcβ3

2β2 + δcβ3
, (7.7.9)

where δc = ωc −ωs is the frequency shift of the signal induced by the OPC technique.
For a typical wavelength shift of 6 nm, the phase-conjugator location changes by about
1%. The effect of residual dispersion and SPM in the phase-conjugation fiber itself can
also affect the placement of phase conjugator [94].

A second factor that needs to be addressed is that the FWM process in optical
fibers is polarization sensitive. As signal polarization is not controlled in optical fibers,
it varies at the OPC in a random fashion. Such random variations affect the FWM effi-
ciency and make the standard FWM technique unsuitable for practical purposes. For-
tunately, the FWM scheme can be modified to make it polarization insensitive. In one
approach, two orthogonally polarized pump beams at different wavelengths, located
symmetrically on the opposite sides of the zero-dispersion wavelength λ ZD of the fiber,
are used [85]. This scheme has another advantage: the phase-conjugate wave can be
generated at the frequency of the signal itself by choosing λ ZD such that it coincides
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with the signal frequency. This feature follows from the relation ω c = ωp1 +ωp2 −ωs,
where ωp1 
= ωp2. Polarization insensitivity of OPC can also be realized by using a
single pump in combination with a fiber grating and an orthoconjugate mirror [90],
but the device works in the reflective mode and requires the separation of the conjugate
wave from the signal by using a 3-dB coupler or an optical circulator.

The relatively low efficiency of the OPC process in optical fibers is also of some
concern. Typically, the conversion efficiency η c is below 1%, making it necessary
to amplify the phase-conjugated signal [83]. Effectively, the insertion loss of the
phase conjugator exceeds 20 dB. However, the FWM process is not inherently a
low-efficiency process and, in principle, it can even provide net gain [106]. Indeed,
the analysis of the FWM equations shows that ηc increases considerably by increas-
ing the pump power while decreasing the signal power; it can even exceed 100% by
optimizing the power levels and the pump-signal wavelength difference [92]. High
pump powers are often avoided because of the onset of stimulated Brillouin scatter-
ing (SBS). However, SBS can be suppressed by modulating the pump at a frequency
∼ 100 MHz. In a 1994 experiment, 35% conversion efficiency was realized by using
this technique [107].

The FWM process in a semiconductor optical amplifier (SOA) has also been used
to generate the phase-conjugated signal for dispersion compensation. This approach
was first used in a 1993 experiment to demonstrate transmission of a 2.5-Gb/s signal,
obtained through direct modulation of a semiconductor laser, over 100 km of standard
fiber [84]. Later, in a 1995 experiment the same approach was used for transmitting
a 40-Gb/s signal over 200 km of standard fiber [93]. The possibility of highly nonde-
generate FWM inside SOAs was suggested in 1987, and this technique is used exten-
sively in the context of wavelength conversion [108]. Its main advantage is that the
phase-conjugated signal can be generated in a device of 1-mm length. The conver-
sion efficiency is also typically higher than that of FWM in an optical fiber because of
amplification, although this advantage is offset by the relatively large coupling losses
resulting from the need to couple the signal back into the fiber. By a proper choice of
the pump-signal detuning, conversion efficiencies of more than 100% (net gain for the
phase-conjugated signal) have been realized for FWM in SOAs [109].

A periodically poled LiNbO3 waveguide has also been used to make a wideband
spectral inverter [102]. The phase-conjugated signal is generated using cascaded second-
order nonlinear processes, which are quasi-phase-matched through periodic poling of
the crystal. Such an OPC device exhibited only 7-dB insertion losses and was capable
of compensating dispersion of four 10-Gb/s channels simultaneously over 150 km of
standard fiber. The system potential of the OPC technique was demonstrated in a 1999
field trial in which a FWM-based phase conjugator was used to compensate the GVD
of a 40-Gb/s signal over 140 km of standard fiber [100]. In the absence of OPC, the
40-Gb/s signal cannot be transmitted over more than 7 km as deduced from Eq. (7.1.2).

Most of the experimental work on dispersion compensation has considered trans-
mission distances of several hundred kilometers. For long-haul applications, one may
ask whether the OPC technique can compensate the GVD acquired over thousands of
kilometers in fiber links which use amplifiers periodically for loss compensation. This
question has been studied mainly through numerical simulations. In one set of simu-
lations, a 10-Gb/s signal could be transmitted over 6000 km when the average launch
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power was kept below 3 mW to reduce the effects of fiber nonlinearity [95]. In an-
other study, the amplifier spacing was found to play an important role; transmission
over 9000 km was feasible by keeping the amplifiers 40 km apart [98]. The choice of
the operating wavelength with respect to the zero-dispersion wavelength was also crit-
ical. In the anomalous-dispersion region (β2 < 0), the periodic variation of the signal
power along the fiber link can lead to the generation of additional sidebands through the
phenomenon of modulation instability [110]. This instability can be avoided if the dis-
persion parameter is relatively large [D > 10 ps/(km-nm)]. This is the case for standard
fibers near 1.55 µm. It should be remarked that the maximum transmission distance
depends critically on many factors, such as the FWM efficiency, the input power, and
the amplifier spacing, and may decrease to below 3000 km, depending on the operating
parameters [96].

The use of OPC for long-haul lightwave systems requires periodic use of optical
amplifiers and phase conjugators. These two optical elements can be combined into one
by using parametric amplifiers, which not only generate the phase-conjugated signal
through the FWM process but also amplify it. The analysis of such a long-haul system
shows that 20- to 30-ps input pulses can travel over thousands of kilometers despite a
high GVD; the total transmission distance can exceed 15,000 km for dispersion-shifted
fibers with β2 = −2 ps2/km near 1.55 µm [111]. The phase-conjugation technique is
not used in practice as parametric amplifiers are not yet available commercially. The
next section focuses on the techniques commonly used for dispersion management in
long-haul systems.

7.8 Long-Haul Lightwave Systems

This chapter has so far focused on lightwave systems in which dispersion management
helps to extend the transmission distance from a value of ∼10 km to a few hundred
kilometers. The important question is how dispersion management can be used for
long-haul systems for which transmission distance is several thousand kilometers. If
the optical signal is regenerated electronically every 100–200 km, all techniques dis-
cussed in this chapter should work well since the nonlinear effects do not accumulate
over long lengths. In contrast, if the signal is maintained in the optical domain over the
entire link by using periodic amplification, the nonlinear effects such as SPM, cross-
phase modulation (XPM), and FWM [106] would limit the system ultimately. Indeed,
the impact of nonlinear effects on the performance of dispersion-managed systems has
been a subject of intense study [112]–[137]. In this section we focus on long-haul
lightwave systems in which the loss and dispersion-management schemes are used si-
multaneously.

7.8.1 Periodic Dispersion Maps

In the absence of the nonlinear effects, total GVD accumulated over thousands of kilo-
meters can be compensated at the receiver end without degrading the system perfor-
mance. The reason is that each optical pulse recovers its original position within the
bit slot for a linear system (except for the amplifier-induced timing jitter) even if it was
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Figure 7.15: Recirculating fiber loop used to demonstrate transmission of a 10-Gb/s signal over
10,000 km of standard fiber using a DCF periodically. Components used include laser diode
(LD), electroabsorption (EA) modulator, optical switch (SW), fiber amplifier (EDFA), single-
mode fiber (SMF), and DCF. (After Ref. [135]; c©2000 IEEE; reprinted with permission.)

spread over several bit slots before the GVD was compensated. This is not the case
when nonlinear effects cannot be neglected. The nonlinear interaction among optical
pulses of the same channel (intrachannel effects), and among pulses of neighboring
channels in a WDM system (interchannel effects), degrade the signal quality to the
extent that the GVD compensation at the receiver alone fails to work for long-haul
systems.

A simple solution is provided by the technique of periodic dispersion management.
The underlying idea is quite simple and consists of mixing fibers with positive and
negative GVDs in a periodic fashion such that the total dispersion over each period is
close to zero. The simplest scheme uses just two fibers of opposite dispersions and
lengths with the average dispersion

D̄ = (D1L1 + D2L2)/Lm, (7.8.1)

where D j is the dispersion of the fiber section of length L j ( j = 1,2) and Lm = L1 +L2

is the period of dispersion map, also referred to as the map period. If D̄ is nearly zero,
dispersion is compensated over each map period. The length L m is a free design param-
eter that can be chosen to meet the system-performance requirements. In practice, it is
common to choose Lm to be equal to the amplifier spacing LA as this choice simplifies
the system design. Typically Lm = LA ≈ 80 km for terrestrial lightwave systems but is
reduced to about 50 km for submarine systems.

Because of cost considerations, most laboratory experiments use a fiber loop in
which the optical signal is forced to recirculate many times to simulate a long-haul
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lightwave system. Figure 7.15 shows such a recirculating fiber loop schematically.
It was used to demonstrate transmission of a 10-Gb/s signal over a distance of up to
10,000 km over standard fibers with periodic loss and dispersion management [135].
Two optical switches determine how long a pseudorandom bit stream circulates in-
side the loop before it reaches the receiver. The loop length and the number of round
trips determine the total transmission distance. The loop length is typically 300–
500 km. The length of DCF is chosen in accordance with Eq. (7.8.1) and is set to
L2 =−D1L1/D2 for complete compensation (D̄ = 0). An optical bandpass filter is also
inserted inside the loop to reduce the effects of amplifier noise.

7.8.2 Simple Theory

The major nonlinear phenomenon affecting the performance of a single-channel sys-
tem is SPM. As before, the propagation of an optical bit stream inside a dispersion-
managed system is governed by the nonlinear Schrödinger (NLS) equation [Eq. (7.7.4)]:

i
∂A
∂ z

− β2

2
∂ 2A
∂ t2 + γ|A|2A = − iα

2
A, (7.8.2)

with the main difference that β2, γ , and α are now periodic functions of z because of
their different values in two or more fiber sections used to form the dispersion map.
Loss compensation at lumped amplifiers can be included by changing the loss param-
eter suitably at the amplifier locations.

In general, Eq. (7.8.2) is solved numerically to study the performance of dispersion-
managed systems [120]–[129]. It is useful to eliminate the last term in this equation
with the transformation [see Eq. (7.7.5)]

A(z,t) = B(z,t)exp

[
−1

2

∫ z

0
α(z)dz

]
. (7.8.3)

Equation (7.8.2) then takes the form

i
∂B
∂ z

− β2(z)
2

∂ 2B
∂ t2 + γ̄(z)|B|2B = 0, (7.8.4)

where power variations along the dispersion-managed fiber link are included through a
periodically varying nonlinear parameter γ̄(z) = γ exp[−∫ z

0 α(z)dz].
Considerable insight into the design of a dispersion-managed system can be gained

by solving Eq. (7.8.4) with a variational approach [123]. Its use is based on the ob-
servation that a chirped Gaussian pulse maintains its functional form in the linear case
(γ = 0) although its amplitude, width, and chirp change with propagation (see Section
2.4). Since the nonlinear effects are relatively weak locally in each fiber section com-
pared with the dispersive effects, the pulse shape is likely to retain its Gaussian shape.
One can thus assume that the pulse evolves along the fiber in the form of a chirped
Gaussian pulse such that

B(z,t) = a exp[−(1+ iC)t2/2T 2 + iφ ], (7.8.5)



308 CHAPTER 7. DISPERSION MANAGEMENT

where a is the amplitude, T is the width, C is the chirp, and φ is the phase. All four
parameters vary with z. The variational method is useful to find the z dependence of
these parameters. It makes use of the fact that Eq. (7.8.4) can be derived from the
Euler–Lagrange equation using the following Lagrangian density:

Lden =
i
2

(
B

∂B∗

∂ z
−B∗ ∂B

∂ z

)
+

1
2

[
γ̄(z)|B|4 −β2(z)

∣∣∣∣∂B
∂ t

∣∣∣∣
2
]

. (7.8.6)

Following the variational method, we can find the evolution equations for the four
parameters a, T, C, and φ . The phase equation can be ignored as it is not coupled to
the other three equations. The amplitude equation can be integrated to find that the
combination a2T does not vary with z and is related to the input pulse energy E 0 as
a2T =

√
πE0. Thus, one only needs to solve the following two coupled equations:

dT
dz

=
β2C
T

, (7.8.7)

dC
dz

=
γ̄E0√
2π T

+(1+C2)
β2

T 2 . (7.8.8)

Consider first the linear case by setting γ = 0. Noting that the ratio (1+C 2)/T 2 is
related to the spectral width of the pulse that remains constant in a linear medium, we
can replace it by its initial value (1 +C2

0)/T 2
0 , where T0 and C0 are the width and the

chirp of input pulses before they are launched into the dispersion-managed fiber link.
Equations (7.8.7) and (7.8.8) can now be solved analytically and have the following
general solution:

T 2(z) = T 2
0 + 2

∫ z

0
β2(z)C(z)dz, C(z) = C0 +

1+C2
0

T 2
0

∫ z

0
β2(z)dz. (7.8.9)

This solution looks complicated but is is easy to perform the integrations for a two-
section dispersion map. In fact, the values of T and C at the end of the first map period
(z = Lm) are given by

T1 = T0[(1+C0d)2 + d2]1/2, C1 = C0 +(1+C2
0)d, (7.8.10)

where d = β̄2Lm/T 2
0 and β̄2 is the average GVD value. This is exactly what one would

expect from the theory of Section 2.4. It is easy to see that when β̄2 = 0, both T and
C return to their input values at the end of each map period, as they should for a linear
medium. When the average GVD of the dispersion-managed link is not zero, T and C
change after each map period, and pulse evolution is not periodic.

When the nonlinear term is not negligible, the pulse parameters do not return to
their input values for perfect GVD compensation (d = 0). It was noted in several
experiments that the nonlinear system performs best when GVD compensation is only
90–95% so that some residual dispersion remains after each map period. In fact, if
the input pulse is initially chirped such that β̄2C < 0, the pulse at the end of the fiber
link may be shorter than the input pulse. This behavior is expected for a linear system
(see Section 2.4) and follows from Eq. (7.8.10) for C 0d < 0. It also persists for weakly
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nonlinear systems. This observation has led to the adoption of the CRZ (chirped RZ)
format for dispersion-managed fiber links. If the dispersion map is made such that the
pulse broadens in the first section and compresses in the second section, the impact of
the nonlinear effects can be reduced significantly. The reason is as follows: The pulse
peak power is reduced considerably in the first section because of rapid broadening of
chirped pulses, while in the second section it is lower because of the accumulated fiber
losses. Such dispersion-managed links are called quasi-linear transmission links [127].
The solution given in Eq. (7.8.9) applies reasonably well for such links. As optical
pulses spread considerably outside their assigned bit slot over a considerable fraction
of each map period, their overlapping can degrade the system performance when the
nonlinear effects are not negligible. These effects are considered in the next section.

If the input peak power is so large that a quasi-linear situation cannot be realized,
one must solve Eqs. (7.8.7) and (7.8.8) with the nonlinear term included. No analytic
solution is possible in this case. However, one can find periodic solutions of these
equations numerically by imposing the periodic boundary conditions

T (Lm) = T0, C(Lm) = C0, (7.8.11)

which ensure that the pulse recovers its initial shape at the end of each map period.
Such pulses propagate through the dispersion-managed link in a periodic fashion and
are called dispersion-managed solitons because they exhibit soliton-like features. This
case is discussed in Chapter 9.

7.8.3 Intrachannel Nonlinear Effects

The nonlinear effects play an important role in dispersion-managed systems, especially
because they are enhanced within the DCF because of its reduced effective core area.
Placement of the amplifier after the DCF helps since the signal is then weak enough
that the nonlinear effects are less important in spite of the small effective area of DCFs.
The optimization of system performance using different dispersion maps has been a
subject of intense study. In a 1994 experiment, a 1000-km-long fiber loop contain-
ing 31 fiber amplifiers was used to study three different dispersion maps [112]. The
maximum transmission distance of 12,000 km was realized for the case in which short
sections of normal GVD fibers were used to compensate for the anomalous GVD of
long sections. In a 1995 experiment, a 80-Gb/s signal, obtained by multiplexing eight
10-Gb/s channels with 0.8-nm channel spacing, was propagated inside a recirculating
fiber loop [114]. The total transmission distance was limited to 1171 km because of
various nonlinear effects.

Perfect compensation of GVD in each map period is not the best solution in the
presence of nonlinear effects. A numerical approach is often used to optimize the
design of dispersion-managed systems [115]–[124]. In general, local GVD should be
kept relatively large to suppress the nonlinear effects, while minimizing the average
dispersion for all channels. In a 1998 experiment, a 40-Gb/s signal was transmitted
over 2000 km of standard fiber using a novel dispersion map [125]. The distance could
be increased to 16,500 km at a lower bit rate of 10 Gb/s by placing an optical amplifier
right after the DCF within the recirculating fiber loop [126]. Since the nonlinear effects
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played an important role, these experiments are thought to be making use of soliton
properties (see Chapter 9). The main limitation stems from a large pulse broadening in
the standard-fiber section of the dispersion map, resulting in the nonlinear interaction
between the neighboring overlapping pulses. Such nonlinear effects have been studied
extensively [127]–[134] and are referred to as the intrachannel effects to distinguish
them from the interchannel nonlinear effects that occur when pulses in two neighboring
channels at different wavelengths overlap in the time domain (see Section 8.3).

The origin of intrachannel nonlinear effects can be seen from Eq. (7.8.4) by consid-
ering three neighboring pulses and writing the total field as B = B 1 +B2 +B3. Equation
(7.8.4) then reduces to the following set of three coupled NLS equations [132]:

i
∂B1

∂ z
− β2

2
∂ 2B1

∂ t2 + γ̄[(|B1|2 + 2|B2|2 + 2|B3|2)B1 + B2
2B∗

3] = 0, (7.8.12)

i
∂B2

∂ z
− β2

2
∂ 2B2

∂ t2 + γ̄[(|B2|2 + 2|B1|2 + 2|B3|2)B2 + 2B1B∗
2B3] = 0, (7.8.13)

i
∂B3

∂ z
− β2

2
∂ 2B3

∂ t2 + γ̄[(|B3|2 + 2|B1|2 + 2|B2|2)B3 + B2
2B∗

1] = 0. (7.8.14)

The first nonlinear term corresponds to SPM. The next two terms result from XPM
induced by the other two pulses. The last term is FWM-like. Although it is common to
refer to its effect as intrachannel FWM, it is somewhat of a misnomer because all three
pulses have the same wavelength. Nevertheless, this term can create new pulses in the
time domain, in analogy with FWM that creates new waves in the spectral domain.
Such pulses are referred to as ghost pulses [128]. The ghost pulses can impact the
system performance considerably if they fall within the 0-bit time slots [134].

The intrachannel XPM affects only the phase but the phase shift is time dependent.
The resulting frequency chirp leads to timing jitter through fiber dispersion [130]. The
impact of intrachannel XPM and FWM on the system performance depends on the
choice of the dispersion map among other things [127]. In general, the optimization of
a dispersion-managed systems depends on many design parameters such as the launch
power, amplifier spacing, and the location of DCFs [129]. In a 2000 experiment, a
40-Gb/s signal was transmitted over transoceanic distances, in spite of its use of stan-
dard fibers, using the in-line synchronous modulation method originally proposed for
solitons [137]. Pseudolinear transmission of a 320-Gb/s channel has also been demon-
strated over 200 km of fiber whose dispersion of 5.7 ps/(km-nm) was compensated
using DCFs [138].

7.9 High-Capacity Systems

Modern WDM lightwave systems use a large number of channels to realize a system
capacity of more than 1 Tb/s. For such systems, the dispersion-management technique
should be compatible with the broad bandwidth occupied by the multichannel signal.
In this section we discuss the dispersion-management issues relevant for high-capacity
systems.
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7.9.1 Broadband Dispersion Compensation

As discussed in Chapter 8, a WDM signal typically occupies a bandwidth of 30 nm or
more, although it is bunched in spectral packets of bandwidth ∼ 0.1 nm (depending on
the bit rate of individual channels). For 10-Gb/s channels, the third-order dispersion
does not play an important role as relatively wide (> 10 ps) optical pulses are used
for individual channels. However, because of the wavelength dependence of β 2, or the
dispersion parameter D, the accumulated dispersion will be different for each channel.
Any dispersion-management scheme should compensate the GVD of all channels si-
multaneously to be effective in practice. Several different methods have been used for
dispersion compensation in WDM systems. One can use either a single broadband fiber
grating or multiple fiber gratings with their stop bands tuned to individual channels. Al-
ternatively, one can take advantage of the periodic nature of the WDM spectrum, and
use an optical filter with periodic transmission peaks. A common approach consists of
extending the DCF approach to WDM systems by designing the DCF appropriately.

Consider first the case of fiber gratings [51]. A chirped fiber grating can have a
stop band as wide as10 nm if it is made long enough. Such a grating can be used in a
WDM system if the number of channels is small enough (typically <10) that the total
signal bandwidth fits inside its stop band. In a 1999 experiment, a 6-nm-bandwidth
chirped grating was used for a four-channel WDM system, each channel operating at
40 Gb/s [139]. When the WDM-signal bandwidth is much larger than that, one can use
several cascaded chirped gratings in series such that each grating reflects one channel
and compensates its dispersion [140]–[144]. The advantage of this technique is that
the gratings can be tailored to match the GVD of each channel. Figure 7.16 shows
the cascaded-grating scheme schematically for a four-channel WDM system [143].
Every 80 km, a set of four gratings compensates the GVD for all channels while two
optical amplifiers take care of all losses. The gratings opened the “closed eye” almost
completely in this experiment. By 2000, this approach was applied to a 32-channel
WDM system with 18-nm bandwidth [144]. Six chirped gratings, each with 6-nm-
wide stop band, were cascaded to compensate GVD for all channels simultaneously.

The multiple-gratings approach becomes cumbersome when the number of chan-
nels is so large that the signal bandwidth exceeds 30 nm. A FP filter has multiple
transmission peaks, spaced apart periodically by the free spectral range of the filter.
Such a filter can compensate the GVD of all channels if (i) all channels are spaced
apart equally and (ii) the free spectral range of the filter is matched to the channel spac-
ing. It is difficult to design FP filters with a large amount of dispersion. A new kind of
fiber grating, referred to as the sampled fiber grating, has been developed to solve this
problem [145]–[147]. Such a grating has multiple stop bands and is relatively easy to
fabricate. Rather than making a single long grating, multiple short-length gratings are
written with uniform spacing among them. (Each short section is a sample, hence the
name “sampled” grating.) The wavelength spacing among multiple reflectivity peaks
is determined by the sample period and is controllable during the fabrication process.
Moreover, if each sample is chirped, the dispersion characteristics of each reflectivity
peak are governed by the amount of chirp introduced. Such a grating was first used in
1995 to demonstrate simultaneous compensation of fiber dispersion over 240 km for
two 10-Gb/s channels [145]. A 1999 experiment used a sampled grating for a four-
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Figure 7.16: Cascaded gratings used for dispersion compensation in a WDM system. (After
Ref. [143]; c©1999 IEEE; reprinted with permission.)

channel WDM system [147]. As the number of channels increases, it becomes more
and more difficult to compensate the GVD of all channels at the same time.

The use of negative-slope DCFs offers the simplest solution to dispersion manage-
ment in high-capacity WDM systems with a large number of channels. Indeed, such
DCFs were developed and commercialized during the 1990s and are employed in virtu-
ally all dense WDM systems [148]–[159]. The need of a negative dispersion slope can
be understood from the condition (7.4.2) obtained in Section 7.4 for a single channel.
This condition should be satisfied for all channels, i.e.,

D1(λn)L1 + D2(λn)L2 = 0, (7.9.1)

where λn is the wavelength of the nth channel. Because of a finite positive value of the
dispersion slope S, or the third-order dispersion β 3 (see Section 2.3.4), D1 increases
with wavelength for both the standard and dispersion-shifted fibers (see Fig. 2.11). As
a result the accumulated dispersion D1L1 is different for each channel. If the same
DCF has to work for all channels, its dispersion slope should be negative and has a
value such that Eq. (7.9.1) is approximately satisfied for all channels.

Writing D j(λn) = D j + S j(λn −λc) in Eq. (7.9.1), where D j ( j = 1,2) is the value
at the wavelength λc of the central channel, the dispersion slope of the DCF should be

S2 = −S1(L1/L2) = S1(D2/D1), (7.9.2)

where we used the condition (7.4.2) for the central channel. This equation shows that
the ratio S/D, called the relative dispersion slope, should be the same for both fibers
used to form the dispersion map [44]. For standard fibers with D ≈ 16 ps/(km-nm)
and S ≈ 0.05 ps/(km-nm2), this ratio is about 0.003 nm−1. Thus, for a DCF with
D ≈−100 ps/(km-nm), the dispersion slope should be about −0.3 ps/(km-nm 2). Such
DCFs have been made and are available commercially. In the case of dispersion-shifted
fibers, the ratio S/D can exceed 0.02 nm−1. It is hard to manufacture DCFs with such
large values of the relative dispersion slope, although two-mode DCFs can provide
values as large as 0.01 nm−1 (see Fig. 7.5). In their place, reverse-dispersion fibers
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have been developed for which the signs of both D and S are reversed compared with
the conventional dispersion-shifted fibers. Dispersion map in this case is made using
roughly equal lengths of the two types of fibers.

Many experiments during the 1990s demonstrated the usefulness of DCFs for WDM
systems. In a 1995 experiment [148], 8 channels with 1.6-nm spacing, each operating
at 20 Gb/s, were transmitted over 232 km of standard fiber by using multiple DCFs.
The residual dispersion for each channel was relatively small (∼ 100 ps/nm for the
entire span) since all channels were compensated simultaneously by the DCFs. In a
2001 experiment, broadband DCFs were used to transmit a 1-Tb/s WDM signal (101
channels, each operating at 10 Gb/s) over 9000 km [158]. The highest capacity of
11 Tb/s was also realized using the reverse-dispersion fibers in an experiment [159]
that transmitted 273 channels, each operating at 40 Gb/s, over the C, L, and S bands
simultaneously (resulting in the total bandwidth of more than 100 nm).

7.9.2 Tunable Dispersion Compensation

It is difficult to attain full GVD compensation for all channels in a WDM system.
A small amount of residual dispersion remains and often becomes of concern for
long-haul systems. In many laboratory experiments, a postcompensation technique
is adopted in which the residual dispersion for individual channels is compensated by
adding adjustable lengths of a DCF (or a fiber grating) at the receiver end (dispersion
trimming). This technique is not suitable for commercial WDM systems for several
reasons. First, the exact amount of channel-dependent residual dispersion is not al-
ways known because of uncontrollable variations in fiber GVD in the fiber segments
forming the transmission path. Second, even the path length may change in reconfig-
urable optical networks. Third, as the single-channel bit rate increases toward 40 Gb/s,
the tolerable value of the residual dispersion becomes so small that even temperature-
induced changes in GVD become of concern. For these reasons, the best approach may
be to adopt a tunable dispersion-compensation scheme that allows the GVD control for
each channel in a dynamic fashion.

Several techniques for tunable dispersion compensation have been developed and
used for system experiments [160]–[167]. Most of them make use of a fiber Bragg grat-
ing whose dispersion is tuned by changing the grating period n̄Λ. In one scheme, the
grating is made with a nonlinear chirp (Bragg wavelength increases nonlinearly along
the grating length) that can be changed by stretching the grating with a piezoelectric
transducer [160]. In another approach, the grating is made with either no chirp or with
a linear chirp and a temperature gradient is used to produce a controllable chirp [164].
In both cases, the stress- or temperature-induced changes in the mode index n̄ change
the local Bragg wavelength as λB(z) = 2n̄(z)Λ(z). For such a grating, Eq. (7.6.6) is
replaced with

Dg(λ ) =
dτg

dλ
=

2
c

d
dλ

(∫ Lg

0
n̄(z)dz

)
, (7.9.3)

where τg is the group delay and Lg is the grating length. The value of Dg at any wave-
length can be changed by changing the mode index n̄ (through heating or stretching),
resulting in tunable dispersion characteristics for the Bragg grating.
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(a) (b)

Figure 7.17: (a) Reflection spectrum and (b) total GVD as a function of voltage for a fiber
grating with temperature gradient. Inset shows τg(λ ) at several voltages. (After Ref. [164];
c©2000 IEEE; reprinted with permission.)

Distributed heating of the Bragg grating requires a thin-film heater deposited on the
outer surface of the fiber with an intracore grating [164]. The film thickness changes
along the grating length and creates a temperature gradient through nonuniform heating
when a voltage is applied across the film. A segmented thin-film heater can also be used
for this purpose [167]. Figure 7.17 shows the reflection spectra of a 8-cm-long grating
at three voltage levels together with the total dispersion DgLg as a function of voltage.
The inset shows τg(λ ) for several values of the applied voltage. The grating is initially
unchirped and has a narrow stop band that shifts and broadens as the grating is chirped
through nonuniform heating. Physically, the Bragg wavelength λ B changes along the
grating because the optical period n̄(z)Λ becomes z dependent when a temperature
gradient is established along the grating. The total dispersion DgLg can be changed in
the range−500 to −2200 ps/nm by this approach. Such gratings can be used to provide
tunable dispersion for 10-Gb/s systems.

When the bit rate becomes 40 Gb/s or more, it is necessary to chirp the grating
so that the stop band is wide enough for passing the signal spectrum. The use of a
nonlinear chirp then provides an additional control over the device [160]. Such chirped
gratings have been made and used to provide tunable dispersion compensation at bit
rates as high as 160 Gb/s. Figure 7.18 shows the measured receiver sensitivities in the
160-Gb/s experiment as a function of the residual (preset) dispersion with and without
the chirped grating with tunable dispersion [165]. In the absence of the grating, the
minimum sensitivity occurs around 91 ps/nm because the DCF used provided this value
of constant dispersion. A power penalty of 4 dB occurred when the residual GVD
changed by as little as 8 ps/nm. It was reduced to below 0.5 dB with tunable dispersion
compensation. The eye diagrams for a residual dispersion of 110 ps/nm show that the
system becomes inoperable without the grating but the eye remains wide open when
tunable dispersion compensation is employed. This experiment used 2-ps optical pulses
as the bit slot is only 6.25 ps wide at the 160-Gb/s bit rate. The effects of third-order
dispersion becomes important for such short pulses. We turn to this issue next.
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Figure 7.18: Receiver sensitivities measured in a 160-Gb/s experiment as a function of the
preset dispersion with (squares) and without (circles) a chirped fiber–Bragg grating (CFBG).
The improvement in the eye diagram is shown for 110 ps/nm on the right. (After Ref. [165];
c©2000 IEEE; reprinted with permission.)

7.9.3 Higher-Order Dispersion Management

When the bit rate of a single channel exceeds 40 Gb/s (through the used of time-division
multiplexing, for example), the third- and higher-order dispersive effects begin to in-
fluence the optical signal. For example, the bit slot at a bit rate of 100 Gb/s is only
10 ps wide, and an RZ optical signal would consist of pulses of width <5 ps. Equa-
tion (2.4.34) can be used to estimate the maximum transmission distance L, limited by
the third-order dispersion β3, when only second-order dispersion is compensated. The
result is

L ≤ 0.034(|β3|B3)−1. (7.9.4)

This limitation is shown in Fig. 2.13 by the dashed line. At a bit rate of 200 Gb/s, L is
limited to about 50 km and drops to only 3.4 km at 500 Gb/s if we use a typical value
β3 = 0.08 ps3/km. Clearly, it is essential to use techniques that compensate for both
the second- and third-order dispersion simultaneously when the single-channel bit rate
exceeds 100 Gb/s, and several techniques have been developed for this purpose [168]–
[180].

The simplest solution to third-order dispersion compensation is provided by DCFs
designed to have a negative dispersion slope so that both β 2 and β3 have opposite signs,
in comparison with the standard fibers. The necessary conditions for designing such
fibers can be obtained by solving Eq. (7.1.3) using the Fourier-transform method. For
a fiber link containing two different fibers of lengths L 1 and L2, the conditions for
dispersion compensation become

β21L1 + β22L2 = 0 and β31L1 + β32L2 = 0, (7.9.5)

where β2 j and β3 j are second- and third-order dispersion parameters for the fiber of
length L j. The first condition is the same as Eq. (7.4.2). By using Eq. (7.4.3), the
second condition can be used to find the third-order dispersion parameter for the DCF:

β32 = (β22/β21)β31 = −(L1/L2)β31. (7.9.6)
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Figure 7.19: Pulse shapes after a 2.6-ps input pulse propagated over 300 km of dispersion-
shifted fiber (β2 = 0). Left and right traces compare the improvement realized by compensating
the third-order dispersion. (After Ref. [169]; c©1996 IEE; reprinted with permission.)

This requirement is nearly the same as that obtained earlier in Eq. (7.9.2) for DCFs used
in WDM systems because β3 is related to the dispersion slope S through Eq. (2.3.13).

For a single-channel system, the signal bandwidth is small enough even at bit rates
of 500 Gb/s that it is sufficient to satisfy Eq. (7.9.5) over a 4-nm bandwidth. This re-
quirement is easily met by an optical filter or a chirped fiber grating [51]. Consider
the case of optical filters first. Planar lightwave circuits based on multiple MZ inter-
ferometric filters (see Section 7.5) have proved quite successful because of the pro-
grammable nature of such filters. In one experiment [169], such a filter was designed
to have a dispersion slope of −15.8 ps/nm2 over a 170-GHz bandwidth. It was used
to compensate third-order dispersion over 300 km of a dispersion-shifted fiber with
β3 ≈ 0.05 ps/(km-nm2) at the operating wavelength. Figure 7.19 compares the pulse
shapes at the fiber output observed with and without β 3 compensation when a 2.6-ps
pulse was transmitted over 300 km of such a fiber. The equalizer eliminates the long
oscillatory tail and reduces the width of the main peak from 4.6 to 3.8 ps. The increase
in the pulse width from its input value of 2.6 ps is attributed to polarization-mode dis-
persion (PMD), a topic covered later.

Chirped fiber gratings are often preferred in practice because of their all-fiber na-
ture. Long fiber gratings (∼1 m) were developed by 1997 for this purpose [170]. In
1998, a nonlinearly chirped fiber grating was capable of compensating the third-order
dispersion over 6 nm for distances as long as 60 km [171]. Cascading of several
chirped gratings can provide a dispersion compensator that has arbitrary dispersion
characteristics and is capable for compensating dispersion to all higher orders [172].
An arrayed-waveguide grating [173] or a sampled fiber grating [174] can also com-
pensate for second- and third-order dispersion simultaneously. Although a sampled
fiber grating chirped nonlinearly can provide tunable dispersion for several channels
simultaneously [177], its bandwidth is still limited. An arrayed-waveguide grating in
combination with a spatial phase filter can provide dispersion-slope compensation over
a bandwidth as large as 8 THz and should be suitable for 40-Gb/s multichannel sys-
tems [178]. The feasibility of transmitting of a 100-Gb/s signal over 10,000 km has
also been investigated using midway optical phase conjugation in combination with
third-order dispersion compensation [179].

Several single-channel experiments have explored the possibility of transmitting a
single channel at bit rates of more than 200 Gb/s [181]–[183]. Assuming that a 2-ps bit



7.9. HIGH-CAPACITY SYSTEMS 317

slot is required for a RZ system making use of 1-ps pulses, transmission at bit rates as
high as 500 Gb/s appears to be feasible using DCFs or chirped fiber gratings designed
to provide compensation of β3 over a 4-nm bandwidth. In a 1996 experiment [181],
a 400-Gb/s signal was transmitted by managing the fiber dispersion and transmitting
0.98-ps pulses inside a 2.5-ps time slot. Without compensation of the third-order dis-
persion, the pulse broadened to 2.3 ps after 40 km and exhibited a long oscillatory tail
extending over 5–6 ps, a characteristic feature of the third-order dispersion [106]. With
partial compensation of third-order dispersion, the oscillatory tail disappeared, and the
pulse width reduced to 1.6 ps, making it possible to recover the 400-Gb/s data with
high accuracy. Optical pulses as short as 0.4 ps were used in 1998 to realize a bit rate
of 640 Gb/s [182]. In a 2001 experiment, the bit rate was extended to 1.28 Tb/s by
transmitting 380-fs pulses over 70 km of fiber [183]. Propagation of such short pulses
requires compensation of second- third- and fourth-order dispersion simultaneously.
It turns out that if sinusoidal phase modulation of the right kind is applied to the lin-
early chirped pulse before it is transmitted through a GVD-compensated fiber, it can
compensate for both the third- and fourth-order dispersion.

7.9.4 PMD Compensation

As discussed in Section 2.3.5, PMD leads to broadening of optical pulses because
of random variations in the birefringence of an optical fiber along its length. This
broadening is in addition to GVD-induced pulse broadening. The use of dispersion
management can eliminate GVD-induced broadening but does not affect the PMD-
induced broadening. For this reason, PMD has become a major source of concern for
modern dispersion-managed systems [184]–[196].

Before considering the techniques used for PMD compensation, we provide an
order-of-magnitude estimate of the system length in uncompensated systems. Equa-
tion (2.3.17) shows that the RMS pulse broadening for a link of length L is given by
σT ≡〈(∆T )2〉1/2 = Dp

√
L, where Dp is the PMD parameter and ∆T is the relative delay

along the two principal states of polarization (PSPs). It is important to note that σ T de-
notes an average value. The instantaneous value of ∆T fluctuates with time over a wide
range because of temperature and other environmental factors [192]. If ∆T exceeds the
bit slot even for a short time interval, the system will stop functioning properly; this
is referred to as fading or outage in analogy with a similar effect occurring in radio
systems [184].

The performance of a PMD-limited system is quantified using the concept of the
outage probability, which should be below a prescribed value (often set near 10 −5 or
5 minutes/year ) for the system [184]. This probability can be calculated noting that
∆T follows a Maxwellian distribution. In general, the RMS value σT should only be a
small fraction of the bit slot TB at a certain bit rate B ≡ 1/TB. The exact value of this
fraction varies in the range 0.1–0.15 depending on the modulation format (RZ, CRZ, or
NRZ) and details of the input pulse. Using 10% as a conservative criterion, the system
length and the bit rate should satisfy the condition

B2L < (10Dp)−2. (7.9.7)
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(a) (b)

Figure 7.20: Schematic illustration of (a) optical and (b) electrical PMD compensators. (After
Ref. [210]; c©2000 Elsevier; reprinted with permission.)

Consider a few relevant examples. In the case of “old” fiber links installed us-
ing standard fibers, the condition (7.9.7) becomes B 2L < 104 (Gb/s)2-km if we use
Dp = 1 ps/

√
km as a representative value. Such fibers require PMD compensation at

B = 10 Gb/s if the link length exceeds even 100 km. In contrast, modern fibers have
typically Dp < 0.1 ps/

√
km. For systems designed using such fibers, B2L can exceed

106 (Gb/s)2-km. As a result, PMD compensation is not necessary at 10 Gb/s but may
be required at 40 Gb/s if the link length exceeds 600 km. It should be stressed that these
numbers represent only an order-of-magnitude estimate. A more accurate estimate can
be obtained following the PMD theory developed in recent years [192]–[195].

The preceding discussion shows that PMD limits the system performance when the
single-channel bit rate is extended to beyond 10 Gb/s. Several techniques have been
developed for PMD compensation in dispersion-managed lightwave systems [197]–
[214]; they can be classified as being optical or electrical. Figure 7.20 shows the basic
idea behind the electrical and optical PMD compensation schemes. An electrical PMD
equalizer corrects for the PMD effects within the receiver using a transversal filter. The
filter splits the electrical signal x(t) into a number of branches using multiple tapped
delay lines and then combines the output as

y(t) =
N−1

∑
m=0

cm x(t −mτ), (7.9.8)

where N is the total number of taps, τ is the delay time, and cm is the tap weight for
the mth tap. Tap weights are adjusted in a dynamic fashion using a control algorithm
in such a way that the system performance is improved [210]. The error signal for the
control electronics is often based on the closing of the “eye” at the receiver. Such an
electrical technique cannot eliminate the PMD effects completely as it does not con-
sider the PMD-induced delay between the two PSPs. On the positive side, it corrects
for all sources of degradation that lead to eye closing.

An optical PMD compensator also makes use of a delay line. It can be inserted pe-
riodically all along the fiber link (at the amplifier locations, for example) or just before
the receiver. Typically, the PMD-distorted signal is separated into two components
along the PSPs using a polarization controller (PC) followed by a polarization beam
splitter; the two components are combined after introducing an adjustable delay in one
branch through a variable delay line (see Fig. 7.20). A feedback loop is still needed
to obtain an error signal that is used to adjust the polarization controller in response to
the environmental changes in the fiber PSPs. The success of this technique depends on



7.9. HIGH-CAPACITY SYSTEMS 319

(a) (b)

Figure 7.21: Tunable PMD compensation provided by a birefringent chirped fiber grating. (a)
The origin of differential group delay; (b) stop-band shift induced by stretching the grating.
(After Ref. [160]; c©1999 IEEE; reprinted with permission.)

the ratio L/LPMD for a fiber of length L, where LPMD = (T0/Dp)2 is the PMD length
for pulses of width T0 [202]. Considerable improvement is expected as long as this
ratio does not exceed 4. Because LPMD is close to 10,000 km for D p ≈ 0.1 ps/

√
km

and T0 = 10 ps, such a PMD compensator can work over transoceanic distances for
10-Gb/s systems.

Several other all-optical techniques can be used for PMD compensation [205]. For
example, a LiNbO3-based Soleil–Babinet compensator can provide endless polariza-
tion control. Other devices include ferroelectric liquid crystals, twisted polarization-
maintaining fibers, optical all-pass filters [209], and birefringent chirped fiber grat-
ings [204]. Figure 7.21 shows how a grating-based PMD compensator works. Because
of a large birefringence, the two field components polarized along the slow and fast axis
have different Bragg wavelengths and see slightly shifted stop bands. As a result, they
are reflected at different places within the grating and experience a differential group
delay that can compensate for the PMD-induced group delay. The delay is wavelength
dependent because of the chirped nature of the grating. Moreover, it can be tuned over
several nanometers by stretching the grating [160]. Such a device can provide tunable
PMD compensation and is suited for WDM systems.

It should be stressed that optical PMD compensators shown in Figs. 7.20 and 7.21
remove only the first-order PMD effects. At high bit rates, optical pulses are short
enough and their spectrum becomes wide enough that the PSPs cannot be assumed
to remain constant over the whole pulse spectrum. Higher-order PMD effects have
become of concern with the advent of 40-Gb/s lightwave systems, and techniques for
compensating them have been proposed [207].

The effectiveness of first-order PMD compensation can be judged by considering
how much PMD-induced pulse broadening is reduced by such a compensator. An
analytical theory of PMD compensation shows that the average or expected value of
the broadening factor, defined as b2 = σ2/σ2

0 , is given by the following expression for
an unchirped Gaussian pulse of width T0 [206]:

b2
c = b2

u + 2x/3−4[(1+ 2x/3)1/2−1], (7.9.9)
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Average DGD/Pulse width

Figure 7.22: Pulse broadening factor as a function of average DGD in four cases. The dotted
curve shows the improvement realized using a first-order PMD compensator. Filled and empty
circles show the results of numerical simulations (After Ref. [206]; c©2000 IEEE; reprinted with
permission.)

where x = 〈(∆T )2〉/4T 2
0 , ∆T is the differential group delay along the PSPs, and b 2

u is
the value before PMD compensation:

b2
u = 1+ x− 1

2 [(1+ 4x/3)1/2−1]. (7.9.10)

Figure 7.22 shows the broadening factors bu (solid line) and bc (dotted line) as a func-
tion of 〈∆T 〉/T0. For comparison, the worst and best cases corresponding to the two
specific choices of the input state of polarization (SOP) are also shown.

Figure 7.22 can be used to estimate the improvement realized by a first-order PMD
compensator. As discussed earlier, the average DGD should not exceed about 10%
of the bit slot in uncompensated systems for keeping the outage probability below
10−5. Thus, the tolerable value of PMD-induced pulse broadening is close to b = 1.02.
From Eqs. (7.9.9) and (7.9.10) it is easy to show that this value can be maintained
in PMD-compensated systems even when σT exceeds 30%. Thus, a first-order PMD
compensator can increase the tolerable value of DGD by more than a factor of 3. The
net result is a huge increase in the transmission distance of PMD-compensated systems.
One should note that a single PMD compensator cannot be used for all WDM channels.
Rather, a separate PMD compensator is required for each channel. This fact makes
PMD compensation along the fiber link a costly proposition for WDM systems. An
optical compensator just before the receiver or an electrical PMD equalizer built into
the receiver provides the most practical solution; both were being pursued in 2001 for
commercial applications.
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Problems

7.1 What is the dispersion-limited transmission distance for a 1.55-µm lightwave
system making use of direct modulation at 10 Gb/s? Assume that frequency
chirping broadens the Gaussian-shape pulse spectrum by a factor of 6 from its
transform-limited width. Use D = 17 ps/(km-nm) for fiber dispersion.

7.2 How much improvement in the dispersion-limited transmission distance is ex-
pected if an external modulator is used in place of direct modulation for the
lightwave system of Problem 7.1?

7.3 Solve Eq. (7.1.3) by using the Fourier transform method. Use the solution to
find an analytic expression for the pulse shape after a Gaussian input pulse has
propagated to z = L in a fiber with β2 = 0.

7.4 Use the result obtained in Problem 7.3 to plot the pulse shape after a Gaussian
pulse with a full-width at half-maximum (FWHM) of 1 ps is transmitted over
20 km of dispersion-shifted fiber with β2 = 0 and β3 = 0.08 ps3/km. How would
the pulse shape change if the sign of β3 is inverted?

7.5 Use Eqs. (7.1.4) and (7.2.2) to plot the pulse shapes for C = −1,0, and 1 when
50-ps (FWHM) chirped Gaussian pulses are transmitted over 100 km of standard
fiber with D = 16 ps/(km-nm). Compare the three cases and comment on their
relative merits.

7.6 The prechirp technique is used for dispersion compensation in a 10-Gb/s light-
wave system operating at 1.55 µm and transmitting the 1 bits as chirped Gaussian
pulses of 40 ps width (FWHM). Pulse broadening by up to 50% can be tolerated.
What is the optimum value of the chirp parameter C, and how far can the signal
be transmitted for this optimum value? Use D = 17 ps/(km-nm).

7.7 The prechirp technique in Problem 7.6 is implemented through frequency modu-
lation of the optical carrier. Determine the modulation frequency for a maximum
change of 10% from the average value.

7.8 Repeat Problem 7.7 for the case in which the prechirp technique is implemented
through sinusoidal modulation of the carrier phase.

7.9 The transfer function of an optical filter is given by

H(ω) = exp[−(1+ ib)ω 2/ω2
f ].

What is the impulse response of this filter? Use Eq. (7.5.1) to find the pulse
shape at the filter output when a Gaussian pulse is launched at the fiber input.
How would you optimize the filter to minimize the effect of fiber dispersion?

7.10 Use the result obtained in Problem 7.9 to compare the pulse shapes before and
after the filter when 30-ps (FWHM) Gaussian pulses are propagated over 100 km
of fiber with β2 = −20 ps2/km. Assume that the filter bandwidth is the same as
the pulse spectral width and that the filter parameter b is optimized. What is the
optimum value of b?

7.11 Derive Eq. (7.5.3) by considering multiple round trips inside a FP filter whose
back mirror is 100% reflecting.
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7.12 Solve Eqs. (7.6.1) and (7.6.2) and show that the transfer function of a Bragg
grating is indeed given by Eq. (7.6.4).

7.13 Write a computer program to solve Eqs. (7.6.1) and (7.6.2) for chirped fiber
gratings such that both δ and κ vary with z. Use it to plot the amplitude and
phase of the reflectivity of a grating in which the period varies linearly by 0.01%
over the 10-cm length. Assume κL = 4 and the Bragg wavelength of 1.55 µm at
the input end of the grating.

7.14 Use the dispersion relation q2 = δ 2 − κ2 of a Bragg grating to show that the
second- and third-order dispersion parameters of the grating are given by Eq.
(7.6.5).

7.15 Explain how a chirped fiber grating compensates for GVD. Derive an expression
for the GVD parameter of such a grating when the grating period varies linearly
by ∆Λ over the grating length L.

7.16 Explain how midspan OPC compensates for fiber dispersion. Show that the OPC
process inverts the signal spectrum.

7.17 Prove that both SPM and GVD can be compensated through midspan OPC only
if the fiber loss α = 0. Show also that simultaneous compensation of SPM and
GVD can occur when α 
= 0 if GVD decreases along the fiber length. What is
the optimum GVD profile of such a fiber?

7.18 Prove that the phase conjugator should be located at a distance given in Eq.
(7.7.9) when the frequency ωc of the phase-conjugated field does not coincide
with the signal frequency ωs.

7.19 Derive the variational equations for the pulse width and chirp using the La-
grangian density given in Eq. (7.8.6).

7.20 Solve the variational equations (7.8.7) and (7.8.8) after setting γ = 0 and find the
pulse width and chirp after one map period in terms of their initial values.
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Chapter 8

Multichannel Systems

In principle, the capacity of optical communication systems can exceed 10 Tb/s be-
cause of a large frequency associated with the optical carrier. In practice, however, the
bit rate was limited to 10 Gb/s or less until 1995 because of the limitations imposed by
the dispersive and nonlinear effects and by the speed of electronic components. Since
then, transmission of multiple optical channels over the same fiber has provided a sim-
ple way for extending the system capacity to beyond 1 Tb/s. Channel multiplexing
can be done in the time or the frequency domain through time-division multiplexing
(TDM) and frequency-division multiplexing (FDM), respectively. The TDM and FDM
techniques can also be used in the electrical domain (see Section 1.2.2). To make the
distinction explicit, it is common to refer to the two optical-domain techniques as op-
tical TDM (OTDM) and wavelength-division multiplexing (WDM), respectively. The
development of such multichannel systems attracted considerable attention during the
1990s. In fact, WDM lightwave systems were available commercially by 1996.

This chapter is organized as follows. Sections 8.1–8.3 are devoted to WDM light-
wave systems by considering in different sections the architectural aspects of such sys-
tems, the optical components needed for their implementation, and the performance
issues such as interchannel crosstalk. In Section 8.4 we focus on the basic concepts
behind OTDM systems and issues related to their practical implementation. Subcarrier
multiplexing, a scheme in which FDM is implemented in the microwave domain, is
discussed in Section 8.5. The technique of code-division multiplexing is the focus of
Section 8.6.

8.1 WDM Lightwave Systems

WDM corresponds to the scheme in which multiple optical carriers at different wave-
lengths are modulated by using independent electrical bit streams (which may them-
selves use TDM and FDM techniques in the electrical domain) and are then transmitted
over the same fiber. The optical signal at the receiver is demultiplexed into separate
channels by using an optical technique. WDM has the potential for exploiting the large
bandwidth offered by optical fibers. For example, hundreds of 10-Gb/s channels can
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Figure 8.1: Low-loss transmission windows of silica fibers in the wavelength regions near 1.3
and 1.55 µm. The inset shows the WDM technique schematically.

be transmitted over the same fiber when channel spacing is reduced to below 100 GHz.
Figure 8.1 shows the low-loss transmission windows of optical fibers centered near 1.3
and 1.55 µm. If the OH peak can be eliminated using “dry” fibers, the total capacity of
a WDM system can ultimately exceed 30 Tb/s.

The concept of WDM has been pursued since the first commercial lightwave sys-
tem became available in 1980. In its simplest form, WDM was used to transmit two
channels in different transmission windows of an optical fiber. For example, an ex-
isting 1.3-µm lightwave system can be upgraded in capacity by adding another chan-
nel near 1.55 µm, resulting in a channel spacing of 250 nm. Considerable attention
was directed during the 1980s toward reducing the channel spacing, and multichannel
systems with a channel spacing of less than 0.1 nm had been demonstrated by 1990
[1]–[4]. However, it was during the decade of the 1990s that WDM systems were de-
veloped most aggressively [5]–[12]. Commercial WDM systems first appeared around
1995, and their total capacity exceeded 1.6 Tb/s by the year 2000. Several laboratory
experiments demonstrated in 2001 a system capacity of more than 10 Tb/s although
the transmission distance was limited to below 200 km. Clearly, the advent of WDM
has led to a virtual revolution in designing lightwave systems. This section focuses on
WDM systems by classifying them into three categories introduced in Section 5.1.

8.1.1 High-Capacity Point-to-Point Links

For long-haul fiber links forming the backbone or the core of a telecommunication
network, the role of WDM is simply to increase the total bit rate [14]. Figure 8.2 shows
schematically such a point-to-point, high-capacity, WDM link. The output of several
transmitters, each operating at its own carrier frequency (or wavelength), is multiplexed
together. The multiplexed signal is launched into the optical fiber for transmission to
the other end, where a demultiplexer sends each channel to its own receiver. When N
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Tx
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Figure 8.2: Multichannel point-to-point fiber link. Separate transmitter-receiver pairs are used
to send and receive the signal at different wavelengths

channels at bit rates B1, B2, . . ., and BN are transmitted simultaneously over a fiber of
length L, the total bit rate–distance product, BL, becomes

BL = (B1 + B2 + · · ·+ BN)L. (8.1.1)

For equal bit rates, the system capacity is enhanced by a factor of N. An early experi-
ment in 1985 demonstrated the BL product of 1.37 (Tb/s)-km by transmitting 10 chan-
nels at 2 Gb/s over 68.3 km of standard fiber with a channel spacing of 1.35 nm [3].

The ultimate capacity of WDM fiber links depends on how closely channels can
be packed in the wavelength domain. The minimum channel spacing is limited by
interchannel crosstalk, an issue covered in Section 8.3. Typically, channel spacing ∆ν ch

should exceed 2B at the bit rate B. This requirement wastes considerable bandwidth.
It is common to introduce a measure of the spectral efficiency of a WDM system as
ηs = B/∆νch. Attempts are made to make ηs as large as possible.

The channel frequencies (or wavelengths) of WDM systems have been standard-
ized by the International Telecommunication Union (ITU) on a 100-GHz grid in the
frequency range 186–196 THz (covering the C and L bands in the wavelength range
1530–1612 nm). For this reason, channel spacing for most commercial WDM systems
is 100 GHz (0.8 nm at 1552 nm). This value leads to only 10% spectral efficiency at the
bit rate of 10 Gb/s. More recently, ITU has specified WDM channels with a frequency
spacing of 50 GHz. The use of this channel spacing in combination with the bit rate of
40 Gb/s has the potential of increasing the spectral efficiency to 80%. WDM systems
were moving in that direction in 2001.

What is the ultimate capacity of WDM systems? The low-loss region of the state-
of-the-art “dry” fibers (e.g, fibers with reduced OH-absorption near 1.4 µm) extends
over 300 nm in the wavelength region covering 1.3–1.6 µm (see Fig. 8.1). The min-
imum channel spacing can be as small as 50 GHz or 0.4 nm for 40-Gb/s channels.
Since 750 channels can be accommodated over the 300-nm bandwidth, the resulting
effective bit rate can be as large as 30 Tb/s. If we assume that the WDM signal can be
transmitted over 1000 km by using optical amplifiers with dispersion management, the
effective BL product may exceed 30,000 (Tb/s)-km with the use of WDM technology.
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Table 8.1 High-capacity WDM transmission experiments

Channels Bit Rate Capacity Distance NBL Product
N B (Gb/s) NB (Tb/s) L (km) [(Pb/s)-km]

120 20 2.40 6200 14.88
132 20 2.64 120 0.317
160 20 3.20 1500 4.80
82 40 3.28 300 0.984

256 40 10.24 100 1.024
273 40 10.92 117 1.278

This should be contrasted with the third-generation commercial lightwave systems,
which transmitted a single channel over 80 km or so at a bit rate of up to 2.5 Gb/s,
resulting in BL values of at most 0.2 (Tb/s)-km. Clearly, the use of WDM has the po-
tential of improving the performance of modern lightwave systems by a factor of more
than 100,000.

In practice, many factors limit the use of the entire low-loss window. As seen in
Chapter 6, most optical amplifiers have a finite bandwidth. The number of channels is
often limited by the bandwidth over which amplifiers can provide nearly uniform gain.
The bandwidth of erbium-doped fiber amplifiers is limited to 40 nm even with the use
of gain-flattening techniques (see Section 6.4). The use of Raman amplification has
extended the bandwidth to near 100 nm. Among other factors that limit the number of
channels are (i) stability and tunability of distributed feedback (DFB) semiconductor
lasers, (ii) signal degradation during transmission because of various nonlinear effects,
and (iii) interchannel crosstalk during demultiplexing. High-capacity WDM fiber links
require many high-performance components, such as transmitters integrating multiple
DFB lasers, channel multiplexers and demultiplexers with add-drop capability, and
large-bandwidth constant-gain amplifiers.

Experimental results on WDM systems can be divided into two groups based on
whether the transmission distance is ∼100 km or exceeds 1000 km. Since the 1985
experiment in which ten 2-Gb/s channels were transmitted over 68 km [3], both the
number of channels and the bit rate of individual channels have increased considerably.
A capacity of 340 Gb/s was demonstrated in 1995 by transmitting 17 channels, each
operating at 20 Gb/s, over 150 km [15]. This was followed within a year by several
experiments that realized a capacity of 1 Tb/s. By 2001, the capacity of WDM systems
exceeded 10 Tb/s in several laboratory experiments. In one experiment, 273 channels,
spaced 0.4-nm apart and each operating at 40 Gb/s, were transmitted over 117 km
using three in-line amplifiers, resulting in a total bit rate of 11 Tb/s and a BL product of
1300 (Tb/s)-km [16]. Table 8.1 lists several WDM transmission experiments in which
the system capacity exceeded 2 Tb/s.

The second group of WDM experiments is concerned with transmission distance
of more than 5000 km for submarine applications. In a 1996 experiment, 100-Gb/s
transmission (20 channels at 5 Gb/s) over 9100 km was realized using the polarization-
scrambling and forward-error-correction techniques [17]. The number of channels was
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later increased to 32, resulting in a 160-Gb/s transmission over 9300 km [18]. In a
2001 experiment, a 2.4-Tb/s WDM signal (120 channels, each operating at 20 Gb/s)
was transmitted over 6200 km, resulting in a NBL product of almost 15 (Pb/s)-km (see
Table 8.1). This should be compared with the first fiber-optic cable laid across the
Atlantic ocean (TAT-8); it operated at 0.27 Gb/s with NBL ≈ 1.5 (Tb/s)-km. The use of
WDM had improved the capacity of undersea systems by a factor of 10,000 by 2001.

On the commercial side, WDM systems with a capacity of 40 Gb/s (16 channels at
2.5 Gb/s or 4 channels at 10 Gb/s) were available in 1996. The 16-channel system cov-
ered a wavelength range of about 12 nm in the 1.55-µm region with a channel spacing
of 0.8 nm. WDM fiber links operating at 160 Gb/s (16 channels at 10 Gb/s) appeared
in 1998. By 2001, WDM systems with a capacity of 1.6 Tb/s (realized by multiplexing
160 channels, each operating at 10 Gb/s) were available. Moreover, systems with a 6.4-
Tb/s capacity were in the development stage (160 channels at 40 Gb/s). This should be
contrasted with the 10-Gb/s capacity of the third-generation systems available before
the advent of the WDM technique. The use of WDM had improved the capacity of
commercial terrestrial systems by a factor of more than 6000 by 2001.

8.1.2 Wide-Area and Metro-Area Networks

Optical networks, as discussed in Section 5.1, are used to connect a large group of
users spread over a geographical area. They can be classified as a local-area network
(LAN), metropolitan-area network (MAN), or a wide-area network (WAN) depending
on the area they cover [6]–[11]. All three types of networks can benefit from the WDM
technology. They can be designed using the hub, ring, or star topology. A ring topology
is most practical for MANs and WANs, while the star topology is commonly used for
LANs. At the LAN level, a broadcast star is used to combine multiple channels. At the
next level, several LANs are connected to a MAN by using passive wavelength routing.
At the highest level, several MANs connect to a WAN whose nodes are interconnected
in a mesh topology. At the WAN level, the network makes extensive use of switches
and wavelength-shifting devices so that it is dynamically configurable.

Consider first a WAN covering a wide area (e.g., a country). Historically, telecom-
munication and computer networks (such as the Internet) occupying the entire U.S. ge-
ographical region have used a hub topology shown schematically in Fig. 8.3. Such net-
works are often called mesh networks [19]. Hubs or nodes located in large metropoli-
tan areas house electronic switches, which connect any two nodes either by creating
a “virtual circuit” between them or by using packet switching through protocols such
as TCP/IP (transmission control protocol/Internet protocol) and asynchronous transfer
mode (ATM). With the advent of WDM during the 1990s, the nodes were connected
through point-to-point WDM links, but the switching was being done electronically
even in 2001. Such transport networks are termed “opaque” networks because they
require optical-to-electronic conversion. As a result, neither the bit rate nor the modu-
lation format can be changed without changing the switching equipment.

An all-optical network in which a WDM signal can pass through multiple nodes
(possibly modified by adding or dropping certain channels) is called optically “trans-
parent.” Transparent WDM networks are desirable as they do not require demultiplex-
ing and optical-to-electronic conversion of all WDM channels. As a result, they are
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Figure 8.3: An example of a wide-area network in the form of several interconnected SONET
rings. (After Ref. [19]; c©2000 IEEE; reproduced with permission.)

not limited by the electronic-speed bottleneck and may help in reducing the cost of
installing and maintaining the network. The nodes in a transparent WDM network (see
Fig. 8.3) switch channels using optical cross-connects. Such devices were still in their
infancy in 2001.

An alternative topology implements a regional WDM network in the form of sev-
eral interconnected rings. Figure 8.4 shows such a scheme schematically [20]. The
feeder ring connects to the backbone of the network through an egress node. This ring
employs four fibers to ensure robustness. Two of the fibers are used to route the data in
the clockwise and counterclockwise directions. The other two fibers are called protec-
tion fibers and are used in case a point-to-point link fails (self-healing). The feeder ring
supplies data to several other rings through access nodes. An add–drop multiplexer can
be used at all nodes to drop and to add individual WDM channels. Dropped channels
can be distributed to users using bus, tree, or ring networks. Notice that nodes are not
always directly connected and require data transfer at multiple hubs. Such networks
are called multihop networks.

Metro networks or MANs connect several central offices within a metropolitan
area. The ring topology is also used for such networks. The main difference from the
ring shown in Fig. 8.4 stems from the scaling and cost considerations. The traffic flows
in a metro ring at a modest bit rate compared with a WAN ring forming the backbone
of a nationwide network. Typically, each channel operates at 2.5 Gb/s. To reduce the
cost, a coarse WDM technique is used (in place of dense WDM common in the back-
bone rings) by using a channel spacing in the 2- to 10-nm range. Moreover, often just
two fibers are used inside the ring, one for carrying the data and the other for pro-
tecting against a failure. Most metro networks were using electrical switching in 2001
although optical switching is the ultimate goal. In a test-bed implementation of an opti-
cally switched metro network, called the multiwavelength optical network (MONET),
several sites within the Washington, DC, area of the United States were connected us-
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Figure 8.4: A WDM network with a feeder ring connected to several local distribution networks.
(After Ref. [20]; c©1999 IEEE; reproduced with permission.)

ing a set of eight standard wavelengths in the 1.55-µm region with a channel spacing
of 200 GHz [21]. MONET incorporated diverse switching technologies [synchronous
digital hierarchy (SDH), asynchronous transfer mode (ATM), etc.] into an all-optical
ring network using cross-connect switches based on the LiNbO 3 technology.

8.1.3 Multiple-Access WDM Networks

Multiple-access networks offer a random bidirectional access to each subscriber. Each
user can receive and transmit information to any other user of the network at all times.
Telephone networks provide one example; they are known as subscriber loop, local-
loop, or access networks. Another example is provided by the Internet used for con-
necting multiple computers. In 2001, both the local-loop and computer networks were
using electrical techniques to provide bidirectional access through circuit or packet
switching. The main limitation of such techniques is that each node on the network
must be capable of processing the entire network traffic. Since it is difficult to achieve
electronic processing speeds in excess of 10 Gb/s, such networks are inherently limited
by the electronics.

The use of WDM permits a novel approach in which the channel wavelength itself
can be used for switching, routing, or distributing each channel to its destination, re-
sulting in an all-optical network. Since wavelength is used for multiple access, such
a WDM approach is referred to as wavelength-division multiple access (WDMA). A
considerable amount of research and development work was done during the 1990s for
developing WDMA networks [22]–[26]. Broadly speaking, WDMA networks can be
classified into two categories, called single-hop and multihop all-optical networks [6].
Every node is directly connected to all other nodes in a single-hop network, resulting
in a fully connected network. In contrast, multihop networks are only partially con-
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Figure 8.5: Schematic of the Lambdanet with N nodes. Each node consists of one transmitter
and N receivers. (After Ref. [28]; c©1990 IEEE; reprinted with permission.)

nected such that an optical signal sent by one node may require several hops through
intermediate nodes before reaching its destination. In each category, transmitters and
receivers can have their operating frequencies either fixed or tunable.

Several architectures can be used for all-optical multihop networks [6]–[11]. Hy-
percube architecture provides one example—it has been used for interconnecting mul-
tiple processors in a supercomputer [27]. The hypercube configuration can be easily
visualized in three dimensions such that eight nodes are located at eight corners of a
simple cube. In general, the number of nodes N must be of the form 2 m, where m is
the dimensionality of the hypercube. Each node is connected to m different nodes. The
maximum number of hops is limited to m, while the average number of hops is about
m/2 for large N. Each node requires m receivers. The number of receivers can be
reduced by using a variant, known as the deBruijn network, but it requires more than
m/2 hops on average. Another example of a multihop WDM network is provided by
the shuffle network or its bidirectional equivalent—the Banyan network.

Figure 8.5 shows an example of the single-hop WDM network based on the use
of a broadcast star. This network, called the Lambdanet [28], is an example of the
broadcast-and-select network. The new feature of the Lambdanet is that each node
is equipped with one transmitter emitting at a unique wavelength and N receivers op-
erating at the N wavelengths, where N is the number of nodes. The output of all
transmitters is combined in a passive star and distributed to all receivers equally. Each
node receives the entire traffic flowing across the network. A tunable optical filter can
be used to select the desired channel. In the case of the Lambdanet, each node uses a
bank of receivers in place of a tunable filter. This feature creates a nonblocking net-
work whose capacity and connectivity can be reconfigured electronically depending
on the application. The network is also transparent to the bit rate or the modulation
format. Different users can transmit data at different bit rates with different modulation
formats. The flexibility of the Lambdanet makes it suitable for many applications. The
main drawback of the Lambdanet is that the number of users is limited by the number
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Figure 8.6: Passive photonic loop for local-loop applications. (After Ref. [31]; c©1988 IEE;
reprinted with permission.)

of available wavelengths. Moreover, each node requires many receivers (equal to the
number of nodes), resulting in a considerable investment in hardware costs.

A tunable receiver can reduce the cost and complexity of the Lambdanet. This is
the approach adopted for the Rainbow network [29]. This network can support up to
32 nodes, each of which can transmit 1-Gb/s signals over 10–20 km. It makes use of a
central passive star (see Fig. 8.5) together with the high-performance parallel interface
for connecting multiple computers. A tunable optical filter is used to select the unique
wavelength associated with each node. The main shortcoming of the Rainbow network
is that tuning of receivers is a relatively slow process, making it difficult to use packet
switching. An example of the WDM network that uses packet switching is provided by
the Starnet. It can transmit data at bit rates of up to 1.25 Gb/s per node over a 10-km
diameter while maintaining a signal-to-noise ratio (SNR) close to 24 dB [30].

WDM networks making use of a passive star coupler are often called passive op-
tical networks (PONs) because they avoid active switching. PONs have the potential
for bringing optical fibers to the home (or at least to the curb). In one scheme, called
a passive photonic loop [31], multiple wavelengths are used for routing signals in the
local loop. Figure 8.6 shows a block diagram of such a network. The central office
contains N transmitters emitting at wavelengths λ1,λ2, . . . ,λN and N receivers operat-
ing at wavelengths λN+1, . . . ,λ2N for a network of N subscribers. The signals to each
subscriber are carried on separate wavelengths in each direction. A remote node mul-
tiplexes signals from the subscribers to send the combined signal to the central office.
It also demultiplexes signals for individual subscribers. The remote node is passive
and requires little maintenance if passive WDM components are used. A switch at the
central office routes signals depending on their wavelengths.

The design of access networks for telecommunication applications was still evolv-
ing in 2001 [26]. The goal is to provide broadband access to each user and to deliver
audio, video, and data channels on demand, while keeping the cost down. Indeed,
many low-cost WDM components are being developed for this purpose. A technique
known as spectral slicing uses the broad emission spectrum of an LED to provide mul-
tiple WDM channels inexpensively. A waveguide-grating router (WGR) can be used
for wavelength routing. Spectral slicing and WGR devices are discussed in the next
section devoted to WDM components.
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Figure 8.7: Channel selection through a tunable optical filter.

8.2 WDM Components

The implementation of WDM technology for fiber-optic communication systems re-
quires several new optical components. Among them are multiplexers, which combine
the output of several transmitters and launch it into an optical fiber (see Fig. 8.2);
demultiplexers which split the received multichannel signal into individual channels
destined to different receivers; star couplers which mix the output of several transmit-
ters and broadcast the mixed signal to multiple receivers (see Fig. 8.5); tunable optical
filters which filter out one channel at a specific wavelength that can be changed by
tuning the passband of the optical filter; multiwavelength optical transmitters whose
wavelength can be tuned over a few nanometers; add–drop multiplexers and WGRs
which can distribute the WDM signal to different ports; and wavelength shifters which
switch the channel wavelength. This section focuses on all such WDM components.

8.2.1 Tunable Optical Filters

It is instructive to consider optical filters first since they are often the building blocks
of more complex WDM components. The role of a tunable optical filter in a WDM
system is to select a desired channel at the receiver. Figure 8.7 shows the selection
mechanism schematically. The filter bandwidth must be large enough to transmit the
desired channel but, at the same time, small enough to block the neighboring channels.

All optical filters require a wavelength-selective mechanism and can be classified
into two broad categories depending on whether optical interference or diffraction is
the underlying physical mechanism. Each category can be further subdivided accord-
ing to the scheme adopted. In this section we consider four kinds of optical filters;
Fig. 8.8 shows an example of each kind. The desirable properties of a tunable opti-
cal filter include: (1) wide tuning range to maximize the number of channels that can
be selected, (2) negligible crosstalk to avoid interference from adjacent channels, (3)
fast tuning speed to minimize the access time, (4) small insertion loss, (5) polariza-
tion insensitivity, (6) stability against environmental changes (humidity, temperature,
vibrations, etc.), and (7) last but not the least, low cost.
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Figure 8.8: Four kinds of filters based on various interferometric and diffractive devices: (a)
Fabry–Perot filter; (b) Mach–Zehnder filter; (c) grating-based Michelson filter; (d) acousto-optic
filter. The shaded area represents a surface acoustic wave.

A Fabry–Perot (FP) interferometer—a cavity formed by using two mirrors—can act
as a tunable optical filter if its length is controlled electronically by using a piezoelec-
tric transducer [see Fig. 8.8(a)]. The transmittivity of a FP filter peaks at wavelengths
that correspond to the longitudinal-mode frequencies given in Eq. (3.3.5). Hence, the
frequency spacing between two successive transmission peaks, known as the free spec-
tral range, is given by

∆νL = c/(2ngL), (8.2.1)

where ng is the group index of the intracavity material for a FP filter of length L.
If the filter is designed to pass a single channel (see Fig. 8.7), the combined band-

width of the multichannel signal, ∆νsig = N∆νch = NB/ηs, must be less than ∆νL,
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where N is the number of channels, ηs is the spectral efficiency, and B is the bit rate.
At the same time, the filter bandwidth ∆νFP (the width of the transmission peak in
Fig. 8.7) should be large enough to pass the entire frequency contents of the selected
channel. Typically, ∆νFP ∼ B. The number of channels is thus limited by

N < ηs(∆νL/∆νFP) = ηsF, (8.2.2)

where F = ∆νL/∆νFP is the finesse of the FP filter. The concept of finesse is well
known in the theory of FP interferometers [32]. If internal losses are neglected, the
finesse is given by F = π

√
R/(1−R) and is determined solely by the mirror reflectivity

R, assumed to be the same for both mirrors [32].
Equation (8.2.2) provides a remarkably simple condition for the number of chan-

nels that a FP filter can resolve. As an example, if ηs = 1
3 , a FP filter with 99% reflecting

mirrors can select up to 104 channels. Channel selection is made by changing the fil-
ter length L electronically. The length needs to be changed by only a fraction of the
wavelength to tune the filter. The filter length L itself is determined from Eq. (8.2.1)
together with the condition ∆νL > ∆νsig. As an example, for a 10-channel WDM signal
with 0.8-nm channel spacing, ∆νsig ≈ 1 THz. If ng = 1.5 is used for the group index,
L should be smaller than 100 µm. Such a short length together with the requirement
of high mirror reflectivities underscores the complexity of the design of FP filters for
WDM applications.

A practical all-fiber design of FP filters uses the air gap between two optical fibers
(see Fig. 8.8). The two fiber ends forming the gap are coated to act as high-reflectivity
mirrors [33]. The entire structure is enclosed in a piezoelectric chamber so that the gap
length can be changed electronically for tuning and selecting a specific channel. The
advantage of fiber FP filters is that they can be integrated within the system without
incurring coupling losses. Such filters were used in commercial WDM fiber links start-
ing in 1996. The number of channels is typically limited to below 100 (F ≈ 155 for the
98% mirror reflectivity) but can be increased using two FP filters in tandem. Although
tuning is relatively slow because of the mechanical nature of the tuning mechanism, it
suffices for some applications.

Tunable FP filters can also be made using several other materials such as liquid
crystals and semiconductor waveguides [34]–[39]. Liquid-crystal-based filters make
use of the anisotropic nature of liquid crystals that makes it possible to change the
refractive index electronically. A FP cavity is still formed by enclosing the liquid-
crystal material within two high-reflectivity mirrors, but the tuning is done by changing
the refractive index rather than the cavity length. Such FP filters can provide high
finesse (F ∼ 300) with a bandwidth of about 0.2 nm [34]. They can be tuned electrically
over 50 nm, but switching time is typically∼ 1 ms or more when nematic liquid crystals
are used. It can be reduced to below 10 µs by using smectic liquid crystals [35].

Thin dielectric films are commonly used for making narrow-band interference fil-
ters [36]. The basic idea is quite simple. A stack of suitably designed thin films acts
as a high-reflectivity mirror. If two such mirrors are separated by a spacer dielectric
layer, a FP cavity is formed that acts as an optical filter. The bandpass response can
be tailored for a multicavity filter formed by using multiple thin-film mirrors separated
by several spacer layers. Tuning can be realized in several different ways. In one ap-
proach, an InGaAsP/InP waveguide permits electronic tuning [37]. Silicon-based FP
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filters can be tuned using thermo-optic tuning [38]. Micromechanical tuning has also
been used for InAlGaAs-based FP filters [39]. Such filters exhibited a tuning range of
40 nm with <0.35 nm bandwidth in the 1.55-µm region.

A chain of Mach–Zehnder (MZ) interferometers can also be used for making a
tunable optical filter. A MZ interferometer can be constructed simply by connecting
the two output ports of a 3-dB coupler to the two input ports of another 3-dB coupler
[see Fig. 8.8(b)]. The first coupler splits the input signal equally into two parts, which
acquire different phase shifts (if the arm lengths are made different) before they inter-
fere at the second coupler. Since the relative phase shift is wavelength dependent, the
transmittivity T (ν) is also wavelength dependent. In fact, we can use Eq. (7.5.5) to
find that T (ν) = |H(ν)|2 = cos2(πντ), where ν = ω/2π is the frequency and τ is the
relative delay in the two arms of the MZ interferometer [40]. A cascaded chain of such
MZ interferometers with relative delays adjusted suitably acts as an optical filter that
can be tuned by changing the arm lengths slightly. Mathematically, the transmittivity
of a chain of M such interferometers is given by

T (ν) =
M

∏
m=1

cos2(πντm), (8.2.3)

where τm is the relative delay in the mth member of the chain.
A commonly used method implements the relative delays τ m such that each MZ

stage blocks the alternate channels successively. This scheme requires τm = (2m∆νch)−1

for a channel spacing of ∆νch. The resulting transmittivity of a 10-stage MZ chain has
channel selectivity as good as that offered by a FP filter having a finesse of 1600. More-
over, such a filter is capable of selecting closely spaced channels. The MZ chain can
be built by using fiber couplers or by using silica waveguides on a silicon substrate.
The silica-on-silicon technology was exploited extensively during the 1990s to make
many WDM components. Such devices are referred to as planar lightwave circuits be-
cause they use planar optical waveguides formed on a silicon substrate [41]–[45]. The
underlying technology is sometimes called the silicon optical-bench technology [44].
Tuning in MZ filters is realized through a chromium heater deposited on one arm of
each MZ interferometer (see Fig. 7.7). Since the tuning mechanism is thermal, it results
in a slow response with a switching time of about 1 ms.

A separate class of tunable optical filters makes use of the wavelength selectiv-
ity provided by a Bragg grating. Fiber Bragg gratings provide a simple example of
grating-based optical filters [46]; such filters have been discussed in Section 7.6. In its
simplest form, a fiber grating acts as a reflection filter whose central wavelength can
be controlled by changing the grating period, and whose bandwidth can be tailored by
changing the grating strength or by chirping the grating period slightly. The reflective
nature of fiber gratings is often a limitation in practice and requires the use of an op-
tical circulator. A phase shift in the middle of the grating can convert a fiber grating
into a narrowband transmission filter [47]. Many other schemes can be used to make
transmission filters based on fiber gratings. In one approach, fiber gratings are used
as mirrors of a FP filter, resulting in transmission filters whose free spectral range can
vary over a wide range 0.1–10 nm [48]. In another design, a grating is inserted in each
arm of a MZ interferometer to provide a transmission filter [46]. Other kinds of in-
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terferometers, such as the Sagnac and Michelson interferometers, can also be used to
realize transmission filters. Figure 8.8(c) shows an example of the Michelson interfer-
ometer made by using a 3-dB fiber coupler and two fiber gratings acting as mirrors for
the two arms of the Michelson interferometer [49]. Most of these schemes can also be
implemented in the form of a planar lightwave circuit by forming silica waveguides on
a silicon substrate.

Many other grating-based filters have been developed for WDM systems [50]–[54].
In one scheme, borrowed from the DFB-laser technology, the InGaAsP/InP material
system is used to form planar waveguides functioning near 1.55 µm. The wavelength
selectivity is provided by a built-in grating whose Bragg wavelength is tuned elec-
trically through electrorefraction [50]. A phase-control section, similar to that used
for multisegment DFB lasers, have also been used to tune distributed Bragg reflector
(DBR) filters. Multiple gratings, each tunable independently, can also be used to make
tunable filters [51]. Such filters can be tuned quickly (in a few nanoseconds) and can
be designed to provide net gain since one or more amplifiers can be integrated with the
filter. They can also be integrated with the receiver, as they use the same semiconductor
material. These two properties of InGaAsP/InP filters make them quite attractive for
WDM applications.

In another class of tunable filters, the grating is formed dynamically by using acous-
tic waves. Such filters, called acousto-optic filters, exhibit a wide tuning range (>
100 nm) and are quite suitable for WDM applications [55]–[58]. The physical mech-
anism behind the operation of acousto-optic filters is the photoelastic effect through
which an acoustic wave propagating through an acousto-optic material creates peri-
odic changes in the refractive index (corresponding to the regions of local compression
and rarefaction). In effect, the acoustic wave creates a periodic index grating that can
diffract an optical beam. The wavelength selectivity stems from this acoustically in-
duced grating. When a transverse electric (TE) wave with the propagation vector k
is diffracted from this grating, its polarization can be changed from TE to transverse
magnetic (TM) if the phase-matching condition k ′ = k±Ka is satisfied, where k′ and
Ka are the wave vectors associated with the TM and acoustic waves, respectively.

Acousto-optic tunable filters can be made by using bulk components as well as
waveguides, and both kinds are available commercially. For WDM applications, the
LiNbO3 waveguide technology is often used since it can produce compact, polarization-
independent, acousto-optic filters with a bandwidth of about 1 nm and a tuning range
over 100 nm [56]. The basic design, shown schematically in Fig. 8.8(d), uses two po-
larization beam splitters, two LiNbO3 waveguides, a surface-acoustic-wave transducer,
all integrated on the same substrate. The incident WDM signal is split into its orthog-
onally polarized components by the first beam splitter. The channel whose wavelength
λ satisfies the Bragg condition λ = (∆n)Λa is directed to a different output port by
the second beam splitter because of an acoustically induced change in its polarization
direction; all other channels go to the other output port. The TE–TM index difference
∆n is about 0.07 in LiNbO3. Near λ = 1.55 µm, the acoustic wavelength Λa should
be about 22 µm. This value corresponds to a frequency of about 170 MHz if we use
the acoustic velocity of 3.75 km/s for LiNbO3. Such a frequency can be easily applied.
Moreover, its exact value can be changed electronically to change the wavelength that
satisfies the Bragg condition. Tuning is relatively fast because of its electronic nature
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and can be accomplished in a switching time of less than 10 µs. Acousto-optic tunable
filters are also suitable for wavelength routing and optical cross-connect applications
in dense WDM systems.

Another category of tunable optical filters operates on the principle of amplification
of a selected channel. Any amplifier with a gain bandwidth smaller than the channel
spacing can be used as an optical filter. Tuning is realized by changing the wavelength
at which the gain peak occurs. Stimulated Brillouin scattering (SBS), occurring nat-
urally in silica fibers [59], can be used for selective amplification of one channel, but
the gain bandwidth is quite small (< 100 MHz). The SBS phenomenon involves in-
teraction between the optical and acoustic waves and is governed by a phase-matching
condition similar to that found for acousto-optic filters. As discussed in Section 2.6,
SBS occurs only in the backward direction and results in a frequency shift of about
10 GHz in the 1.55-µm region.

To use the SBS amplification as a tunable optical filter, a continuous-wave (CW)
pump beam is launched at the receiver end of the optical fiber in a direction opposite to
that of the multichannel signal, and the pump wavelength is tuned to select the channel.
The pump beam transfers a part of its energy to a channel down-shifted from the pump
frequency by exactly the Brillouin shift. A tunable pump laser is a prerequisite for
this scheme. The bit rate of each channel is even then limited to 100 MHz or so. In a
1989 experiment in which a 128-channel WDM network was simulated by using two
8×8 star couplers [60], a 150-Mb/s channel could be selected with a channel spacing
as small as 1.5 GHz.

Semiconductor optical amplifiers (SOAs) can also be used for channel selection
provided that a DFB structure is used to narrow the gain bandwidth [61]. A built-in
grating can easily provide a filter bandwidth below 1 nm. Tuning is achieved using a
phase-control section in combination with a shift of Bragg wavelength through elec-
trorefraction. In fact, such amplifiers are nothing but multisection semiconductor lasers
(see Section 3.4.3) with antireflection coatings. In one experimental demonstration,
two channels operating at 1 Gb/s and separated by 0.23 nm could be separated by se-
lective amplification (> 10 dB) of one channel [62]. Four-wave mixing in an SOA
can also be used to form a tunable filter whose center wavelength is determined by the
pump laser [63].

8.2.2 Multiplexers and Demultiplexers

Multiplexers and demultiplexers are the essential components of a WDM system. Sim-
ilar to the case of optical filters, demultiplexers require a wavelength-selective mecha-
nism and can be classified into two broad categories. Diffraction-based demultiplexers
use an angularly dispersive element, such as a diffraction grating, which disperses in-
cident light spatially into various wavelength components. Interference-based demul-
tiplexers make use of devices such as optical filters and directional couplers. In both
cases, the same device can be used as a multiplexer or a demultiplexer, depending on
the direction of propagation, because of the inherent reciprocity of optical waves in
dielectric media.

Grating-based demultiplexers use the phenomenon of Bragg diffraction from an
optical grating [64]–[67]. Figure 8.9 shows the design of two such demultiplexers. The
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Figure 8.9: Grating-based demultiplexer making use of (a) a conventional lens and (b) a graded-
index lens.

input WDM signal is focused onto a reflection grating, which separates various wave-
length components spatially, and a lens focuses them onto individual fibers. Use of a
graded-index lens simplifies alignment and provides a relatively compact device. The
focusing lens can be eliminated altogether by using a concave grating. For a compact
design, the concave grating can be integrated within a silicon slab waveguide [1]. In a
different approach, multiple elliptical Bragg gratings are etched using the silicon tech-
nology [64]. The idea behind this approach is simple. If the input and output fibers
are placed at the two foci of the elliptical grating, and the grating period Λ is adjusted
to a specific wavelength λ0 by using the Bragg condition 2Λneff = λ0, where neff is
the effective index of the waveguide mode, the grating would selectively reflect that
wavelength and focus it onto the output fiber. Multiple gratings need to be etched, as
each grating reflects only one wavelength. Because of the complexity of such a device,
a single concave grating etched directly onto a silica waveguide is more practical. Such
a grating can be designed to demultiplex up to 120 channels with a wavelength spacing
of 0.3 nm [66].

A problem with grating demultiplexers is that their bandpass characteristics depend
on the dimensions of the input and output fibers. In particular, the core size of output
fibers must be large to ensure a flat passband and low insertion losses. For this rea-
son, most early designs of multiplexers used multimode fibers. In a 1991 design, a
microlens array was used to solve this problem and to demonstrate a 32-channel multi-
plexer for single-mode fiber applications [68]. The fiber array was produced by fixing
single-mode fibers in V-shaped grooves etched into a silicon wafer. The microlens
transforms the relatively small mode diameter of fibers (∼ 10 µm) into a much wider
diameter (about 80 µm) just beyond the lens. This scheme provides a multiplexer that
can work with channels spaced by only 1 nm in the wavelength region near 1.55 µm
while accommodating a channel bandwidth of 0.7 nm.

Filter-based demultiplexers use the phenomenon of optical interference to select
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Figure 8.10: Layout of an integrated four-channel waveguide multiplexer based on Mach–
Zehnder interferometers. (After Ref. [69]; c©1988 IEEE; reprinted with permission.)

the wavelength [1]. Demultiplexers based on the MZ filter have attracted the most
attention. Similar to the case of a tunable optical filter, several MZ interferometers
are combined to form a WDM demultiplexer [69]–[71]. A 128-channel multiplexer
fabricated with the silica-waveguide technology was fabricated by 1989 [70]. Figure
8.10 illustrates the basic concept by showing the layout of a four-channel multiplexer.
It consists of three MZ interferometers. One arm of each MZ interferometer is made
longer than the other to provide a wavelength-dependent phase shift between the two
arms. The path-length difference is chosen such that the total input power from two in-
put ports at different wavelengths appears at only one output port. The whole structure
can be fabricated on a silicone substrate using SiO2 waveguides in the form of a planar
lightwave circuit.

Fiber Bragg gratings can also be used for making all-fiber demultiplexers. In one
approach, a 1×N fiber coupler is converted into a demultiplexer by forming a phase-
shifted grating at the end of each output port, opening a narrowband transmission win-
dow (∼ 0.1 nm) within the stop band [47]. The position of this window is varied by
changing the amount of phase shift so that each arm of the 1×N fiber coupler transmits
only one channel. The fiber-grating technology can be applied to form Bragg gratings
directly on a planar silica waveguide. This approach has attracted attention since it per-
mits integration of Bragg gratings within planar lightwave circuits. Such gratings were
incorporated in an asymmetric MZ interferometer (unequal arm lengths) resulting in a
compact multiplexer [72].

It is possible to construct multiplexers by using multiple directional couplers. The
basic scheme is similar to that shown in Fig. 8.10 but simpler as MZ interferometers
are not used. Furthermore, an all-fiber multiplexer made by using fiber couplers avoids
coupling losses that occur whenever light is coupled into or out of an optical fiber. A
fused biconical taper can also be used for making fiber couplers [73]. Multiplexers
based on fiber couplers can be used only when channel spacing is relatively large (>
10 nm) and are thus suitable mostly for coarse WDM applications.

From the standpoint of system design, integrated demultiplexers with low insertion
losses are preferred. An interesting approach uses a phased array of optical waveguides
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Figure 8.11: Schematic of a waveguide-grating demultiplexer consisting of an array of wave-
guides between two free-propagation regions (FPR). (After Ref. [74]; c©1996 IEEE; reprinted
with permission.)

that acts as a grating. Such gratings are called arrayed waveguide gratings (AWGs) and
have attracted considerable attention because they can be fabricated using the silicon,
InP, or LiNbO3 technology [74]–[81]. In the case of silica-on-silicon technology, they
are useful for making planar lightwave circuits [79]. AWGs can be used for a variety
of WDM applications and are discussed later in the context of WDM routers.

Figure 8.11 shows the design of a waveguide-grating demultiplexer, also known
as a phased-array demultiplexer [74]. The incoming WDM signal is coupled into an
array of planar waveguides after passing through a free-propagation region in the form
of a lens. In each waveguide, the WDM signal experiences a different phase shift
because of different lengths of waveguides. Moreover, the phase shifts are wavelength
dependent because of the frequency dependence of the mode-propagation constant.
As a result, different channels focus to different output waveguides when the light
exiting from the array diffracts in another free-propagation region. The net result is
that the WDM signal is demultiplexed into individual channels. Such demultiplexers
were developed during the 1990s and became available commercially by 1999. They
are able to resolve up to 256 channels with spacing as small as 0.2 nm. A combination
of several suitably designed AWGs can increase the number of channels to more than
1000 while maintaining a 10-GHz resolution [82].

The performance of multiplexers is judged mainly by the amount of insertion loss
for each channel. The performance criterion for demultiplexers is more stringent. First,
the performance of a demultiplexer should be insensitive to the polarization of the
incident WDM signal. Second, a demultiplexer should separate each channel without
any leakage from the neighboring channels. In practice, some power leakage is likely to
occur, especially in the case of dense WDM systems with small interchannel spacing.
Such power leakage is referred to as crosstalk and should be quite small (< −20 dB)
for a satisfactory system performance. The issue of interchannel crosstalk is discussed
in Section 8.3.
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Figure 8.12: (a) A generic add–drop multiplexer based on optical switches (OS); (b) an add–
drop filter made with a Mach–Zehnder interferometer and two identical fiber gratings.

8.2.3 Add–Drop Multiplexers

Add–drop multiplexers are needed for wide-area and metro-area networks in which
one or more channels need to be dropped or added while preserving the integrity of
other channels. Figure 8.12(a) shows a generic add–drop multiplexer schematically; it
houses a bank of optical switches between a demultiplexer–multiplexer pair. The de-
multiplexer separates all channels, optical switches drop, add, or pass individual chan-
nels, and the multiplexer combines the entire signal back again. Any demultiplexer
design discussed in the preceding subsection can be used to make add–drop multiplex-
ers. It is even possible to amplify the WDM signal and equalize the channel powers
at the add–drop multiplexer since each channel can be individually controlled [83].
The new component in such multiplexers is the optical switch, which can be made us-
ing a variety of technologies including LiNbO3 and InGaAsP waveguides. We discuss
optical switches later in this section.

If a single channel needs to be demultiplexed, and no active control of individual
channels is required, one can use a much simpler multiport device designed to send a
single channel to one port while all other channels are transferred to another port. Such
devices avoid the need for demultiplexing all channels and are called add–drop filters
because they filter out a specific channel without affecting the WDM signal. If only a
small portion of the channel power is filtered out, such a device acts as an “optical tap”
as it leaves the contents of the WDM signal intact.
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Several kinds of add–drop filters have been developed since the advent of WDM
technology [84]–[94]. The simplest scheme uses a series of interconnected directional
couplers, forming a MZ chain similar to that of a MZ filter discussed earlier. However,
in contrast with the MZ filter of Section 8.2.1, the relative delay τ m in Eq. (8.2.3) is
made the same for each MZ interferometer. Such a device is sometimes referred to as
a resonant coupler because it resonantly couples out a specific wavelength channel to
one output port while the remainder of the channels appear at the other output port. Its
performance can be optimized by controlling the coupling ratios of various directional
couplers [86]. Although resonant couplers can be implemented in an all-fiber con-
figuration using fiber couplers, the silica-on-silicon waveguide technology provides a
compact alternative for designing such add–drop filters [87].

The wavelength selectivity of Bragg gratings can also be used to make add–drop
filters. In one approach, referred to as the grating-assisted directional coupler, a Bragg
grating is fabricated in the middle of a directional coupler [93]. Such devices can
be made in a compact form using InGaAsP/InP or silica waveguides. However, an all-
fiber device is often preferred for avoiding coupling losses. In a common approach, two
identical Bragg gratings are formed on the two arms of a MZ interferometer made using
two 3-dB fiber couplers. The operation of such an add–drop filter can be understood
from Fig. 8.12(b). Assume that the WDM signal is incident on port 1 of the filter. The
channel, whose wavelength λg falls within the stop band of the two identical Bragg
gratings, is totally reflected and appears at port 2. The remaining channels are not
affected by the gratings and appear at port 4. The same device can add a channel at
the wavelength λg if the signal at that wavelength is injected from port 3. If the add
and drop operations are performed simultaneously, it is important to make the gratings
highly reflecting (close to 100%) to minimize the crosstalk. As early as 1995, such
an all-fiber, add–drop filter exhibited the drop-off efficiency of more than 99%, while
keeping the crosstalk level below 1% [88]. The crosstalk can be reduced below −50 dB
by cascading several such devices [89].

Several other schemes use gratings to make add–drop filters. In one scheme, a
waveguide with a built-in, phase-shifted grating is used to add or drop one channel from
a WDM signal propagating in a neighboring waveguide [84]. In another, two identical
AWGs are connected in series such that an optical amplifier connects each output port
of one with the corresponding input port of the another [85]. The gain of amplifiers
is adjusted such that only the channel to be dropped experiences amplification when
passing through the device. Such a device is close to the generic add–drop multiplexer
shown in Fig. 8.12(a) with the only difference that optical switches are replaced with
optical amplifiers.

In another category of add–drop filters, optical circulators are used in combination
with a fiber grating [92]. Such a device is simple in design and can be made by connect-
ing each end of a fiber grating to a 3-port optical circulator. The channel reflected by
the grating appears at the unused port of the input-end circulator. The same-wavelength
channel can be added by injecting it from the output-end circulator. The device can also
be made by using only one circulator provided it has more than three ports. Figure 8.13
shows two such schemes [94]. Scheme (a) uses a six-port circulator. The WDM signal
entering from port 1 exits from port 2 and passes through a Bragg grating. The dropped
channel appears at port 3 while the remaining channels re-enter the circulator at port 5
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Figure 8.13: (a) Two designs of add–drop multiplexers using a single optical circulator in com-
bination with fiber gratings. (After Ref. [94]; c©2001 IEEE; reprinted with permission.)

and leave the device from port 6. The channel to be added enters from port 4. Scheme
(b) works in a similar way but uses two identical gratings to reduce the crosstalk level.
Many other variants are possible.

8.2.4 Star Couplers

The role of a star coupler, as seen in Fig. 8.5, is to combine the optical signals entering
from its multiple input ports and divide it equally among its output ports. In contrast
with demultiplexers, star couplers do not contain wavelength-selective elements, as
they do not attempt to separate individual channels. The number of input and output
ports need not be the same. For example, in the case of video distribution, a relatively
small number of video channels (say 100) may be sent to thousands of subscribers.
The number of input and output ports is generally the same for the broadcast-and-select
LANs in which each user wishes to receive all channels (see Fig. 8.5). Such a passive
star coupler is referred to as an N×N broadcast star, where N is the number of input (or
output) ports. A reflection star is sometimes used for LAN applications by reflecting
the combined signal back to its input ports. Such a geometry saves considerable fiber
when users are distributed over a large geographical area.

Figure 8.14: An 8×8 star coupler formed by using twelve 2×2 single-mode fiber couplers.
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Figure 8.15: A star coupler formed by using the fused biconical tapering method.

Several kinds of star couplers have been developed for LAN applications [95]–
[101]. An early approach made use of multiple 3-dB fiber couplers [96]. A 3-dB fiber
coupler divides two input signals between its two output ports, the same functionality
needed for a 2×2 star coupler. Higher-order N ×N stars can be formed by combining
several 2× 2 couplers as long as N is a multiple of 2. Figure 8.14 shows an 8× 8
star formed by interconnecting 12 fiber couplers. The complexity of such star couplers
grows enormously with the number of ports.

Fused biconical-taper couplers can be used to make compact, monolithic, star cou-
plers. Figure 8.15 shows schematically a star coupler formed using this technique. The
idea is to fuse together a large number of fibers and elongate the fused portion to form
a biconically tapered structure. In the tapered portion, signals from each fiber mix to-
gether and are shared almost equally among its output ports. Such a scheme works
relatively well for multimode fibers [95] but is limited to only a few ports in the case
of single-mode fibers. Fused 2×2 couplers were made as early as 1981 using single-
mode fibers [73]; they can also be designed to operate over a wide wavelength range.
Higher-order stars can be made using a combinatorial scheme similar to that shown in
Fig. 8.12 [97].

A common approach for fabricating a compact broadcast star makes use of the
silica-on-silicon technology in which two arrays of planar SiO 2 waveguides, separated
by a central slab region, are formed on a silicon substrate. Such a star coupler was
first demonstrated in 1989 in a 19× 19 configuration [98]. The SiO 2 channel wave-
guides were 200 µm apart at the input end, but the final spacing near the central re-
gion was only 8 µm. The 3-cm-long star coupler had an efficiency of about 55%. A
fiber amplifier can be integrated with the star coupler to amplify the output signals be-
fore broadcasting [99]. The silicon-on-insulator technology has been used for making
star couplers. A 5× 9 star made by using silicon rib waveguides exhibited low losses
(1.3 dB) with relatively uniform coupling [100].

8.2.5 Wavelength Routers

An important WDM component is an N ×N wavelength router, a device that com-
bines the functionality of a star coupler with multiplexing and demultiplexing opera-
tions. Figure 8.16(a) shows the operation of such a wavelength router schematically
for N = 5. The WDM signals entering from N input ports are demultiplexed into in-
dividual channels and directed toward the N output ports of the router in such a way
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Figure 8.16: (a) Schematic illustration of a wavelength router and (b) its implementation using
an AWG. (After Ref. [79]; c©1999 IEEE; reprinted with permission.)

that the WDM signal at each port is composed of channels entering at different input
ports. This operation results in a cyclic form of demultiplexing. Such a device is an
example of a passive router since its use does not involve any active element requir-
ing electrical power. It is also called a static router since the routing topology is not
dynamically reconfigurable. Despite its static nature, such a WDM device has many
potential applications in WDM networks.

The most common design of a wavelength router uses a AWG demultiplexer shown
in Fig. 8.11 modified to provide multiple input ports. Such a device, called the wave-
guide-grating router (WGR), is shown schematically in Fig. 8.16(b). It consists of two
N ×M star couplers such that M output ports of one star coupler are connected with
M input ports of another star coupler through an array of M waveguides that acts as
an AWG [74]. Such a device is a generalization of the MZ interferometer in the sense
that a single input is divided coherently into M parts (rather than two), which acquire
different phase shifts and interfere in the second free-propagation region to come out of
N different ports depending on their wavelengths. The symmetric nature of the WGR
permits to launch N WDM signals containing N different wavelengths simultaneously,
and each WDM signal is demultiplexed to N output ports in a periodic fashion.

The physics behind the operation of a WGR requires a careful consideration of
the phase changes as different wavelength signals diffract through the free-propagation
region inside star couplers and propagate through the waveguide array [74]–[81]. The
most important part of a WGR is the waveguide array designed such that the length
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difference ∆L between two neighboring waveguides remains constant from one wave-
guide to next. The phase difference for a signal of wavelength λ , traveling from the
pth input port to the qth output port through the mth waveguide (compared to the path
connecting central ports), can be written as [13]

φpqm = (2πm/λ )(n1δp + n2∆L+ n1δ ′
q), (8.2.4)

where n1 and n2 are the refractive indices in the regions occupied by the star couplers
and waveguides, respectively. The lengths δ p and δ ′

q depend on the location of the
input and output ports. When the condition

n1(δp + δ ′
q)+ n2∆L = Qλ (8.2.5)

is satisfied for some integer Q, the channel at the wavelength λ acquires phase shifts
that are multiples of 2π while passing through different waveguides. As a result, all
fields coming out of the M waveguides will interfere constructively at the qth port.
Other wavelengths entering from the pth port will be directed to other output ports de-
termined by the condition (8.2.5). Clearly, the device acts as a demultiplexer since a
WDM signal entering from the pth port is distributed to different output ports depend-
ing on the channel wavelengths.

The routing function of a WGR results from the periodicity of the transmission
spectrum. This property is also easily understood from Eq. (8.2.5). The phase condition
for constructive interference can be satisfied for many integer values of Q. Thus, if Q
is changed to Q+1, a different wavelength will satisfy Eq. (8.2.5) and will be directed
toward the same port. The frequency difference between these two wavelengths is the
free spectral range (FSR), analogous to that of FP filters. For a WGR, it is given by

FSR =
c

n1(δp + δ ′
q)+ n2∆L

. (8.2.6)

Strictly speaking, FSR is not the same for all ports, an undesirable feature from a
practical standpoint. However, when δ p and δ ′

q are designed to be relatively small
compared with ∆L, FSR becomes nearly constant for all ports. In that case, a WGR
can be viewed as N demultiplexers working in parallel with the following property.
If the WDM signal from the first input port is distributed to N output ports in the
order λ1,λ2, . . . ,λN , the WDM signal from the second input port will be distributed as
λN ,λ1, . . . ,λN−1, and the same cyclic pattern is followed for other input ports.

The optimization of a WGR requires precise control of many design parameters
for reducing the crosstalk and maximizing the coupling efficiency. Despite the com-
plexity of the design, WGRs are routinely fabricated in the form of a compact com-
mercial device (each dimension ∼1 cm) using either silica-on-silicon technology or
InGaAsP/InP technology [74]–[81]. WGRs with 128 input and output ports were avail-
able by 1996 in the form of a planar lightwave circuit and were able to operate on WDM
signals with a channel spacing as small as 0.2 nm while maintaining crosstalk below
16 dB. WGRs with 256 input and output ports have been fabricated using this tech-
nology [102]. WGRs can also be used for applications other than wavelength routing
such as multichannel transmitters and receivers (discussed later in this section), tunable
add–drop optical filters, and add–drop multiplexers.
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Figure 8.17: Schematic of an optical cross-connect based on optical switches.

8.2.6 Optical Cross-Connects

The development of wide-area WDM networks requires a dynamic wavelength routing
scheme that can reconfigure the network while maintaining its nonblocking (transpar-
ent) nature. This functionality is provided by an optical cross-connect (OXC) which
performs the same function as that provided by electronic digital switches in telephone
networks. The use of dynamic routing also solves the problem of a limited number of
available wavelengths through the wavelength-reuse technique. The design and fab-
rication of OXCs has remained a major topic of research since the advent of WDM
systems [103]–[118].

Figure 8.17 shows the generic design of an OXC schematically. The device has N
input ports, each port receiving a WDM signal consisting of M wavelengths. Demul-
tiplexers split the signal into individual wavelengths and distribute each wavelength to
the bank of M switching units, each unit receiving N input signals at the same wave-
length. An extra input and output port is added to the switch to allow dropping or
adding of a specific channel. Each switching unit contains N optical switches that can
be configured to route the signals in any desirable fashion. The output of all switch-
ing units is sent to N multiplexers, which combine their M inputs to form the WDM
signal. Such an OXC needs N multiplexers, N demultiplexers, and M(N + 1)2 optical
switches. Switches used by an OXC are 2× 2 space-division switches which switch
an input signal to spatially separated output ports using a mechanical, thermo-optic,
electro-optic, or all-optical technique. Many schemes have been developed for per-
forming the switching operation. We discuss some of them next.

Mechanical switching is perhaps the simplest to understand. A simple mirror can
act as a switch if the output direction can be changed by tilting the mirror. The use of
“bulk” mirrors is impractical because of a large number of switches needed for mak-
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Figure 8.18: Scanning electron micrograph of an 8× 8 MEMS optical switch based on free-
rotating micromirrors. (After Ref. [112]; c©2000 IEEE; reprinted with permission.)

ing an OXC. For this reason, a micro-electro-mechanical system (MEMS) is used
for switching [109]. Figure 8.18 shows an example of a 8× 8 MEMS optical switch
containing a two-dimensional array of free-rotating micromirrors [112]. Optical path
lengths are far from being uniform in such a two-dimensional (2-D) geometry. This fea-
ture limits the switch size although multiple 2-D switches can be combined to increase
the effective size. The three-dimensional (3-D) configuration in which the input and
output fibers are located normal to the switching-fabric plane solves the size problem
to a large extent. The switch size can be as large as 4096× 4096 in the 3-D configu-
ration. MEMS-based switches were becoming available commercially in 2002 and are
likely to find applications in WDM networks. They are relatively slow to reconfigure
(switching time > 10 ms) but that is not a major limitation in practice.

A MZ interferometer similar to that shown in Fig. 8.8(b) can also act as a 2× 2
optical switch because the input signal can be directed toward different output ports
by changing the delay in one of the arms by a small amount. The planar lightwave
circuit technology uses the thermo-optic effect to change the refractive index of silica
by heating. The temperature-induced change in the optical path length provides op-
tical switching. As early as 1996, such optical switches were used to form a 8× 16
OXC [103]. By 1998, such an OXC was packaged using switch boards of the standard
(33× 33 cm2) dimensions [107]. The extinction ratio can be increased by using two
MZ interferometers in series, each with its own thermo-optic phase shifter, since the
second unit blocks any light leaked through the first one [110]. Polymers are some-
times used in place of silica because of their large thermo-optic coefficient (more than
10 times larger compared with that of silica) for making OXCs [111]. Their use re-
duces both the fabrication cost and power consumption. The switching time is ∼1 ms
for all thermo-optic devices.

A directional coupler also acts as a 2× 2 optical switch because it can direct an
input signal toward different output ports in a controlled fashion. In LiNbO 3-based di-
rectional couplers, the refractive index can be changed by applying an external voltage
through the electro-optic effect known as electrorefraction. The LiNbO 3 technology
was used by 1988 to fabricate an 8× 8 OXC [108]. Switching time of such cross-
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(a) (b)

Figure 8.19: Examples of optical switches based on (a) Y-junction semiconductor waveguides
and (b) SOAs with splitters. (After Ref. [105]; c©1996 IEEE; reprinted with permission.)

connects can be quite small (< 1 ns) as it is only limited by the speed with which
electrical voltage can be changed. An OXC based on LiNbO 3 switches was used for
the MONET project [21].

Semiconductor waveguides can also be used for making optical switches in the
form of direction couplers, MZ interferometers, or Y junctions [105]. The InGaAsP/InP
technology is most commonly used for such switches. Figure 8.19(a) shows a 4× 4
switch based on the Y junctions; electrorefraction is used to switch the signal between
the two arms of a Y junction. Since InGaAsP waveguides can provide amplification,
SOAs can be used for compensating insertion losses. SOAs themselves can be used for
making OXCs. The basic idea is shown schematically in Fig. 8.19(b) where SOAs act
as a gate switch. Each input is divided into N branches using waveguide splitters, and
each branch passes through an SOA, which either blocks light through absorption or
transmits it while amplifying the signal simultaneously. Such OXCs have the advan-
tage that all components can be integrated using the InGaAsP/InP technology while
providing low insertion losses, or even a net gain, because of the use of SOAs. They
can operate at high bit rates; operation at a bit rate of 2.5 Gb/s was demonstrated in
1996 within an installed fiber network [106].

Many other technologies can be used for making OXCs [115]. Examples include
liquid crystals, bubbles, and electroholography. Liquid crystals in combination with
polarizers either absorb or reflect the incident light depending on the electric voltage,
and thus act as an optical switch. Although the liquid-crystal technology is well devel-
oped and is used routinely for computer-display applications, it has several disadvan-
tages for making OXCs. It is relatively slow, is difficult to integrate with other optical
components, and requires fixed input polarization. The last problem can be solved by
splitting the input signal into orthogonally polarized components and switching each
one separately, but only at the expense of increased complexity.

The bubble technology makes use of the phenomenon of total internal reflection for
optical switching. A two-dimensional array of optical waveguides is formed in such a
way that they intersect inside liquid-filled channels. When an air bubble is introduced
at the intersection by vaporizing the liquid, light is reflected (i.e., switched) into another
waveguide because of total internal reflection. This approach is appealing because of
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its low-cost potential (bubble-jet technology is used routinely for printers) but requires
a careful design for reducing the crosstalk and insertion losses.

Electroholographic switches are similar to 2-D MEMS but employ a LiNbO 3 crys-
tal for switching in place of a rotating mirror. Incident light can be switched at any
point within the 2-D array of such crystals by applying an electric field and creating a
Bragg grating at that location. Because of the wavelength selectivity of the Bragg grat-
ing, only a single wavelength can be switched by one device. This feature increases
the complexity of such switching fabrics. Other issues are related to the polarization
sensitivity of LiNbO3-based devices.

Optical fibers themselves can be used for making OXCs if they are combined with
fiber gratings and optical circulators [116]. The main drawback of any OXC is the
large number of components and interconnections required that grows exponentially as
the number of nodes and the number of wavelengths increase. Alternatively, the sig-
nal wavelength itself can be used for switching by making use of wavelength-division
switches. Such a scheme makes use of static wavelength routers such as a WGR in
combination with a new WDM component—the wavelength converter. We turn to this
component next.

8.2.7 Wavelength Converters

A wavelength converter changes the input wavelength to a new wavelength without
modifying the data content of the signal. Many schemes were developed during the
1990s for making wavelength converters [119]–[129]; four among them are shown
schematically in Fig. 8.20.

A conceptually simple scheme uses an optoelectronic regenerator shown in Fig.
8.20(a). An optical receiver first converts the incident signal at the input wavelength λ 1

to an electrical bit pattern, which is then used by a transmitter to generate the optical
signal at the desired wavelength λ2. Such a scheme is relatively easy to implement as
it uses standard components. Its other advantages include an insensitivity to input po-
larization and the possibility of net amplification. Among its disadvantages are limited
transparency to bit rate and data format, speed limited by electronics, and a relatively
high cost, all of which stem from the optoelectronic nature of wavelength conversion.

Several all-optical techniques for wavelength conversion make use of SOAs [119]–
[122], amplifiers discussed in Section 6.2. The simplest scheme shown in Fig. 8.20(b)
is based on cross-gain saturation occurring when a weak field is amplified inside the
SOA together with a strong field, and the amplification of the weak field is affected
by the strong field. To use this phenomenon, the pulsed signal whose wavelength λ 1

needs to be converted is launched into the SOA together with a low-power CW beam
at the wavelength λ2 at which the converted signal is desired. Amplifier gain is mostly
saturated by the λ1 beam. As a result, the CW beam is amplified by a large amount
during 0 bits (no saturation) but by a much smaller amount during 1 bits. Clearly, the
bit pattern of the incident signal will be transferred to the new wavelength with reverse
polarity such that 1 and 0 bits are interchanged. This technique has been used in many
experiments and can work at bit rates as high as 40 Gb/s. It can provide net gain to the
wavelength-converted signal and can be made nearly polarization insensitive. Its main
disadvantages are (i) relatively low on–off contrast, (ii) degradation due to spontaneous
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Figure 8.20: Four schemes for wavelength conversion: (a) optoelectronic regenerator; (b) gain
saturation in a semiconductor laser amplifier (SLA); (c) phase modulation in a SLA placed in
one arm of a Mach-Zehnder interferometer; (d) four-wave mixing inside a SLA.

emission, and (iii) phase distortion because of frequency chirping that invariably occurs
in SOAs (see Section 3.5). The use of an absorbing medium in place of the SOA solves
the polarity reversal problem. An electroabsorption modulator (see Section 3.6.4) has
been used for wavelength conversion with success [127]. It works on the principle of
cross-absorption saturation. The device blocks the CW signal at λ 2 because of high
absorption except when the arrival of 1 bits at λ1 saturates the absorption.

The contrast problem can be solved by using the MZ configuration of Fig. 8.20(c) in
which an SOA is inserted in each arm of a MZ interferometer [119]. The pulsed signal
at the wavelength λ1 is split at the first coupler such that most power passes through
one arm. At the same time, the CW signal at the wavelength λ2 is split equally by this
coupler and propagates simultaneously in the two arms. In the absence of the λ 1 beam,
the CW beam exits from the cross port (upper port in the figure). However, when both



8.2. WDM COMPONENTS 359

beams are present simultaneously, all 1 bits are directed toward the bar port because of
the refractive-index change induced by the λ 1 beam. The physical mechanism behind
this behavior is the cross-phase modulation (XPM). Gain saturation induced by the λ 1

beam reduces the carrier density inside one SOA, which in turn increases the refractive
index only in the arm through which the λ 1 beam passes. As a result, an additional π
phase shift can be introduced on the CW beam because of cross-phase modulation, and
the CW wave is directed toward the bar port during each 1 bit.

It should be evident from the preceding discussion that the output from the bar port
of the MZ interferometer would consist of an exact replica of the incident signal with
its wavelength converted to the new wavelength λ2. An optical filter is placed in front
of the bar port for blocking the original λ 1 signal. The MZ scheme is preferable over
cross-gain saturation as it does not reverse the bit pattern and results in a higher on–off
contrast simply because nothing exits from the bar port during 0 bits. In fact, the output
from the cross port also has the same bit pattern but its polarity is reversed. Other types
of interferometers (such as Michelson and Sagnac interferometers) can also be used
with similar results. The MZ interferometer is often used in practice because it can be
easily integrated by using SiO2/Si or InGaAsP/InP waveguides, resulting in a compact
device [125]. Such a device can operate at high bit rates (up to 80 Gb/s), offers a large
contrast, and degrades the signal relatively little although spontaneous emission does
affect the SNR. Its main disadvantage is a narrow dynamic range of the input power
since the phase induced by the amplifier depends on it.

Another scheme employs the SOA as a nonlinear medium for four-wave mix-
ing (FWM), the same nonlinear phenomenon that is a major source of interchannel
crosstalk in WDM systems (see Section 8.3). The FWM technique has been discussed
in Section 7.7 in the context of optical phase conjugation and dispersion compensation.
As seen in Fig. 8.20(d), its use requires an intense CW pump beam that is launched into
the SOA together with the signal whose wavelength needs to be converted [119]. If ν 1

and ν2 are the frequencies of the input signal and the converted signal, the pump fre-
quency νp is chosen such that νp = (ν1 + ν2)/2. At the amplifier output, a replica of
the input signal appears at the carrier frequency ν2 because FWM requires the presence
of both the pump and signal. One can understand the process physically as scattering
of two pump photons of energy 2hν p into two photons of energy hν1 and hν2. The
nonlinearity responsible for the FWM has its origin in fast intraband relaxation pro-
cesses occurring at a time scale of 0.1 ps [130]. As a result, frequency shifts as large as
10 THz, corresponding to wavelength conversion over a range of 80 nm, are possible.
For the same reason, this technique can work at bit rates as high as 100 Gb/s and is
transparent to both the bit rate and the data format. Because of the gain provided by
the amplifier, conversion efficiency can be quite high, resulting even in a net gain. An
added advantage of this technique is the reversal of the frequency chirp since its use
inverts the signal spectrum (see Section 7.7). The performance can also be improved
by using two SOAs in a tandem configuration.

The main disadvantage of any wavelength-conversion technique based on SOAs is
that it requires a tunable laser source whose light should be coupled into the SOA, typ-
ically resulting in large coupling losses. An alternative is to integrate the functionality
of a wavelength converter within a tunable semiconductor laser. Several such devices
have been developed [119]. In the simplest scheme, the signal whose wavelength needs
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to be changed is injected into a tunable laser directly. The change in the laser threshold
resulting from injection translates into modulation of the laser output, mimicking the
bit pattern of the injected signal. Such a scheme requires relatively large input powers.
Another scheme uses the low-power input signal to produce a frequency shift (typically,
10 GHz/mW) in the laser output for each 1 bit. The resulting frequency-modulated CW
signal can be converted into amplitude modulation by using a MZ interferometer. An-
other scheme uses FWM inside the cavity of a tunable semiconductor laser, which also
plays the role of the pump laser. A phase-shifted DFB laser provided wavelength con-
version over a range of 30 nm with this technique [120]. A sampled grating within a
distributed Bragg reflector has also been used for this purpose [123].

Another class of wavelength converters uses an optical fiber as the nonlinear medium.
Both XPM and FWM can be employed for this purpose using the last two configura-
tions shown in Fig. 8.20. In the FWM case, stimulated Raman scattering (SRS) af-
fects the FWM if the frequency difference |ν1 −ν2| falls within the Raman-gain band-
width [124]. In the XPM case, the use of a Sagnac interferometer, also known as the
nonlinear optical loop mirror [40], provides a wavelength converter capable of oper-
ating at bit rates up to 40 Gb/s for both the return-to-zero (RZ) and nonreturn-to-zero
(NRZ) formats [126]. Such a device reflects all 0 bits but 1 bits are transmitted through
the fiber loop because of the XPM-induced phase shift. In a 2001 experiment, wave-
length conversion at the bit rate of 80 Gb/s was realized by using a 1-km-long optical
fiber designed to have a large value of the nonlinear parameter γ [129]. A periodically
poled LiNbO3 waveguide has provided wavelength conversion at 160 Gb/s [128]. In
principle, wavelength converters based on optical fibers can operate at bit rates as high
as 1 Tb/s because of the fast nature of their nonlinear response.

8.2.8 WDM Transmitters and Receivers

Most WDM systems use a large number of DFB lasers whose frequencies are chosen
to match the ITU frequency grid precisely. This approach becomes impractical when
the number of channels becomes large. Two solutions are possible. In one approach,
single-frequency lasers with a tuning range of 10 nm or more are employed (see Sec-
tion 3.4.3). The use of such lasers reduces the inventory and maintenance problems.
Alternatively, multiwavelength transmitters which generate light at 8 or more fixed
wavelengths simultaneously can be used. Although such WDM transmitters attracted
some attention in the 1980s, it was only during the 1990s that monolithically inte-
grated WDM transmitters, operating near 1.55 µm with a channel spacing of 1 nm
or less, were developed using the InP-based optoelectronic integrated-circuit (OEIC)
technology [131]–[139].

Several different techniques have been pursued for designing WDM transmitters. In
one approach, the output of several DFB or DBR semiconductor lasers, independently
tunable through Bragg gratings, is combined by using passive waveguides [131]–[134].
A built-in amplifier boosts the power of the multiplexed signal to increase the trans-
mitted power. In a 1993 device, the WDM transmitter not only integrated 16 DBR
lasers with 0.8-nm wavelength spacing, but an electroabsorption modulator was also
integrated with each laser [132]. In a 1996 device, 16 gain-coupled DFB lasers were
integrated, and their wavelengths were controlled by changing the width of the ridge
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Figure 8.21: Schematic of a WDM laser made by integrating an AWG inside the laser cavity.
(After Ref. [137]; c©1996 IEEE; reprinted with permission.)

waveguides and by tuning over a 1-nm range using a thin-film resistor [133]. In a differ-
ent approach, sampled gratings with different periods are used to tune the wavelengths
precisely of an array of DBR lasers [135]. The complexity of such devices makes it
difficult to integrate more than 16 lasers on the same chip. The vertical-cavity surface-
emitting laser (VCSEL) technology provides a unique approach to WDM transmitters
since it can be used to produce a two-dimensional array of lasers covering a wide wave-
length span at a relatively low cost [136]; it is well suited for LAN and data-transfer
applications.

A waveguide grating integrated within the laser cavity can provide lasing at several
wavelengths simultaneously. An AWG is often used for multiplexing the output of sev-
eral optical amplifiers or DBR lasers [137]–[139]. In a 1996 demonstration of the basic
idea, simultaneous operation at 18 wavelengths (spaced apart by 0.8 nm) was realized
using an intracavity AWG [137]. Figure 8.21 shows the laser design schematically.
Spontaneous emission of the amplifier located on the left side is demultiplexed into 18
spectral bands by the AWG through the technique of spectral slicing. The amplifier ar-
ray on the right side selectively amplifies the set of 18 wavelengths, resulting in a laser
emitting at all wavelengths simultaneously. A 16-wavelength transmitter with 50-GHz
channel spacing was built in 1998 by this technique [138]. In a different approach,
the AWG was not a part of the laser cavity but was used to multiplex the output of
10 DBR lasers, all produced on the same chip in an integrated fashion [139]. AWGs
fabricated with the silica-on-silicon technology can also be used although they cannot
be integrated on the InP substrate.

Fiber lasers can be designed to provide multiwavelength output and therefore act
as a CW WDM source [140]. A ring-cavity fiber laser containing a frequency shifter
(e.g., an acousto-optic device) and an optical filter with periodic transmission peaks
(such as a FP filter, a sampled grating, or an AWG) can provide its output at a comb
of frequencies set to coincide with the ITU grid. Up to 16 wavelengths have been
obtained in practical lasers although the power is not generally uniform across them.
A demultiplexer is still needed to separate the channels before data is imposed on them
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using individual modulators.
A unique approach to WDM sources exploits the technique of spectral slicing

for realizing WDM transmitters and is capable of providing more than 1000 chan-
nels [141]–[145]. The output of a coherent, wide-bandwidth source is sliced spec-
trally using a mutipeak optical filter such as an AWG. In one implementation of this
idea [141], picosecond pulses from a mode-locked fiber laser are first broadened spec-
trally to bandwidth as large as 200 nm through supercontinuum generation by exploit-
ing the nonlinear effects in an optical fiber [59]. Spectral slicing of the output by an
AWG then produces many WDM channels with a channel spacing of 1 nm or less.
In a 2000 experiment, this technique produced 1000 channels with 12.5-GHz chan-
nel spacing [143]. In another experiment, 150 channels with 25-GHz channel spacing
were realized within the C band covering the range 1530–1560 nm [145]. The SNR of
each channel exceeded 28 dB, indicating that the source was suitable for dense WDM
applications.

The generation of supercontinuum is not necessary if a mode-locked laser produc-
ing femtosecond pulses is employed. The spectral width of such pulses is quite large
to begin with and can be enlarged to 50 nm or more by chirping them using 10–15 km
of standard telecommunication fiber. Spectral slicing of the output by a demultiplexer
can again provide many channels, each of which can be modulated independently. This
technique also permits simultaneous modulation of all channels using a single modula-
tor before the demultiplexer if the modulator is driven by a suitable electrical bit stream
composed through TDM. A 32-channel WDM source was demonstrated in 1996 by us-
ing this method [142]. Since then, this technique has been used to provide sources with
more than 1000 channels [144].

On the receiver end, multichannel WDM receivers have been developed because
their use can simplify the system design and reduce the overall cost [146]. Monolithic
receivers integrate a photodiode array with a demultiplexer on the same chip. Typically,
A planar concave-grating demultiplexer or a WGR is integrated with the photodiode
array. Even electronic amplifiers can be integrated within the same chip. The design
of such monolithic receivers is similar to the transmitter shown in Fig. 8.21 except that
no cavity is formed and the amplifier array is replaced with a photodiode array. Such
a WDM receiver was first fabricated in 1995 by integrating an eight-channel WGR
(with 0.8-nm channel spacing), eight p–i–n photodiodes, and eight preamplifiers using
heterojunction-bipolar transistor technology [147].

8.3 System Performance Issues

The most important issue in the design of WDM lightwave systems is the interchannel
crosstalk. The system performance degrades whenever crosstalk leads to transfer of
power from one channel to another. Such a transfer can occur because of the nonlinear
effects in optical fibers, a phenomenon referred to as nonlinear crosstalk as it depends
on the nonlinear nature of the communication channel. However, some crosstalk occurs
even in a perfectly linear channel because of the imperfect nature of various WDM
components such as optical filters, demultiplexers, and switches. In this section we
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discuss both the linear and nonlinear crosstalk mechanisms and also consider other
performance issues relevant for WDM systems.

8.3.1 Heterowavelength Linear Crosstalk

Linear crosstalk can be classified into two categories depending on its origin [148]–
[163]. Optical filters and demultiplexers often let leak a fraction of the signal power
from neighboring channels that interferes with the detection process. Such crosstalk
is called heterowavelength or out-of-band crosstalk and is less of a problem because
of its incoherent nature than the homowavelength or in-band crosstalk that occurs dur-
ing routing of the WDM signal from multiple nodes. This subsection focuses on the
heterowavelength crosstalk.

Consider the case in which a tunable optical filter is used to select a single channel
among the N channels incident on it. If the optical filter is set to pass the mth channel,
the optical power reaching the photodetector can be written as P = Pm + ∑N

n
=m TmnPn

where Pm is the power in the mth channel and Tmn is the filter transmittivity for channel
n when channel m is selected. Crosstalk occurs if Tmn 
= 0 for n 
= m. It is called out-
of-band crosstalk because it belongs to the channels lying outside the spectral band
occupied by the channel detected. Its incoherent nature is also apparent from the fact
that it depends only on the power of the neighboring channels.

To evaluate the impact of such crosstalk on system performance, one should con-
sider the power penalty, defined as the additional power required at the receiver to
counteract the effect of crosstalk. The photocurrent generated in response to the inci-
dent optical power is given by

I = RmPm +
N

∑
n
=m

RnTmnPn ≡ Ich + IX , (8.3.1)

where Rm = ηmq/hνm is the photodetector responsivity for channel m at the optical fre-
quency νm and ηm is the quantum efficiency. The second term IX in Eq. (8.3.1) denotes
the crosstalk contribution to the receiver current I. Its value depends on the bit pattern
and becomes maximum when all interfering channels carry 1 bits simultaneously (the
worst case).

A simple approach to calculating the crosstalk power penalty is based on the eye
closure (see Section 4.3.3) occurring as a result of the crosstalk [148]. The eye closes
most in the worst case for which IX is maximum. In practice, Ich is increased to main-
tain the system performance. If Ich needs to be increased by a factor δX , the peak
current corresponding to the top of the eye is I1 = δX Ich + IX . The decision threshold
is set at ID = I1/2. The eye opening from ID to the top level would be maintained at its
original value Ich/2 if

(δX Ich + IX)− IX − 1
2 (δX Ich + IX) = 1

2 Ich, (8.3.2)

or when δX = 1+ IX/Ich. The quantity δX is just the power penalty for the mth channel.
By using IX and Ich from Eq. (8.3.1), δX can be written (in dB) as

δX = 10log10

(
1+

∑N
n
=m RnTmnPn

RmPm

)
, (8.3.3)
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Figure 8.22: Crosstalk power penalty at four different values of the BER for a FP filter of finesse
F = 100. (After Ref. [149]; c©1990 IEEE; reprinted with permission.)

where the powers correspond to their on-state values. If the peak power is assumed
to be the same for all channels, the crosstalk penalty becomes power independent.
Further, if the photodetector responsivity is nearly the same for all channels (R m ≈ Rn),
δX is well approximated by

δX ≈ 10log10(1+ X), (8.3.4)

where X = ∑N
n
=m Tmn is a measure of the out-of-band crosstalk; it represents the fraction

of total power leaked into a specific channel from all other channels. The numerical
value of X depends on the transmission characteristics of the specific optical filter. For
a FP filter, X can be obtained in a closed form [149].

The preceding analysis of crosstalk penalty is based on the eye closure rather than
the bit-error rate (BER). One can obtain an expression for the BER if I X is treated as a
random variable in Eq. (8.3.1). For a given value of I X , the BER is obtained by using
the analysis of Section 4.5.1. In particular, the BER is given by Eq. (4.5.6) with the
on- and off-state currents given by I1 = Ich + IX and I0 = IX if we assume that Ich = 0
in the off-state. The decision threshold is set at ID = Ich(1+ X)/2, which corresponds
to the worst-case situation in which all neighboring channels are in the on state. The
final BER is obtained by averaging over the distribution of the random variable I X . The
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distribution of IX has been calculated for a FP filter and is generally far from being
Gaussian. The crosstalk power penalty δX can be calculated by finding the increase
in Ich needed to maintain a certain value of BER. Figure 8.22 shows the calculated
penalty for several values of BER plotted as a function of N/F [149] with the choice
F = 100. The solid curve corresponds to the error-free case (BER = 0). The power
penalty can be kept below 0.2 dB to maintain a BER of 10−9 for values of N/F as large
as 0.33. From Eq. (8.2.2) the channel spacing can be as little as three times the bit rate
for such FP filters.

8.3.2 Homowavelength Linear Crosstalk

Homowavelength or in-band crosstalk results from WDM components used for rout-
ing and switching along an optical network and has been of concern since the advent
of WDM systems [150]–[163]. Its origin can be understood by considering a static
wavelength router such as a WGR (see Fig. 8.16). For an N ×N router, there exist N 2

combinations through which N-wavelength WDM signals can be split. Consider the
output at one wavelength, say λm. Among the N2 − 1 interfering signals that can ac-
company the desired signal, N −1 signals have the same carrier wavelength λ m, while
the remaining N(N − 1) belong to different carrier wavelengths and are likely to be
eliminated as they pass through other WDM components. The N −1 crosstalk signals
at the same wavelength (in-band crosstalk) originate from incomplete filtering through
a WGR because of its partially overlapping transmission peaks [153]. The total optical
field, including only the in-band crosstalk, can be written as

Em(t) =

(
Em +

N

∑
n
=m

En

)
exp(−iωmt), (8.3.5)

where Em is the desired signal and ωm = 2πc/λm. The coherent nature of the in-band
crosstalk is obvious from Eq. (8.3.5).

To see the impact of in-band crosstalk on system performance, we should again
consider the power penalty. The receiver current I = R|E m(t)|2 in this case contains
interference or beat terms similar to the case of optical amplifiers (see Section 6.5).
One can identify two types of beat terms; signal–crosstalk beating with terms like
EmEn and crosstalk–crosstalk beating with terms like EkEn, where k 
= m and n 
= m.
The latter terms are negligible in practice and can be ignored. The receiver current is
then given approximately as

I(t) ≈ RPm(t)+ 2R
N

∑
n
=m

√
Pm(t)Pn(t)cos[φm(t)−φn(t)], (8.3.6)

where Pn = |En|2 is the power and φn(t) is the phase. In practice, Pn << Pm for n 
= m
because a WGR is built to reduce the crosstalk. Since phases are likely to fluctuate
randomly, we can write Eq. (8.3.6) as I(t) = R(Pm +∆P), treat the crosstalk as intensity
noise, and use the approach of Section 4.6.2 for calculating the power penalty. In fact,
the result is the same as in Eq. (4.6.11) and can be written as

δX = −10 log10(1− r2
XQ2), (8.3.7)
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where
r2

X = 〈(∆P)2〉/P2
m = X(N −1), (8.3.8)

and X = Pn/Pm is the crosstalk level defined as the fraction of power leaking through
the WGR and is taken to be the same for all N−1 sources of coherent in-band crosstalk
by assuming equal powers. An average over the phases was performed by replacing
cos2 θ = 1

2 . In addition, r2
X was multiplied by another factor of 1

2 to account for the fact
that Pn is zero on average half of the times (during 0 bits). Experimental measurements
of power penalty for a WGR agree with this simple model [153].

The impact of in-band crosstalk can be estimated from Fig. 4.19, where power
penalty δX is plotted as a function of rX . To keep the power penalty below 2 dB, rX <
0.07 is required, a condition that limits X(N − 1) to below −23 dB from Eq. (8.3.8).
Thus, the crosstalk level X must be below −38 dB for N = 16 and below −43 dB for
N = 100, rather stringent requirements.

The calculation of crosstalk penalty in the case of dynamic wavelength routing
through optical cross-connects becomes quite complicated because of a large number
of crosstalk elements that a signal can pass through in such WDM networks [155].
The worst-case analysis predicts a large power penalty (> 3 dB) when the number of
crosstalk elements becomes more than 25 even if the crosstalk level of each component
is only −40 dB. Clearly, the linear crosstalk is of primary concern in the design of
WDM networks and should be controlled. A simple technique consists of modulating
or scrambling the laser phase at the transmitter at a frequency much larger than the
laser linewidth [164]. Both theory and experiments show that the acceptable crosstalk
level exceeds 1% (−20 dB) with this technique [162].

8.3.3 Nonlinear Raman Crosstalk

Several nonlinear effects in optical fibers [59] can lead to interchannel and intrachannel
crosstalk that affects the system performance considerably [165]–[171]. Section 2.6
discussed such nonlinear effects and their origin from a physical point of view. This
subsection focuses on the Raman crosstalk.

As discussed in Section 2.6, stimulated Raman scattering (SRS) is generally not
of concern for single-channel systems because of its relatively high threshold (about
500 mW near 1.55 µm). The situation is quite different for WDM systems in which
the fiber acts as a Raman amplifier (see Section 6.3) such that the long-wavelength
channels are amplified by the short-wavelength channels as long as the wavelength
difference is within the bandwidth of the Raman gain. The Raman gain spectrum
of silica fibers is so broad that amplification can occur for channels spaced as far
apart as 100 nm. The shortest-wavelength channel is most depleted as it can pump
many channels simultaneously. Such an energy transfer among channels can be detri-
mental for system performance as it depends on the bit pattern—amplification occurs
only when 1 bits are present in both channels simultaneously. The Raman-induced
crosstalk degrades the system performance and is of considerable concern for WDM
systems [172]–[179].

Raman crosstalk can be avoided if channel powers are made so small that SRS-
induced amplification is negligible over the entire fiber length. It is thus important
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to estimate the limiting value of the channel power. A simple model considers the
depletion of the highest-frequency channel in the worst case in which 1 bits of all
channels overlap completely simultaneously [165]. The amplification factor for each
channel is Gm = exp(gmLeff), where Leff is the effective interaction length as defined
in Eq. (2.6.2) and gm = gR(Ωm)Pch/Aeff is the Raman gain at Ωm = ω1 −ωm. For
gmLeff � 1, the shortest-wavelength channel at ω1 is depleted by a fraction gmLeff due
to Raman amplification of the mth channel. The total depletion for a M-channel WDM
system is given by

DR =
M

∑
m=2

gR(Ωm)PchLeff/Aeff. (8.3.9)

The summation in Eq. (8.3.9) can be carried out analytically if the Raman gain
spectrum (see Fig. 2.18) is approximated by a triangular profile such that g R increases
linearly for frequencies up to 15 THz with a slope S R = dgR/dν and then drops to
zero. Using gR(Ωm) = mSR∆νch, the fractional power loss for the shortest-wavelength
channel becomes [165]

DR = 1
2 M(M −1)CRPchLeff, (8.3.10)

where CR = SR∆νch/(2Aeff). In deriving this equation, channels were assumed to have
a constant spacing ∆νch and the Raman gain for each channel was reduced by a factor
of 2 to account for random polarization states of different channels.

A more accurate analysis should consider not only depletion of each channel be-
cause of power transfer to longer-wavelength channels but also its own amplification
by shorter-wavelength channels. If all other nonlinear effects are neglected along with
GVD, evolution of the power Pn associated with the nth channel is governed by the
following equation (see Section 6.3):

dPn

dz
+ αPn = CRPn

M

∑
m=1

(n−m)Pm, (8.3.11)

where α is assumed to be the same for all channels. This set of M coupled nonlinear
equations can be solved analytically. For a fiber of length L, the result is given by [172]

Pn(L) = Pn(0)e−αL Pt exp[(n−1)CRPtLeff]
∑M

m=1 Pm(0)exp[(m−1)CRPtLeff]
, (8.3.12)

where Pt = ∑M
m=1 Pm(0) is the total input power in all channels. This equation shows

that channel powers follow an exponential distribution because of Raman-induced cou-
pling among all channels.

The depletion factor DR for the shorter-wavelength channel (n = 1) is obtained
using DR = (P10−P1)/P10, where P10 = P1(0)exp(−αL) is the channel power expected
in the absence of SRS. In the case of equal input powers in all channels, Pt = MPch in
Eq. (8.3.12), and DR is given by

DR = 1− exp

[
−1

2
M(M −1)CRPchLeff

]
M sinh( 1

2 MCRPchLeff)
sinh( 1

2 M2CRPchLeff)
. (8.3.13)
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Figure 8.23: Raman-induced power penalty as a function of channel number for several values
of Pch. Channels are 100 GHz apart and launched with equal powers.

In the limit M2CRPchLeff � 1, this complicated expression reduces to the simple result
in Eq. (8.3.10). In general, Eq. (8.3.10) overestimates the Raman crosstalk.

The Raman-induced power penalty is obtained using δ R = −10 log(1−DR) be-
cause the input channel power must be increased by a factor of (1−D R)−1 to maintain
the same system performance. Figure 8.23 shows how the power penalty increases
with an increase in the channel power and the number of channels. The channel spac-
ing is assumed to be 100 GHz. The slope of the Raman gain is estimated from the gain
spectrum to be SR = 4.9× 10−18 m/(W-GHz) while Aeff = 50 µm2 and Leff ≈ 1/α =
21.74 km. As seen from Fig. 8.23, the power penalty becomes quite large for WDM
systems with a large number of channels. If a value of at most 1 dB is considered ac-
ceptable, the limiting channel power Pch exceeds 10 mW for 20 channels, but its value
is reduced to below 1 mW when the number of WDM channels is larger than 70.

The foregoing analysis provides only a rough estimate of the Raman crosstalk as
it neglects the fact that signals in each channel consist of a random sequence of 0 and
1 bits. A statistical analysis shows that the Raman crosstalk is lower by about a factor
of 2 when signal modulation is taken into account [167]. The GVD effects that were
neglected in the above analysis also reduce the Raman crosstalk since pulses in differ-
ent channels travel at different speeds because of the group-velocity mismatch [173].
On the other hand, periodic amplification of the WDM signal can magnify the impact
of SRS-induced degradation. The reason is that in-line amplifiers add noise which ex-
periences less Raman loss than the signal itself, resulting in degradation of the SNR.
The Raman crosstalk under realistic operating conditions was calculated in a 2001
study [179]. Numerical simulations showed that it can be reduced by inserting opti-
cal filters along the fiber link that block the low-frequency noise below the longest-
wavelength channel [178]. Raman crosstalk can also be reduced using the technique of
midway spectral inversion [174].
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Figure 8.24: Output signal power (solid circles) and reflected SBS power (empty circles) as a
function of power injected. (After Ref. [180]; c©1992 IEEE; reprinted with permission.)

8.3.4 Stimulated Brillouin Scattering

Stimulated Brillouin scattering (SBS) can also transfer energy from a high-frequency
channel to a low-frequency one when the channel spacing equals the Brillouin shift.
However, in contrast with the case of SRS, such an energy transfer is easily avoided
with the proper design of multichannel communication systems. The reason is that the
Brillouin-gain bandwidth is extremely narrow (∼ 20 MHz) compared with the Raman-
gain bandwidth (∼ 5 THz). Thus, the channel spacing must match almost exactly the
Brillouin shift (about 10 GHz in the 1.55-µm region) for SBS to occur; such an exact
match is easily avoided. Furthermore, as discussed in Section 2.6, the two channels
must be counterpropagating for Brillouin amplification to occur.

Although SBS does not induce interchannel crosstalk when all channels propagate
in the forward direction, it nonetheless limits the channel powers. The reason is that a
part of the channel power can be transferred to a backward-propagating Stokes wave
generated from noise when the threshold condition gBPthLeff/Aeff ≈ 21 is satisfied (see
Section 2.6). This condition is independent of the number and the presence of other
channels. However, the threshold for each channel can be reached at low power levels.
Figure 8.24 shows how the output power and power reflected backward through SBS
vary in a 13-km-long dispersion-shifted fiber as the injected CW power is increased
from 0.5 to 50 mW [180]. No more than 3 mW could be transmitted through the fiber
in this experiment after the Brillouin threshold. For a fiber with A eff = 50 µm2 and
α = 0.2 dB/km, the threshold power is below 2 mW when the fiber length is long
enough (> 20 km) that Leff can be replaced by 1/α .

The preceding estimate applies to CW signals as it neglects the effects of signal
modulation resulting in a random sequence of 0 and 1 bits. In general, the Brillouin
threshold depends on the modulation format as well as on the ratio of the bit rate to
the Brillouin-gain bandwidth [181]. It increases to above 5 mW for lightwave systems
operating near 10 Gb/s. Some applications require launch powers in excess of 10 mW.
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Several schemes have been proposed for raising the Brillouin threshold [182]–[187].
They rely on increasing either the Brillouin-gain bandwidth ∆ν B or the spectral width
of optical carrier. The former has a value of about 20 MHz for silica fibers, while the
latter is typically < 10 MHz for DFB lasers used in WDM systems. The bandwidth of
an optical carrier can be increased without affecting the system performance by modu-
lating its phase at a frequency much lower than the bit rate. Typically, the modulation
frequency ∆νm is in the range of 200–400 MHz. As the effective Brillouin gain is re-
duced by a factor of (1 + ∆νm/∆νB), the SBS threshold increases by the same factor.
Since typically ∆νB ∼ 20 MHz, the launched power can be increased by more than a
factor of 10 by this technique.

If the Brillouin-gain bandwidth ∆νB of the fiber itself can be increased from its
nominal value of 20 MHz to more than 200 MHz, the SBS threshold can be increased
without requiring a phase modulator. One technique uses sinusoidal strain along the
fiber length for this purpose. The applied strain changes the Brillouin shift ν B by a few
percent in a periodic manner. The resulting Brillouin-gain spectrum is much broader
than that occurring for a fixed value of νB. The strain can be applied during cabling of
the fiber. In one fiber cable, ∆νB was found to increase from 50 to 400 MHz [182]. The
Brillouin shift νB can also be changed by making the core radius nonuniform along the
fiber length since the longitudinal acoustic frequency depends on the core radius. The
same effect can be realized by changing the dopant concentration along the fiber length.
This technique increased the SBS threshold of one fiber by 7 dB [183]. A side effect
of varying the core radius or the dopant concentration is that the GVD parameter β 2

also changes along the fiber length. It is possible to vary both of them simultaneously
in such a way that β2 remains relatively uniform [185]. Phase modulation induced by
a supervisory channel through the nonlinear phenomenon of cross-phase modulation
(XPM) can also be used to suppress SBS [187]. XPM induced by neighboring chan-
nels can also help [184] but it is hard to control and is itself a source of crosstalk.
In practice, a frequency modulator integrated within the transmitter provides the best
method for suppressing SBS. Threshold levels >200 mW have been realized with this
technique [186].

8.3.5 Cross-Phase Modulation

The SPM and XPM both affect the performance of WDM systems. The effects of SPM
has been discussed in Sections 5.3 and 7.7 in the context of single-channel systems;
they also apply to individual channels of a WDM system. The phenomenon of XPM
is an important mechanism of nonlinear crosstalk in WDM lightwave systems and has
been studied extensively in this context [188]–[199].

As discussed in Section 2.6, XPM originates from the intensity dependence of the
refractive index, which produces an intensity-dependent phase shift as the signal prop-
agates through the optical fiber. The phase shift for a specific channel depends not only
on the power of that channel but also on the power of other channels [59]. The total
phase shift for the jth channel is given by (see Section 2.6)

φNL
j =

γ
α

(
Pj + 2

N

∑
m
= j

Pm

)
, (8.3.14)



8.3. SYSTEM PERFORMANCE ISSUES 371

Figure 8.25: XPM-induced power fluctuations on a CW probe for a 130-km link (middle) and
a 320-km link (top) with dispersion management. An NRZ bit stream in the pump channel is
shown at the bottom. (After Ref. [191], c©1999 IEEE; reprinted with permission.)

where the first term is due to SPM and Leff has been replaced with 1/α assuming
αL � 1. The parameter γ is in the range 1–10 W−1km−1 depending on the type of
fiber used, larger values occurring for dispersion-compensating fibers. The nonlinear
phase shift depends on the bit pattern of various channels and can vary from zero to its
maximum value φmax = (γ/α)(2N −1)Pj for N channels, if we assume equal channel
powers.

Strictly speaking, the XPM-induced phase shift should not affect system perfor-
mance if the GVD effects were negligible. However, any dispersion in fiber converts
pattern-dependent phase shifts to power fluctuations, reducing the SNR at the receiver.
This conversion can be understood by noting that time-dependent phase changes lead
to frequency chirping that affects dispersion-induced broadening of the signal. Figure
8.25 shows XPM-induced fluctuations for a CW probe launched with a 10-Gb/s pump
channel modulated using the NRZ format. The probe power fluctuates by as much as
6% after 320 km of dispersive fiber. The root-mean-square (RMS) value of fluctuations
depends on the channel power and can be reduced by lowering it. As a rough estimate,
if we use the condition φmax < 1, the channel power is restricted to

Pch < α/[γ(2N −1)]. (8.3.15)

For typical values of α and γ , Pch should be below 10 mW even for five channels and
reduces to below 1 mW for more than 50 channels.

The preceding analysis provides only a rough estimate as it ignores the fact that
pulses belonging to different channels travel at different speeds and walk through each
other at a rate that depends on their wavelength difference. Since XPM can occur only
when pulses overlap in the time domain, its impact is reduced considerably by the
walk-off effects. As a faster-moving pulse belonging to one channel collides with and
passes through a specific pulse in another channel, the XPM-induced chirp shifts the
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pulse spectrum first toward red and then toward blue. In a lossless fiber, collisions of
two pulses are perfectly symmetric, resulting in no net spectral shift at the end of the
collision. In a loss-managed system with optical amplifiers placed periodically along
the link, power variations make collisions between pulses of different channels asym-
metric, resulting in a net frequency shift that depends on the channel spacing. Such
frequency shifts lead to timing jitter (the speed of a channel depends on its frequency
because of GVD) since their magnitude depends on the bit pattern as well as on the
channel wavelengths. The combination of XPM-induced amplitude and timing jitter
degrades the SNR at the receiver, especially for closely spaced channels, and leads to
XPM-induced power penalty that depends on channel spacing and the type of fibers
used for the WDM link. The power penalty increases for fibers with large GVD and
for WDM systems designed with a small channel spacing and can exceed 5 dB even
for 100-GHz spacing.

How can one control the XPM-induced crosstalk in WDM systems? Clearly, the
use of low-GVD fibers will reduce this problem to some extent but is not practical be-
cause of the onset of FWM (see next subsection). In practice, dispersion management
is employed in virtually all WDM systems such that the local dispersion is relatively
large. Careful selection of the dispersion-map parameters may help from the XPM
standpoint but may not be optimum from the SPM point of view [190]. A simple
approach to XPM suppression consists of introducing relative time delays among the
WDM channels after each map period such that the “1” bits in neighboring channels are
unlikely to overlap most of the time [196]. The use of RZ format is quite helpful in this
context because all 1 bits occupy only a fraction of the bit slot. In a 10-channel WDM
experiment, time delays were introduced by using 10 fiber gratings spaced apart by
varying distances chosen to enhance XPM suppression [198]. The BER floor observed
after 500 km of transmission disappeared after the XPM suppressors (consisting of 10
Bragg gratings) were inserted every 100 km. The residual power penalty at a BER of
10−10 was below 2 dB for all channels.

8.3.6 Four-Wave Mixing

As discussed in Section 2.6, the nonlinear phenomenon of FWM requires phase match-
ing. It becomes a major source of nonlinear crosstalk whenever the channel spacing
and fiber dispersion are small enough to satisfy the phase-matching condition approxi-
mately [59]. This is the case when a WDM system operates close to the zero-dispersion
wavelength of dispersion-shifted fibers. For this reason, several techniques have been
developed for reducing the impact of FWM in WDM systems [167].

The physical origin of FWM-induced crosstalk and the resulting system degrada-
tion can be understood by noting that FWM generates a new wave at the frequency
ωi jk = ωi + ω j −ωk, whenever three waves at frequencies ω i, ω j, and ωk copropagate
inside the fiber. For an N-channel system, i, j, and k can vary from 1 to N, resulting
in a large combination of new frequencies generated by FWM. In the case of equally
spaced channels, the new frequencies coincide with the existing frequencies, leading to
coherent in-band crosstalk. When channels are not equally spaced, most FWM com-
ponents fall in between the channels and lead to incoherent out-of-band crosstalk. In
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both cases, the system performance is degraded because of a loss in the channel power,
but the coherent crosstalk degrades system performance much more severely.

The FWM process in optical fibers is governed by a set of four coupled equations
whose general solution requires a numerical approach [59]. If we neglect the phase
shifts induced by SPM and XPM, assume that the three channels participating in the
FWM process remain nearly undepleted, and include fiber losses, the amplitude A F of
the FWM component at the frequency ωF is governed by

dAF

dz
= −α

2
AF + dFγAiA jA

∗
k exp(−i∆kz), (8.3.16)

where Am(z) = Am(0)exp(−αz/2) for m = i, j,k and dF = 2− δi j is the degeneracy
factor defined such that its value is 1 when i = j but doubles when i 
= j. This equation
can be easily integrated to obtain AF(z). The power transferred to the FWM component
in a fiber of length L is given by [200]

PF = |AF(L)|2 = ηF(dF γL)2PiPjPke−αL, (8.3.17)

where Pm = |Am(0)|2 is the launched power in the mth channel and ηF is a measure of
the FWM efficiency defined as

ηF =
∣∣∣∣1− exp[−(α + i∆k)L]

(α + i∆k)L

∣∣∣∣
2

. (8.3.18)

The FWM efficiency ηF depends on the channel spacing through the phase mis-
match governed by

∆k = βF + βk −βi−β j ≈ β2(ωi −ωk)(ω j −ωk), (8.3.19)

where the propagation constants were expanded in a Taylor series around ω c = (ωi +
ω j)/2 and β2 is the GVD parameter at that frequency. If the GVD of the transmission
fiber is relatively large, (|β2|> 5 ps2/km), ηF nearly vanishes for typical channel spac-
ings of 50 GHz or more. In contrast, ηF ≈ 1 close to the zero-dispersion wavelength
of the fiber, resulting in considerable power in the FWM component, especially at high
channel powers. In the case of equal channel powers, PF increases as P3

ch. This cubic
dependence of the FWM component limits the channel powers to below 1 mW if FWM
is nearly phase matched. Since the number of FWM components for an M-channel
WDM system increases as M2(M−1)/2, the total power in all FWM components can
be quite large.

A simple scheme for reducing the FWM-induced degradation consists of design-
ing WDM systems with unequal channel spacings [167]. The main impact of FWM
in this case is to reduce the channel power. This power depletion results in a power
penalty that is relatively small compared with the case of equal channel spacings. Ex-
perimental measurements on WDM systems confirm the advantage of unequal channel
spacings. In a 1999 experiment, this technique was used to transmit 22 channels, each
operating at 10 Gb/s, over 320 km of dispersion-shifted fiber with 80-km amplifier
spacing [201]. Channel spacings ranged from 125 to 275 GHz in the 1532- to 1562-nm
wavelength region and were determined using a periodic allocation scheme [202]. The
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zero-dispersion wavelength of the fiber was close to 1548 nm, resulting in near phase
matching of many FWM components. Nonetheless, the system performed quite well
with less than 1.5-dB power penalty for all channels.

The use of a nonuniform channel spacing is not always practical because many
WDM components, such as optical filters and waveguide-grating routers, require equal
channel spacings. A practical solution is offered by the periodic dispersion-management
technique discussed in Section 7.8. In this case, fibers with normal and anomalous
GVD are combined to form a dispersion map such that GVD is high locally all along
the fiber even though its average value is quite low. As a result, the FWM efficiency η F

is negligible throughout the fiber, resulting in little FWM-induced crosstalk. The use of
dispersion management is common for suppressing FWM in WDM systems because of
its practical simplicity. In fact, new kinds of fibers, called nonzero-dispersion-shifted
fibers (NZDSFs), were designed and marketed after the advent of WDM systems. Typ-
ically, GVD is in the range of 4–8 ps/(km-nm) in such fibers to ensure that the FWM-
induced crosstalk is minimized.

8.3.7 Other Design Issues

The design of WDM communication systems requires careful consideration of many
transmitter and receiver characteristics. An important issue concerns the stability of the
carrier frequency (or wavelength) associated with each channel. The frequency of light
emitted from DFB or DBR semiconductor lasers can change considerably because of
changes in the operating temperature (∼ 10 GHz/◦C). Similar changes can also occur
with the aging of lasers [203]. Such frequency changes are generally not of concern for
single-channel systems. In the case of WDM lightwave systems it is important that the
carrier frequencies of all channels remain stable, at least relatively, so that the channel
spacing does not fluctuate with time.

A number of techniques have been used for frequency stabilization [204]–[209].
A common technique uses electrical feedback provided by a frequency discriminator
using an atomic or molecular resonance to lock the laser frequency to the resonance
frequency. For example, one can use ammonia, krypton, or acetylene for semicon-
ductor lasers operating in the 1.55-µm region, as all three have resonances near that
wavelength. Frequency stability to within 1 MHz can be achieved by this technique.
Another technique makes use of the optogalvanic effect to lock the laser frequency to
an atomic or molecular resonance. A phase-locked loop can also be used for frequency
stabilization. In another scheme, a Michelson interferometer, calibrated by using a
frequency-stabilized master DFB laser, provides a set of equally spaced reference fre-
quencies [205]. A FP filter, an AWG, or any other filter with a comb-like periodic
transmission spectrum can also be used for this purpose because it provides a reference
set of equally spaced frequencies [206]. A fiber grating is useful for frequency stabi-
lization but a separate grating is needed for each channel as its reflection spectrum is
not periodic [207]. A frequency-dithered technique in combination with an AWG and
an amplitude modulator can stabilize the channel frequency to within 0.3 GHz [209].

An important issue in the design of WDM networks is related to the loss of signal
power that occurs because of insertion, distribution, and transmission losses. Optical
amplifiers are used to compensate for such losses but not all channels are amplified by
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the same factor unless the gain spectrum is flat over the entire bandwidth of the WDM
signal. Although gain-flattening techniques are commonly employed, channel powers
can still deviate by 10 dB or more when the WDM signal passes through many optical
amplifiers before being detected. It may then become necessary to control the power
of individual channels (through selective attenuation) at each node within a WDM
network to make the channel powers nearly uniform. The issue of power management
in WDM networks is quite complex and requires attention to many details [210]–[212].
The buildup of amplifier noise can also become a limiting factor when the WDM signal
passes through a large number of amplifiers.

Another major issue in the design of WDM systems concerns dispersion manage-
ment. As discussed in Chapter 7, dispersion-management techniques are commonly
used for WDM networks. However, in a reconfigurable network the exact path of a
WDM channel can change in a dynamic fashion. Such networks will require compen-
sation of residual dispersion at individual nodes. Network management is an active
area of research and requires attention to many details [213].

8.4 Time-Division Multiplexing

As discussed in Section 1.2, TDM is commonly performed in the electrical domain
to obtain digital hierarchies for telecommunication systems. In this sense, even single-
channel lightwave systems carry multiple TDM channels. The electrical TDM becomes
difficult to implement at bit rates above 10 Gb/s because of the limitations imposed by
high-speed electronics. A solution is offered by the optical TDM (OTDM), a scheme
that can increase the bit rate of a single optical carrier to values above 1 Tb/s. The
OTDM technique was studied extensively during the 1990s [214]–[219]. Its commer-
cial deployment requires new types of optical transmitters and receivers based on all-
optical multiplexing and demultiplexing techniques. In this section we first discuss
these new techniques and then focus on the design and performance issues related to
OTDM lightwave systems.

8.4.1 Channel Multiplexing

In OTDM lightwave systems, several optical signals at a bit rate B share the same
carrier frequency and are multiplexed optically to form a composite bit stream at the
bit rate NB, where N is the number of channels. Several multiplexing techniques can
be used for this purpose [219]. Figure 8.26 shows the design of an OTDM transmitter
based on the delay-line technique. It requires a laser capable of generating a periodic
pulse train at the repetition rate equal to the single-channel bit rate B. Moreover, the
laser should produce pulses of width Tp such that Tp < TB = (NB)−1 to ensure that
each pulse will fit within its allocated time slot TB. The laser output is split equally into
N branches, after amplification if necessary. A modulator in each branch blocks the
pulses representing 0 bits and creates N independent bit streams at the bit rate B.

Multiplexing of N bit streams is achieved by a delay technique that can be imple-
mented optically in a simple manner. In this scheme, the bit stream in the nth branch is
delayed by an amount (n−1)/(NB), where n = 1, . . . ,N. The output of all branches is
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Figure 8.26: Design of an OTDM transmitter based on optical delay lines.

then combined to form a composite signal. It should be clear that the multiplexed bit
stream produced using such a scheme has a bit slot corresponding to the bit rate NB.
Furthermore, N consecutive bits in each interval of duration B−1 belong to N different
channels, as required by the TDM scheme (see Section 1.2).

The entire OTDM multiplexer (except for modulators which require LiNbO 3 or
semiconductor waveguides) can be built using single-mode fibers. Splitting and recom-
bining of signals in N branches can be accomplished with 1×N fused fiber couplers.
The optical delay lines can be implemented using fiber segments of controlled lengths.
As an example, a 1-mm length difference introduces a delay of about 5 ps. Note that
the delay lines can be relatively long (10 cm or more) because only the length differ-
ence has to be matched precisely. For a precision of 0.1 ps, typically required for a
40-Gb/s OTDM signal, the delay lengths should be controlled to within 20 µm. Such
precision is hard to realize using optical fibers.

An alternative approach makes use of planar lightwave circuits fabricated using
the silica-on-silicon technology [41]–[45]. Such devices can be made polarization in-
sensitive while providing a precise control of the delay lengths. However, the entire
multiplexer cannot be built in the form of a planar lightwave circuit as modulators
cannot be integrated with this technology. A simple approach consists of inserting
an InP chip containing an array of electroabsorption modulators in between the silica
waveguides that are used for splitting, delaying and combining the multiple channels
(see Fig. 8.26). The main problem with this approach is the spot-size mismatch as the
optical signal passes from Si to InP waveguide (and vice versa). This problem can
be solved by integrating spot-size converters with the modulators. Such an integrated
OTDM multiplexer was used in a 160-Gb/s experiment in which 16 channels, each
operating at 10 Gb/s were multiplexed [218].

An important difference between the OTDM and WDM techniques should be ap-
parent from Fig. 8.26: The OTDM technique requires the use of the RZ format (see
Section 1.2.3). In this respect, OTDM is similar to soliton systems (covered in Chap-
ter 9), which must also use the RZ format. Historically, the NRZ format used before
the advent of lightwave technology was retained even for optical communication sys-
tems. Starting in the late 1990s, the RZ format began to appear in dispersion-managed
WDM systems in the form of CRZ format. The use of OTDM requires optical sources
emitting a train of short optical pulses at a repetition rate as high as 40 GHz. Two types
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of lasers are commonly used for this purpose [219]. In one approach, gain switching
or mode locking of a semiconductor laser provides 10–20 ps pulses at a high repetition
rate, which can be compressed using a variety of techniques [40]. In another approach,
a fiber laser is harmonically mode locked using an intracavity LiNbO 3 modulator [40].
Such lasers can provide pulse widths ∼1 ps at a repetition rate of up to 40 GHz. More
details on short-pulse transmitters are given in Section 9.2.4.

8.4.2 Channel Demultiplexing

Demultiplexing of individual channels from an OTDM signal requires electro-optic
or all-optical techniques. Several schemes have been developed, each having its own
merits and drawbacks [216]–[220]. Figure 8.27 shows three schemes discussed in this
section. All demultiplexing techniques require a clock signal—a periodic pulse train
at the single-channel bit rate. The clock signal is in the electric form for electro-optic
demultiplexing but consists of an optical pulse train for all-optical demultiplexing.

The electro-optic technique uses several MZ-type LiNbO 3 modulators in series.
Each modulator halves the bit rate by rejecting alternate bits in the incoming signal.
Thus, an 8-channel OTDM system requires three modulators, driven by the same elec-
trical clock signal (see Fig. 8.27), but with different voltages equal to 4V0, 2V0, and V0,
where V0 is the voltage required for π phase shift in one arm of the MZ interferome-
ter. Different channels can be selected by changing the phase of the clock signal. The
main advantage of this technique is that it uses commercially available components.
However, it has several disadvantages, the most important being that it is limited by
the speed of modulators. The electro-optic technique also requires a large number of
expensive components, some of which need high drive voltage.

Several all-optical techniques make use of a nonlinear optical-loop mirror (NOLM)
constructed using a fiber loop whose ends are connected to the two output ports of
a 3-dB fiber coupler as shown in Fig. 8.27(b). Such a device is also referred to as
the Sagnac interferometer. The NOLM is called a mirror because it reflects its input
entirely when the counterpropagating waves experience the same phase shift over one
round trip. However, if the symmetry is broken by introducing a relative phase shift
of π between them, the signal is fully transmitted by the NOLM. The demultiplexing
operation of an NOLM is based on the XPM [59], the same nonlinear phenomenon that
can lead to crosstalk in WDM systems.

Demultiplexing of an OTDM signal by an NOLM can be understood as follows.
The clock signal consisting of a train of optical pulses at the single-channel bit rate
is injected into the loop such that it propagates only in the clockwise direction. The
OTDM signal enters the NOLM after being equally split into counterpropagating direc-
tions by the 3-dB coupler. The clock signal introduces a phase shift through XPM for
pulses belonging to a specific channel within the OTDM signal. In the simplest case,
optical fiber itself introduces XPM. The power of the optical signal and the loop length
are made large enough to introduce a relative phase shift of π . As a result, a single
channel is demultiplexed by the NOLM. In this sense, a NOLM is the TDM counter-
part of the WDM add–drop multiplexers discussed in Section 8.2.3. All channels can
be demultiplexed simultaneously by using several NOLMs in parallel [220]. Fiber non-
linearity is fast enough that such a device can respond at femtosecond time scales. De-
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Figure 8.27: Demultiplexing schemes for OTDM signals based on (a) cascaded LiNbO3 modu-
lators, (b) XPM in a nonlinear optical-loop mirror, and (c) FWM in a nonlinear medium.

multiplexing of a 6.3-Gb/s channel from a 100-Gb/s OTDM signal was demonstrated
in 1993. By 1998, the NOLM was used to demultiplex a 640-Gb/s OTDM signal [221].

The third scheme for demultiplexing in Fig. 8.27 makes use of FWM in a nonlinear
medium and works in a way similar to the wavelength-conversion scheme discussed
in Section 8.2.5. The OTDM signal is launched together with the clock signal (at a
different wavelength) into a nonlinear medium. The clock signal plays the role of the
pump for the FWM process. In time slots in which a clock pulse overlaps with the 1
bit of the channel that needs to be demultiplexed, FWM produces a pulse at the new
wavelength. As a result, the pulse train at this new wavelength is an exact replica of
the channel that needs to be demultiplexed. An optical filter is used to separate the
demultiplexed channel from the OTDM and clock signals. A polarization-preserving
fiber is often used as the nonlinear medium for FWM because of the ultrafast nature of
its nonlinearity and its ability to preserve the state of polarization despite environmen-
tal fluctuations. As early as 1996, error-free demultiplexing of 10-Gb/s channels from
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a 500-Gb/s OTDM signal was demonstrated by using clock pulses of about 1 ps dura-
tion [222]. This scheme can also amplify the demultiplexed channel (by up to 40 dB)
through parametric amplification inside the same fiber [223].

The main limitation of a fiber-based demultiplexer stems from the weak fiber non-
linearity. Typically, fiber length should be 5 km or more for the device to function at
practical power levels of the clock signal. This problem can be solved in two ways.
In one approach, the required fiber length is reduced by up to a factor of 10 by using
special fibers designed such that the nonlinear parameter γ is enhanced because of a
reduced spot size of the fiber mode [223]. Alternatively, a different nonlinear medium
can be used in place of the optical fiber. The nonlinear medium of choice in practice is
the SOA. Both the XPM and FWM schemes have been shown to work using SOAs. In
the case of a NOLM, an SOA is inserted within the fiber loop. The XPM-induced phase
shift occurs because of changes in the refractive index induced by the clock pulses as
they saturate the SOA gain (similar to the wavelength-conversion scheme discussed
earlier). As the phase shift occurs selectively only for the data bits belonging to a spe-
cific channel, that channel is demultiplexed. The refractive-index change induced by
the SOA is large enough that a relative phase shift of π can be induced at moderate
power levels by an SOA of <1-mm length.

The main limitation of an SOA results from its relatively slow temporal response
governed by the carrier lifetime (∼1 ns). By injecting a CW signal with the clock
signal (at a different wavelength), the carrier lifetime can be reduced to below 100 ps.
Such demultiplexers can work at 10 Gb/s. Even faster response can be realized by
using a gating scheme. For example, by placing an SOA asymmetrically within the
NOLM such that the counterpropagating signals enter the SOA at different times, the
device can be made to respond at a time scale ∼1 ps. Such a device is referred to
as the terahertz optical asymmetrical demultiplexer (TOAD). Its operation at bit rates
as high as 250 Gb/s was demonstrated by 1994 [224]. A MZ interferometer with two
SOAs in its two branches (see Fig. 8.20) can also demultiplex an OTDM signal at
high speeds and can be fabricated in the form an integrated compact chip using the
InGaAsP/InP technology [125]. The silica-on-silicon technology has also been used
to make a compact MZ demultiplexer in a symmetric configuration that was capable
of demultiplexing a 168-Gb/s signal [217]. If the SOAs are placed in an asymmetric
fashion, the device operates similar to a TOAD device. Figure 8.28(a) shows such a
MZ device fabricated with the InGaAsP/InP technology [225]. The offset between the
two SOAs plays a critical role in this device and is typically <1 mm.

The operating principle behind the MZ-TOAD device can be understood from
Fig. 8.28. The clock signal (control) enters from port 3 of the MZ interferometer and
is split into two branches. It enters the SOA1 first, saturates its gain, and opens the MZ
switch through XPM-induced phase shift. A few picoseconds later, the SOA2 is satu-
rated by the clock signal. The resulting phase shift closes the MZ switch. The duration
of the switching window can be precisely controlled by the relative location of the two
SOAs as shown in Fig. 8.28(b). Such a device is not limited by the carrier lifetime and
can operate at high bit rates when designed properly.

Demultiplexing of an OTDM signal requires the recovery of a clock signal from the
OTDM signal itself. An all-optical scheme is needed because of the high bit rates asso-
ciated with OTDM signals. An optical phase-locked loop based on the FWM process
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(a) (b)

Figure 8.28: (a) Mach–Zehnder TOAD demultiplexer with two SOAs placed asymmetrically.
Insets show the device structure. (b) Gain variations inside two SOAs and the resulting switching
window. (After Ref. [225]; c©2001 IEEE; reprinted with permission.)

is commonly used for this purpose. Schemes based on a NOLM or an injection-locked
laser can also be used [219]. Self-pulsing semiconductor lasers as well as mode-locked
fiber lasers have been used for injection locking.

8.4.3 System Performance

The transmission distance L of OTDM signals is limited in practice by fiber disper-
sion because of the use of short optical pulses (∼ 1 ps) dictated by relatively high bit
rates. In fact, an OTDM signal carrying N channels at the bit rate B is equivalent to
transmitting a single channel at the composite bit rate of NB, and the bit rate–distance
product NBL is restricted by the dispersion limits found in Sections 2.4.3. As an ex-
ample, it is evident from Fig. 2.13 that a 200-Gb/s system is limited to L < 50 km even
when the system is designed to operate exactly at the zero-dispersion wavelength of
the fiber. Thus, OTDM systems require not only dispersion-shifted fibers but also the
use of dispersion-management techniques capable of reducing the impact of both the
second- and third-order dispersive effects. Even then, PMD becomes a limiting factor
for long fiber lengths and its compensation is often necessary. The intrachannel nonlin-
ear effects also limit the performance of OTDM systems; the use of soliton-like pulses
is often necessary for OTDM systems [217].

In spite of the difficulties inherent in propagation of single-carrier OTDM systems
operating at bit rates exceeding 100 Gb/s, many laboratory experiments have realized
high-speed transmission using the OTDM technique [219]. In a 1996 experiment, a
100-Gb/s OTDM signal consisting of 16 channels at 6.3 Gb/s was transmitted over
560 km by using optical amplifiers (80-km spacing) together with dispersion manage-
ment. The laser source in this experiment was a mode-locked fiber laser producing
3.5-ps pulses at a repetition rate of 6.3 GHz (the bit rate of each multiplexed channel).
A multiplexing scheme similar to that shown in Fig. 7.26 was used to generate the 100-
Gb/s OTDM signal. The total bit rate was later extended to 400 Gb/s (forty 10-Gb/s
channels) by using a supercontinuum pulse source producing 1-ps pulses [226]. Such
short pulses are needed since the bit slot is only 2.5-ps wide at 400 Gb/s. It was neces-
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sary to compensate for the dispersion slope (third-order dispersion β 3) as 1-ps pulses
were severely distorted and exhibited oscillatory tails extending to beyond 5 ps (typ-
ical characteristic of the third-order dispersion) in the absence of such compensation.
Even then, the transmission distance was limited to 40 km. In a 2000 experiment, a
1.28-Tb/s ODTM signal could be transmitted over 70 km but it required compensation
of second-, third-, and fourth-order dispersion simultaneously [227]. In a 2001 field
trial, the bit rate of the OTDM system was limited to only 160 Gb/s but the signal was
transmitted over 116 km using a standard two-fiber dispersion map [228].

A simple method for realizing high bit rates exceeding 1 Tb/s consists of combin-
ing the OTDM and WDM techniques. For example, a WDM signal consisting of M
separate optical carriers such that each carrier carries N OTDM channels at the bit rate
B has the total capacity Btot = MNB. The dispersion limitations of such a system are set
by the OTDM-signal bit rate of NB. In a 1999 experiment, this approach was used to
realize a total capacity of 3 Tb/s by using M = 19, N = 16, and B = 10 Gb/s [219]. The
channels were spaced 450 GHz apart (about 3.6 nm) to avoid overlap between neigh-
boring WDM channels at the 160-Gb/s bit rate. The 70-nm WDM signal occupied
both the C and L bands. The total capacity of such OTDM/WDM systems can exceed
10 Tb/s if the S band is also used although many factors such as various nonlinear ef-
fects in fibers and the practicality of dispersion compensation over a wide bandwidth
are likely to limit the system performance.

OTDM has also been used for designing transparent optical networks capable of
connecting multiple nodes for random bidirectional access [215]. Its use is especially
practical for packet-based networks employing the ATM and TCP/IP protocols. Similar
to the case of WDM networks, both single-hop and multihop architectures have been
considered. Single-hop OTDM networks use passive star couplers to distribute the
signal from one node to all other nodes. In contrast, multihop OTDM networks require
signal processing at each node to route the traffic. A packet-switching technique is
commonly used for such networks. Considerable effort was under way in 2001 for
developing packet-switched OTDM networks [229]. Their implementation requires
several new all-optical components for storage, compression, and decompression of
individual packets [230].

8.5 Subcarrier Multiplexing

In some LAN and MAN applications the bit rate of each channel should be relatively
low but the number of channels can become quite large. An example is provided by
common-antenna (cable) television (CATV) networks that have used historically elec-
trical communication techniques. The basic concept behind subcarrier multiplexing
(SCM) is borrowed from microwave technology, which employs multiple microwave
carriers for transmission of multiple channels (electrical FDM) over coaxial cables or
free space. The total bandwidth is limited to well below 1 GHz when coaxial cables are
used to transmit a multichannel microwave signal. However, if the microwave signal
is transmitted optically by using optical fibers, the signal bandwidth can easily exceed
10 GHz for a single optical carrier. Such a scheme is referred to as SCM, since mul-
tiplexing is done by using microwave subcarriers rather than the optical carrier. It has
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Figure 8.29: Schematic illustration of subcarrier multiplexing. Multiple microwave subcarriers
(SC) are modulated, and the composite electrical signal is used to modulate an optical carrier at
the transmitter (Tx).

been used commercially by the CATV industry since 1992 and can be combined with
TDM or WDM. A combination of SCM and WDM can realize bandwidths in excess
of 1 THz.

Figure 8.29 shows schematically a SCM lightwave system designed with a single
optical carrier. The main advantage of SCM is the flexibility and the upgradability
offered by it in the design of broadband networks. One can use analog or digital mod-
ulation, or a combination of the two, to transmit multiple voice, data, and video signals
to a large number of users. Each user can be served by a single subcarrier, or the multi-
channel signal can be distributed to all users as done commonly by the CATV industry.
The SCM technique has been studied extensively because of its wide-ranging practical
applications [231]–[234]. In this section we describe both the analog and digital SCM
systems with emphasis on their design and performance.

8.5.1 Analog SCM Systems

This book focuses mostly on digital modulation techniques as they are employed al-
most universally for lightwave systems. An exception occurs in the case of SCM sys-
tems designed for video distribution. Most CATV networks distribute television chan-
nels by using analog techniques based on frequency modulation (FM) or amplitude
modulation with vestigial sideband (AM-VSB) formats [232]. As the wave form of an
analog signal must be preserved during transmission, analog SCM systems require a
high SNR at the receiver and impose strict linearity requirements on the optical source
and the communication channel.

In analog SCM lightwave systems, each microwave subcarrier is modulated using
an analog format, and the output of all subcarriers is summed using a microwave power
combiner (see Fig. 8.29). The composite signal is used to modulate the intensity of a
semiconductor laser directly by adding it to the bias current. The transmitted power



8.5. SUBCARRIER MULTIPLEXING 383

can be written as

P(t) = Pb

[
1+

N

∑
j=1

m ja j cos(2π f jt + φ j)

]
, (8.5.1)

where Pb is the output power at the bias level and m j, a j, f j, and φ j are, respectively, the
modulation index, amplitude, frequency, and phase associated with the jth microwave
subcarrier; a j, f j , or φ j is modulated to impose the signal depending on whether AM,
FM, or phase modulation (PM) is used.

The power at the receiver would also be in the form of Eq. (8.5.1) if the communi-
cation channel were perfectly linear. In practice, the analog signal is distorted during
its transmission through the fiber link. The distortion is referred to as intermodulation
distortion (IMD) and is similar in nature to the FWM distortion discussed in Section
8.3. Any nonlinearity in the response of the semiconductor laser used inside the optical
transmitter or in the propagation characteristics of fibers generates new frequencies of
the form fi + f j and fi + f j ± fk, some of which lie within the transmission bandwidth
and distort the analog signal. The new frequencies are referred to as the intermodula-
tion products (IMPs). These are further subdivided as two-tone IMPs and triple-beat
IMPs, depending on whether two frequencies coincide or all three frequencies are dis-
tinct. The triple-beat IMPs tend to be a major source of distortion because of their
large number. An N-channel SCM system generates N(N − 1)(N − 2)/2 triple-beat
terms compared with N(N − 1) two-tone terms. The second-order IMD must also be
considered if subcarriers occupy a large bandwidth.

IMD has its origin in several distinct nonlinear mechanisms. The dynamic response
of semiconductor lasers is governed by the rate equations (see Section 3.5), which
are intrinsically nonlinear. The solution of these equations provides expressions for
the second- and third-order IMPs originating from this intrinsic nonlinearity. Their
contribution is largest whenever the IMP frequency falls near the relaxation-oscillation
frequency. A second source of IMD is the nonlinearity of the power-current curve (see
Fig. 3.20). The magnitude of resulting IMPs can be calculated by expanding the output
power in a Taylor series around the bias power [232]. Several other mechanisms, such
as fiber dispersion, frequency chirp, and mode-partition noise can cause IMD, and their
impact on the SCM systems has been studied extensively [235].

The IMD-induced degradation of the system performance depends on the inter-
channel interference created by IMPs. Depending on the channel spacing among mi-
crowave subcarriers, some of the IMPs fall within the bandwidth of a specific chan-
nel and affect the signal recovery. It is common to introduce composite second-order
(CSO) and composite triple-beat (CTB) distortion by adding the power for all IMPs
that fall within the passband of a specific channel [232]. The CSO and CTB distortion
values are normalized to the carrier power of that channel and expressed in dBc units,
where the “c” in dBc denotes normalization with respect to the carrier power. Typically,
CSO and CTB distortion values should be below −60 dBc for negligible impact on the
system performance; both of them increase rapidly with an increase in the modulation
index.

System performance depends on the SNR associated with the demodulated signal.
In the case of SCM systems, the carrier-to-noise ratio (CNR) is often used in place of
SNR. The CNR is defined as the ratio of RMS carrier power to RMS noise power at
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the receiver and can be written as

CNR =
(mRP̄)2/2

σ2
s + σ2

T + σ2
I + σ2

IMD

, (8.5.2)

where m is the modulation index, R is the detector responsivity, P̄ is the average re-
ceived optical power, and σs, σT , σI , and σIMD are the RMS values of the noise currents
associated with the shot noise, thermal noise, intensity noise, and IMD, respectively.
The expressions for σ 2

s and σ 2
T are given in Section 4.4.1. The RMS value σ I of the

intensity noise can be obtained from Eq. (4.6.6) in Section 4.6.2. If we assume that the
relative intensity noise (RIN) of the laser is nearly uniform within the receiver band-
width,

σ2
I = (RIN)(RP̄)2(2∆ f ). (8.5.3)

The RMS value of σIMD depends on the CSO and CTB distortion values.
The CNR requirements of SCM systems depend on the modulation format. In

the case of AM-VSB format, the CNR should typically exceed 50 dB for satisfactory
performance. Such large values can be realized only by increasing the received optical
power P̄ to a relatively large value (> 0.1 mW). This requirement has two effects.
First, the power budget of AM-analog SCM systems is extremely limited unless the
transmitter power is increased above 10 mW. Second, the intensity-noise contribution
to the receiver noise dominates the system performance as σ 2

I increases quadratically
with P̄. In fact, the CNR becomes independent of the received optical power when σ I

dominates. From Eqs. (8.5.2) and (8.5.3) the limited value of CNR is given by

CNR ≈ m2

4(RIN)∆ f
. (8.5.4)

As an example, the RIN of the transmitter laser should be below −150 dB/Hz to realize
a CNR of 50 dB if m = 0.1 and ∆ f = 50 MHz are used as the representative values.
Larger values of RIN can be tolerated only by increasing the modulation index m or
by decreasing the receiver bandwidth. Indeed, DFB lasers with low values of the RIN
were developed during the 1990s for CATV applications. In general, the DFB laser is
biased high above threshold to provide a bias power Pb in excess of 5 mW because its
RIN decreases as P−3

b . High values of the bias power also permit an increase in the
modulation index m.

The intensity noise can become a problem even when the transmitter laser is se-
lected with a low RIN value to provide a large CNR in accordance with Eq. (8.5.4).
The reason is that the RIN can be enhanced during signal transmission inside optical
fibers. One such mechanism is related to multiple reflections between two reflecting
surfaces along the fiber link. As discussed in Section 5.4.5, the two reflective sur-
faces act as an FP interferometer which converts the laser-frequency noise into intensity
noise. The reflection-induced RIN depends on both the laser linewidth and the spacing
between reflecting surfaces. It can be avoided by using fiber components (splices and
connectors) with negligible parasitic reflections (< −40 dB) and by using lasers with
a narrow linewidth (< 1 MHz). Another mechanism for the RIN enhancement is pro-
vided by the dispersive fiber itself. Because of GVD, different frequency components
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travel at slightly different speeds. As a result, frequency fluctuations are converted into
intensity fluctuations during signal transmission. The dispersion-induced RIN depends
on laser linewidth and increases quadratically with fiber length. Fiber dispersion also
enhances CSO and CTB distortion for long link lengths [232]. It becomes necessary to
use dispersion-management techniques for such SCM systems. In a 1996 experiment,
the use of a chirped fiber grating for dispersion compensation reduced the RIN by
more than 30 dB for fiber spans of 30 and 60 km [236]. Of course, other compensation
techniques such as optical phase conjugation can also be used [237].

The CNR requirement can be relaxed by changing the modulation format from AM
to FM. The bandwidth of a FM subcarrier is considerably larger (30 MHz in place of
4 MHz). However, the required CNR at the receiver is much lower (about 16 dB in
place of 50 dB) because of the so-called FM advantage that yields a studio-quality
video signal (> 50-dB SNR) with only 16-dB CNR. As a result, the optical power
needed at the receiver can be as small as 10 µW. The RIN is not much of a problem for
such systems as long as the RIN value is below −135 dB/Hz. In fact, the receiver noise
of FM systems is generally dominated by the thermal noise. Both the AM and FM
techniques have been used successfully for analog SCM lightwave systems [232]. The
number of channels for AM systems is often limited by the clipping noise occurring
when the modulated signal drops below the laser threshold [238].

8.5.2 Digital SCM Systems

During the 1990s, the emphasis of SCM systems shifted from analog to digital modu-
lation. The frequency-shift keying (FSK) format was used for modulating microwave
subcarriers [231] as early as 1990 but its use requires coherent detection techniques
(see Chapter 10). Moreover, a single digital video channel requires a bit rate of more
100 Mb/s or more in contrast with the analog channel that occupies a bandwidth of
only about 6 MHz. For this reason, other modulation formats such as quadrature AM
(called QAM), carrierless AM/PM, and quadrature PSK have been explored. A com-
mon technique uses a multilevel QAM format. If M represents the number of discrete
levels used, the resulting nonbinary digital signal is called M-ary because each bit can
have M possible amplitudes (typically M = 64). Such a signal can be recovered at the
receiver without using coherent detection and requires a lower CNR compared with
that needed for analog AM-VSB systems. The capacity of an SCM system can be
increased considerably by employing hybrid techniques that mix analog and digital
formats [233].

To produce the QAM format from a binary bit stream, two or more neighboring bits
are combined together to form a multilevel signal at a reduced bit rate. For example,
if 2 bits are combined in pairs, one obtains a bit stream at the half bit rate but each
symbol represents four possible combinations 00, 01, 10, 11. To distinguish between
01 and 10, the signal phase should be modified. This forces one to consider both
quadratures of the microwave subcarrier (hence the name QAM). More specifically,
the jth combination is represented as

s j(t) = c j cos(ωct + θ j) ≡ a j cos(ωct)+ b j sin(ωct), (8.5.5)
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Figure 8.30: Frequency allocation in a multiwavelength SCM network.

where j = 1 to 4 and ωc is the frequency of the subcarrier. As an example, θ j can
be 0,π/2,π , and 3π/2 for the four combinations. The main point is that the four
combinations of the 2 bits are represented by four pairs of numbers of the form (a j,bj),
where a j and b j have three possible values (−1, 0, 1). The same idea can be extended
to combine more than 2 bits. The combination of m bits yields the QAM format with
M = 2m levels. It is common to refer such systems as M-QAM SCM systems.

The hybrid SCM systems that combine the analog AM-VSB format with the digital
M-QAM format have attracted considerable attention because they can transmit a large
number of video channels over the same fiber simultaneously [233]. The performance
of such systems is affected by the clipping noise, multiple optical reflections, and the
nonlinear mechanisms such as self-phase modulation (SPM) and SBS, all of which
limit the total power and the number of channels that can be multiplexed. Nevertheless,
hybrid SCM systems can transport up to 80 analog and 30 digital channels using a
single optical transmitter. If only QAM format is employed, the number of digital
channels is limited to about 80. In a 2000 experiment, 78 channels with the 64-QAM
format were transmitted over 740 km [234]. Each channel had a bit rate of 30 Mb/s,
resulting in a total capacity of 2.34 Gb/s. Such a SCM system can transport up to 500
compressed video channels. Further increase in the system capacity can be realized by
combining the SCM and WDM techniques, a topic discussed next.

8.5.3 Multiwavelength SCM Systems

The combination of WDM and SCM provides the potential of designing broadband
passive optical networks capable of providing integrated services (audio, video, data,
etc.) to a large number of subscribers [239]–[243]. In this scheme, shown schemat-
ically in Fig. 8.30, multiple optical carriers are launched into the same optical fiber
through the WDM technique. Each optical carrier carries multiple SCM channels using
several microwave subcarriers. One can mix analog and digital signals using different
subcarriers or different optical carriers. Such networks are extremely flexible and easy
to upgrade as the demand grows. As early as 1990, 16 DFB lasers with a wavelength
spacing of 2 nm in the 1.55-µm region were modulated with 100 analog video channels
and six 622-Mb/s digital channels [240]. Video channels were multiplexed using the
SCM technique such that one DFB laser carried 10 SCM channels over the bandwidth
300–700 MHz. The ultimate potential of such WDM systems was demonstrated in a
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Figure 8.31: Predicted and measured crosstalk acquired over 25 km of fiber at 11-mW average
power. The CW laser acts as a probe and its wavelength is (a) lower or (b) higher by 8.5 nm than
the signal wavelength. (After Ref. [245]; c©1999 IEEE; reprinted with permission.)

2000 experiment in which a broadcast-and-select network was capable of delivering
10,000 channels, each operating at 20 Gb/s [242]. The network used 32 wavelengths
(on the ITU grid) each of which could carry 310 microwave subcarriers by modulating
at a composite bit rate of 20 Gb/s.

The limiting factor for multiwavelength SCM networks is interchannel crosstalk re-
sulting from both the linear and nonlinear processes [244]–[246]. The nonlinear effects
that produce interchannel crosstalk are SRS and XPM, both of which have been ana-
lyzed. Figure 8.31 shows the crosstalk measured in a two-channel experiment together
with the theoretical prediction of the SRS- and XPM-induced crosstalk levels [245].
One channel is modulated and carries the actual signal while the other operates contin-
uously (CW) but its power is low enough that it acts as a probe. The wavelength dif-
ference λmod −λCW is ±8.5 nm in the two cases shown in Fig. 8.31. The probe power
varies with time because of SRS and XPM, and the crosstalk is defined as the ratio
of radio-frequency (RF) powers in the two channels. The XPM-induced crosstalk in-
creases and the Raman-induced crosstalk decreases with the modulation frequency but
each has the same magnitude in the two cases shown in Fig. 8.31. The two crosstalks
add up in phase only when λmod < λCW, resulting in a larger value of the total crosstalk
in that case. The asymmetry seen in Fig. 8.31 is due to SRS and depends on whether
the CW probe channel is being depleted or is being amplified by the other channel.

The linear crosstalk results from the phenomenon of optical beat interference. It oc-
curs when two or more users transmit simultaneously on the same optical channel using
different subcarrier frequencies. As the optical carrier frequencies are then slightly dif-
ferent, their beating produces a beat note in the photocurrent. If the beat-note frequency
overlaps an active subcarrier channel, an interference signal would limit the detection
process in a way similar to IMD. Statistical models have been used to estimate the
probability of channel outage because of optical beat interference [244].

Multiwavelength SCM systems are quite useful for LAN and MAN applications
[239]. They can provide multiple services (telephone, analog and digital TV channels,
computer data, etc.) with only one optical transmitter and one optical receiver per user
because different services can use different microwave subcarriers. This approach low-
ers the cost of terminal equipment in access networks. Different services can be offered
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without requiring synchronization, and microwave subcarriers can be processed using
commercial electronic components. Each user is assigned a unique wavelength for
transmitting multiple SCM messages but can receive multiple wavelengths. The main
advantage of multiwavelength SCM is that the network can serve NM users, where N
is the number of optical wavelengths and M is the number of microwave carriers by us-
ing only N distinct transmitter wavelengths. The optical wavelengths can be relatively
far apart (coarse WDM) for reducing the cost of the terminal equipment. In another
approach, the hybrid fiber/coaxial (HFC) technology is used to provide broadband in-
tegrated services to the subscriber. Digital video transport systems operating at 10 Gb/s
by combining the WDM and SCM techniques are available commercially since 1996.
The use of WDM and SCM for personal communication networks is quite appealing.
The SCM technique is also being explored for network management and performance
monitoring [247].

8.6 Code-Division Multiplexing

The multiplexing techniques discussed so far in this chapter can be classified as sched-
uled multiple-access techniques in which different users use the network according to a
fixed assignment. Their major advantage is the simplicity of data routing among users.
This simplicity, however, is achieved at the expense of an inefficient utilization of the
channel bandwidth. This drawback can be overcome by using a random multiple-
access technique that allows users to access any channel randomly at an arbitrary time.
A multiplexing scheme well known in the domain of wireless communications makes
use of the spread-spectrum technique [248]. It is referred to as code-division multiplex-
ing (CDM) because each channel is coded in such a way that its spectrum spreads over
a much wider region than occupied by the original signal.

Although spectrum spreading may appear counterintuitive from a spectral point of
view, this is not the case because all users share the same spectrum, In fact, CDM is
used extensively in microwave communications (e.g., cell phones) as it provides the
most flexibility in a multiuser environment. The term code-division multiple access
(CDMA) is often employed in place of CDM to emphasize the asynchronous and ran-
dom nature of multiuser connections. Even though the use of CDMA for fiber-optic
communications has been studied since 1986, it was only after 1995 that the technique
of optical CDM was pursued seriously as an alternative to OTDM [249]–[271]. It can
be easily combined with the WDM technique. Conceptually, the difference between
the WDM, TDM, and CDM can be understood as follows. The WDM and TDM tech-
niques partition the channel bandwidth or the time slots among users. In contrast, all
users share the entire bandwidth and all time slots in a random fashion in the case of
CDM.

8.6.1 Direct-Sequence Encoding

The new components needed for CDM systems are the encoders and decoders located
at the transmitter and receiver ends, respectively. The encoder spreads the signal spec-
trum over a much wider region than the minimum bandwidth necessary for transmis-
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Figure 8.32: Coding of binary data in CDM systems using a signature sequence in the form of a
7-chip code.

sion. Spectral spreading is accomplished by means of a unique code that is indepen-
dent of the signal itself. The decoder uses the same code for compressing the signal
spectrum and recovering the data. The spectrum-spreading code is called a signature
sequence. An advantage of the spread-spectrum method is that it is difficult to jam or
intercept the signal because of its coded nature. The CDM technique is thus especially
useful when security of the data is of concern.

Several methods can be used for data coding including direct-sequence encoding,
time hopping, and frequency hopping. Figure 8.32 shows an example of the direct-
sequence coding for optical CDM systems. Each bit of data is coded using a signature
sequence consisting of a large number, say M, of shorter bits, called time “chips” bor-
rowing the terminology used for wireless (M = 7 in the example shown). The effective
bit rate (or the chip rate) increases by the factor of M because of coding. The signal
spectrum is spread over a much wider region related to the bandwidth of individual
chips. For example, the signal spectrum becomes broader by a factor of 64 if M = 64.
Of course, the same spectral bandwidth is used by many users distinguished on the
basis of different signature sequences assigned to them. The recovery of individual
signals sharing the same bandwidth requires that the signature sequences come from a
family of the orthogonal codes. The orthogonal nature of such codes ensures that each
signal can be decoded accurately at the receiver end [263]. Transmitters are allowed to
transmit messages at arbitrary times. The receiver recovers messages by decoding the
received signal using the same signature sequence that was used at the transmitter. The
decoding is accomplished using an optical correlation technique [254].

The encoders for direct-sequence coding typically use a delay-line scheme [249]
that looks superficially similar to that shown in Fig. 8.26 for multiplexing several
OTDM channels. The main difference is that a single modulator, placed after the
laser, imposes the data on the pulse train. The resulting pulse train is split into sev-
eral branches (equal to the number of code chips), and optical delay lines are used to
encode the channel. At the receiver end, the decoder consists of the delay lines in the
reverse order (matched-filter detection) such that it produces a peak in the correlation
output whenever the user’s code matches with a sequence of time chips in the received
signal. Chip patterns of other users also produce a peak through cross-correlation but
the amplitude of this peak is lower than the autocorrelation peak produced when the
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chip pattern matches precisely. An array of fiber Bragg gratings, designed with identi-
cal stop bands but different reflectivities, can also act as encoders and decoders [261].
Different gratings introduce different delays depending on their relative locations and
produce a coded version of the signal. Such grating-based devices provide encoders
and decoders in the form of a compact all-fiber device (except for the optical circulator
needed to put the reflected coded signal back onto the transmission line).

The CDM pulse trains consisting of 0 and 1 chips suffer from two problems. First,
only unipolar codes can be used simply because optical intensity or power cannot
be negative. The number of such codes in a family of orthogonal codes is often not
very large until the code length is increased to beyond 100 chips. Second, the cross-
correlation function of the unipolar codes is relatively high, making the probability of
an error also large. Both of these problems can be solved if the optical phase is used
for coding in place of the amplitude. Such schemes are being pursued and are called
coherent CDMA techniques [264]. An advantage of coherent CDM is that many fam-
ilies of bipolar orthogonal codes, developed for wireless systems and consisting of 1
and −1 chips, can be employed in the optical domain. When a CW laser source is used
in combination with a phase modulator, another CW laser (called local oscillator) is
required at the receiver for coherent detection (see Chapter 10). On the other hand, if
ultrashort optical pulses are used as individual chips whose phase is shifted by π in
chip slots corresponding to a −1 in the code, it is possible to decode the signal without
using coherent detection techniques.

In a 2001 experiment, a coherent CDMA system was able to recover the 2.5 Gb/s
signal transmitted using a 64-chip code [268]. A sampled (or superstructured) fiber
grating was used for coding and decoding the data. Such a grating consists of an ar-
ray of equally spaced smaller gratings so that a single pulse is split into multiple chips
during reflection. Moreover, the phase of preselected chips can be changed by π so
that each reflected pulse is converted into a phase-encoded train of chips. The decoder
consists of a matched grating such that the reflected signal is converted into a single
pulse through autocorrelation (constructive interference) for the signal bit while the
cross-correlation or destructive interference produces no signal for signals belonging
to other channels. The experiment used a NOLM (the same device used for demulti-
plexing of OTDM channels in Section 8.4) for improving the system performance. The
NOLM passed the high-intensity autocorrelation peak but blocked the low-intensity
cross-correlation peaks. The receiver was able to decode the 2.5-Gb/s bit stream from
the 160-Gchip/s pulse train with less than 3-dB penalty at a BER of less than 10−9.
The use of time-gating detection helps to improve the performance in the presence of
dispersive and crosstalk effects [269].

8.6.2 Spectral Encoding

Spectrum spreading can also be accomplished using the technique of frequency hop-
ping in which the carrier frequency is shifted periodically according to a preassigned
code [256]. The situation differs from WDM in the sense that a fixed frequency is
not assigned to a given channel. Rather, all channels share the entire bandwidth by
using different carrier frequencies at different times according to a code. A spectrally
encoded signal can be represented in the form of a matrix shown schematically in
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Figure 8.33: Frequency hopping in CDM lightwave systems. Filled square show frequencies for
different time slots. A specific frequency-hop sequence (3, 2, 0, 5, 1, 4) is shown.

Fig. 8.33. The matrix rows correspond to assigned frequencies and the columns corre-
spond to time slots. The matrix element mi j equals 1 if and only if the frequency ω i is
transmitted in the interval t j. Different users are assigned different frequency-hop pat-
terns (or codes) to ensure that two users do not transmit at the same frequency during
the same time slot. The code sequences that satisfy this property are said to be orthog-
onal codes. In the case of asynchronous transmission, complete orthogonality cannot
be ensured. Such systems make use of pseudo-orthogonal codes with maximum auto-
correlation and minimum cross-correlation to ensure the BER as low as possible. In
general, the BER of such CDMA systems is relatively high (typically > 10−6) but can
be improved using a forward-error correction scheme.

Spectrally encoding of CDM lightwave systems requires a rapid change in the car-
rier frequency. It is difficult to make tunable semiconductor lasers whose wavelength
can be changed over a wide range in a subnanosecond time scale. One possibility
consists of hopping the frequency of a microwave subcarrier and then use the SCM
technique for transmitting the CDM signal. This approach has the advantage that cod-
ing and decoding is done in the electrical domain, where the existing commercial mi-
crowave components can be used.

Several all-optical techniques have been developed for spectral encoding. They can
be classified as coherent or incoherent depending on the the type of optical source used
for the CDMA system. In the case of incoherent CDM, a broadband optical source such
as an LED (or spontaneous emission from a fiber amplifier) is used in combination with
a multipeak optical filter (such as an AWG) to create multiwavelength output [256].
Optical switches are then used to select different wavelengths for different chip slots.
This technique can also be used to make CDM add–drop multiplexers [234]. An ar-
ray of fiber gratings having different Bragg wavelengths can also be used for spectral
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Figure 8.34: Receiver for a hybrid WDM–CDMA system sharing the same spectral bandwidth.
A notch filter is used within the decoder to remove the WDM signal. (After Ref. [267]; c©2001
IEEE; reprinted with permission.)

encoding and decoding. A single chirped Moiré grating can replace the grating array
because several gratings are written at the same location in such fiber gratings [46].
In a 2000 experiment, several Moiré gratings were used to demonstrate recovery of
622-Mb/s CDM channels [265].

In another approach called coherence multiplexing [258], a broadband optical source
is used in combination with an unbalanced MZ interferometer that introduces a delay
longer than the coherence time in one of its branches. Such CDM systems rely on co-
herence to discriminate among channels and are affected severely by the optical beat
noise. In a demonstration of this technique, four 1-Gb/s channels were multiplexed.
The optical source was an SOA operating below the laser threshold so that its output
had a bandwidth of 17 nm. A differential-detection technique was used to reduce the
impact of optical beat noise. Indeed, bit-error rates below 10−9 could be achieved by
using differential detection even when all four channels were operating simultaneously.

The coherent CDMA systems designed with spectral encoding make use of ultra-
short optical pulses with a relatively broad spectrum [259]. The encoder splits the
broad spectrum into many distinct wavelengths using a periodic optical filter (such as
an AWG) and then assembles different frequency signals according to the code used for
that channel. A matched-filter decoder at the receiver end performs the reverse opera-
tion so that a single ultrashort pulse is regenerated in a coherent fashion. This technique
has a distinct advantage that the CDMA signal can be overlaid over a WDM signal such
that both signals occupy the same wavelength range. Figure 8.34 shows schematically
how such a hybrid scheme works [267]. The spectrum of the received signal consists of
a broadband CDMA background and multiple sharp narrowband peaks that correspond
to various WDM channels. The CDMA background does not affect the detection of
WDM channels much because of its low amplitude. The CDMA receiver employs a
notch filter to remove the WDM signal before decoding it. The hybrid WDM–CDMA
scheme is spectrally efficient as it makes use of the unused extra bandwidth around
each WDM channel. In a 2002 experiment, a spectral efficiency of 1.6 (b/s)/Hz and a
capacity of 6.4 Tb/s were realized in the C band alone using the combination of CDMA
and WDM techniques [271].
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Problems

8.1 Dry fibers have acceptable losses over a spectral region extending from 1.3 to 1.6
µm. Estimate the capacity of a WDM system covering this entire region using
40-Gb/s channels spaced apart by 50 GHz.

8.2 The C and L spectral bands cover a wavelength range from 1.53 to 1.61 µm. How
many channels can be transmitted through WDM when the channel spacing is
25 GHz? What is the effective bit rate–distance product when a WDM signal
covering the two bands using 10-Gb/s channels is transmitted over 2000 km.

8.3 A 128× 128 broadcast star is made by using 2× 2 directional couplers, each
having an insertion loss of 0.2 dB. Each channel transmits 1 mW of average
power and requires 1 µW of average received power for operation at 1 Gb/s.
What is the maximum transmission distance for each channel? Assume a cable
loss of 0.25 dB/km and a loss of 3 dB from connectors and splices.

8.4 A Fabry–Perot filter of length L has equal reflectivities R for the two mirrors.
Derive an expression for the transmission spectrum T (ν) considering multiple
round trips inside the cavity containing air. Use it to show that the finesse is
given by F = π

√
R/(1−R).

8.5 A Fabry–Perot filter is used to select 100 channels spaced apart by 0.2 nm. What
should be the length and the mirror reflectivities of the filter? Assume a refractive
index of 1.5 and an operating wavelength of 1.55 µm.

8.6 The action of a fiber coupler is governed by the matrix equation E out = TEin,
where T is the 2× 2 transfer matrix and E is a column vector whose two com-
ponents represent the input (or output) fields at the two ports. Assuming that the
total power is preserved, show that the transfer matrix T is given by

T =
(√

1− f i
√

f
i
√

f
√

1− f

)
,

where f is the fraction of the power transferred to the cross port.

8.7 Explain how a Mach–Zehnder interferometer works. Prove that the transmission
through a chain of M such interferometers is given by T (ν) = ∏M

m=1 cos2(πντm),
where τm is the relative delay. Use the result of the preceding problem for the
transfer matrix of a 3-dB fiber coupler.

8.8 Consider a fiber coupler with the transfer matrix given in Problem 8.6. Its two
output ports are connected to each other to make a loop of length L. Find an ex-
pression for the transmittivity of the fiber loop. What happens when the coupler
splits the input power equally? Provide a physical explanation.

8.9 The reflection coefficient of a fiber grating of length L is given by

rg(δ ) =
iκ sin(qL)

qcos(qL)− iδ sin(qL)
,

where q2 = δ 2 − κ2, δ = (ω −ωB)(n̄)/c is the detuning from the Bragg fre-
quency ωB, and κ is the coupling coefficient. Plot the reflectivity spectrum using
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κ = 8 cm−1 and n̄ = 1.45, and a Bragg wavelength of 1.55 µm for L = 3, 5, and
8 mm. Estimate the grating bandwidth in GHz in the three cases.

8.10 You have been given ten 3-dB fiber couplers. Design a 4×4 demultiplexer with
as few couplers as possible.

8.11 Explain how an array of planar waveguides can be used for demultiplexing
WDM channels. Use diagrams as necessary.

8.12 Use a single fiber coupler and two fiber gratings to design an add–drop filter.
Explain how such a device functions.

8.13 Use a waveguide-grating router to design an integrated WDM transmitter. How
would the design change for a WDM receiver?

8.14 What is meant by the in-band linear crosstalk? Derive an expression for the
power penalty induced by such crosstalk for a waveguide-grating router.

8.15 Explain how stimulated Raman scattering can cause crosstalk in multichannel
lightwave systems. Derive Eq. (8.3.10) after approximating the Raman gain
spectrum by a triangular profile.

8.16 Solve the set of M equations in Eq. (8.3.11) and show that the channel powers
are given by Eq. (8.3.12).

8.17 Derive Eq. (8.3.14) by considering the nonlinear phase change induced by both
self- and cross-phase modulation.

8.18 Solve Eq. (8.3.16) and show that the FWM efficiency is given by Eq. (8.3.18).
Estimate its value for a 50-km fiber with α = 0.2 dB/km and β 2 = −1 ps2/km.

8.19 Derive an expression for the CNR of analog SCM lightwave systems by includ-
ing thermal noise, shot noise, and intensity noise. Show that the CNR saturates
to a constant value at high power levels.

8.20 Consider an analog SCM lightwave system operating at 1.55 µm. It uses a re-
ceiver of 90% quantum efficiency, 10 nA dark current, and thermal-noise RMS
current of 0.1 mA over a 50-MHz bandwidth. The RIN of the transmitter laser
is −150 dB/Hz. Calculate the average received power necessary to obtain 50-dB
CNR for an AM–VSB system with a modulation index of 0.2.
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Chapter 9

Soliton Systems

The word soliton was coined in 1965 to describe the particle-like properties of pulses
propagating in a nonlinear medium [1]. The pulse envelope for solitons not only prop-
agates undistorted but also survives collisions just as particles do. The existence of
solitons in optical fibers and their use for optical communications were suggested in
1973 [2], and by 1980 solitons had been observed experimentally [3]. The potential
of solitons for long-haul communication was first demonstrated in 1988 in an experi-
ment in which fiber losses were compensated using the technique of Raman amplifica-
tion [4]. Since then, a rapid progress during the 1990s has converted optical solitons
into a practical candidate for modern lightwave systems [5]–[9]. In this chapter we fo-
cus on soliton communication systems with emphasis on the physics and design of such
systems. The basic concepts behind fiber solitons are introduced in Section 9.1, where
we also discuss the properties of such solitons. Section 9.2 shows how fiber solitons
can be used for optical communications and how the design of such lightwave systems
differs from that of conventional systems. The loss-managed and dispersion-managed
solitons are considered in Sections 9.3 and 9.4, respectively. The effects of amplifier
noise on such solitons are discussed in Section 9.5 with emphasis on the timing-jitter
issue. Section 9.6 focuses on the design of high-capacity single-channel systems. The
use of solitons for WDM lightwave systems is discussed in Section 9.7.

9.1 Fiber Solitons

The existence of solitons in optical fibers is the result of a balance between the group-
velocity dispersion (GVD) and self-phase modulation (SPM), both of which, as dis-
cussed in Sections 2.4 and 5.3, limit the performance of fiber-optic communication
systems when acting independently on optical pulses propagating inside fibers. One
can develop an intuitive understanding of how such a balance is possible by following
the analysis of Section 2.4. As shown there, the GVD broadens optical pulses during
their propagation inside an optical fiber except when the pulse is initially chirped in the
right way (see Fig. 2.12). More specifically, a chirped pulse can be compressed during
the early stage of propagation whenever the GVD parameter β 2 and the chirp parameter
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C happen to have opposite signs so that β2C is negative. The nonlinear phenomenon
of SPM imposes a chirp on the optical pulse such that C > 0. Since β2 < 0 in the 1.55-
µm wavelength region, the condition β2C < 0 is readily satisfied. Moreover, as the
SPM-induced chirp is power dependent, it is not difficult to imagine that under certain
conditions, SPM and GVD may cooperate in such a way that the SPM-induced chirp is
just right to cancel the GVD-induced broadening of the pulse. The optical pulse would
then propagate undistorted in the form of a soliton.

9.1.1 Nonlinear Schrödinger Equation

The mathematical description of solitons employs the nonlinear Schrödinger (NLS)
equation, introduced in Section 5.3 [Eq. (5.3.1)] and satisfied by the pulse envelope
A(z,t) in the presence of GVD and SPM. This equation can be written as [10]

∂A
∂ z

+
iβ2

2
∂ 2A
∂ t2 − β3

6
∂ 3A
∂ t3 = iγ|A|2A− α

2
A, (9.1.1)

where fiber losses are included through the α parameter while β 2 and β3 account
for the second- and third-order dispersion (TOD) effects. The nonlinear parameter
γ = 2πn2/(λ Aeff) is defined in terms of the nonlinear-index coefficient n 2, the optical
wavelength λ , and the effective core area Aeff introduced in Section 2.6.

To discuss the soliton solutions of Eq. (9.1.1) as simply as possible, we first set
α = 0 and β3 = 0 (these parameters are included in later sections). It is useful to write
this equation in a normalized form by introducing

τ =
t

T0
, ξ =

z
LD

, U =
A√
P0

, (9.1.2)

where T0 is a measure of the pulse width, P0 is the peak power of the pulse, and LD =
T 2

0 /|β2| is the dispersion length. Equation (9.1.1) then takes the form

i
∂U
∂ξ

− s
2

∂ 2U
∂τ2 + N2|U |2U = 0, (9.1.3)

where s = sgn(β2) = +1 or −1, depending on whether β2 is positive (normal GVD) or
negative (anomalous GVD). The parameter N is defined as

N2 = γP0LD = γP0T 2
0 /|β2|. (9.1.4)

It represents a dimensionless combination of the pulse and fiber parameters. The phys-
ical significance of N will become clear later.

The NLS equation is well known in the soliton literature because it belongs to a
special class of nonlinear partial differential equations that can be solved exactly with
a mathematical technique known as the inverse scattering method [11]–[13]. Although
the NLS equation supports solitons for both normal and anomalous GVD, pulse-like
solitons are found only in the case of anomalous dispersion [14]. In the case of normal
dispersion (β2 > 0), the solutions exhibit a dip in a constant-intensity background.
Such solutions, referred to as dark solitons, are discussed in Section 9.1.3. This chapter
focuses mostly on pulse-like solitons, also called bright solitons.
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9.1.2 Bright Solitons

Consider the case of anomalous GVD by setting s = −1 in Eq. (9.1.3). It is common
to introduce u = NU as a renormalized amplitude and write the NLS equation in its
canonical form with no free parameters as

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + |u|2u = 0. (9.1.5)

This equation has been solved by the inverse scattering method [14]. Details of this
method are available in several books devoted to solitons [11]–[13]. The main result
can be summarized as follows. When an input pulse having an initial amplitude

u(0,τ) = N sech(τ) (9.1.6)

is launched into the fiber, its shape remains unchanged during propagation when N = 1
but follows a periodic pattern for integer values of N > 1 such that the input shape is
recovered at ξ = mπ/2, where m is an integer.

An optical pulse whose parameters satisfy the condition N = 1 is called the fun-
damental soliton. Pulses corresponding to other integer values of N are called higher-
order solitons. The parameter N represents the order of the soliton. By noting that
ξ = z/LD, the soliton period z0, defined as the distance over which higher-order soli-
tons recover their original shape, is given by

z0 =
π
2

LD =
π
2

T 2
0

|β2| . (9.1.7)

The soliton period z0 and soliton order N play an important role in the theory of optical
solitons. Figure 9.1 shows the pulse evolution for the first-order (N = 1) and third-order
(N = 3) solitons over one soliton period by plotting the pulse intensity |u(ξ ,τ)| 2 (top
row) and the frequency chirp (bottom row) defined as the time derivative of the soliton
phase. Only a fundamental soliton maintains its shape and remains chirp-free during
propagation inside optical fibers.

The solution corresponding to the fundamental soliton can be obtained by solving
Eq. (9.1.5) directly, without recourse to the inverse scattering method. The approach
consists of assuming that a solution of the form

u(ξ ,τ) = V (τ)exp[iφ(ξ )] (9.1.8)

exists, where V must be independent of ξ for Eq. (9.1.8) to represent a fundamental
soliton that maintains its shape during propagation. The phase φ can depend on ξ but
is assumed to be time independent. When Eq. (9.1.8) is substituted in Eq. (9.1.5) and
the real and imaginary parts are separated, we obtain two real equations for V and φ .
These equations show that φ should be of the form φ(ξ ) = Kξ , where K is a constant.
The function V (τ) is then found to satisfy the nonlinear differential equation

d2V
dτ2 = 2V (K −V 2). (9.1.9)
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Figure 9.1: Evolution of the first-order (left column) and third-order (right column) solitons over
one soliton period. Top and bottom rows show the pulse shape and chirp profile, respectively.

This equation can be solved by multiplying it by 2(dV/dτ) and integrating over τ . The
result is given as

(dV/dτ)2 = 2KV 2 −V 4 +C, (9.1.10)

where C is a constant of integration. Using the boundary condition that both V and
dV/dτ should vanish at |τ| = ∞ for pulses, C is found to be 0. The constant K is de-
termined using the other boundary condition that V = 1 and dV/dτ = 0 at the soliton
peak, assumed to occur at τ = 0. Its use provides K = 1

2 , and hence φ = ξ/2. Equa-
tion (9.1.10) is easily integrated to obtain V (τ) = sech(τ). We have thus found the
well-known “sech” solution [11]–[13]

u(ξ ,τ) = sech(τ)exp(iξ/2) (9.1.11)

for the fundamental soliton by integrating the NLS equation directly. It shows that the
input pulse acquires a phase shift ξ/2 as it propagates inside the fiber, but its amplitude
remains unchanged. It is this property of a fundamental soliton that makes it an ideal
candidate for optical communications. In essence, the effects of fiber dispersion are
exactly compensated by the fiber nonlinearity when the input pulse has a “sech” shape
and its width and peak power are related by Eq. (9.1.4) in such a way that N = 1.

An important property of optical solitons is that they are remarkably stable against
perturbations. Thus, even though the fundamental soliton requires a specific shape and
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Figure 9.2: Evolution of a Gaussian pulse with N = 1 over the range ξ = 0–10. The pulse
evolves toward the fundamental soliton by changing its shape, width, and peak power.

a certain peak power corresponding to N = 1 in Eq. (9.1.4), it can be created even
when the pulse shape and the peak power deviate from the ideal conditions. Figure 9.2
shows the numerically simulated evolution of a Gaussian input pulse for which N = 1
but u(0,τ) = exp(−τ 2/2). As seen there, the pulse adjusts its shape and width in an
attempt to become a fundamental soliton and attains a “sech” profile for ξ � 1. A
similar behavior is observed when N deviates from 1. It turns out that the Nth-order
soliton can be formed when the input value of N is in the range N − 1

2 to N + 1
2 [15].

In particular, the fundamental soliton can be excited for values of N in the range 0.5
to 1.5. Figure 9.3 shows the pulse evolution for N = 1.2 over the range ξ = 0–10 by
solving the NLS equation numerically with the initial condition u(0,τ) = 1.2sech(τ).
The pulse width and the peak power oscillate initially but eventually become constant
after the input pulse has adjusted itself to satisfy the condition N = 1 in Eq. (9.1.4).

It may seem mysterious that an optical fiber can force any input pulse to evolve
toward a soliton. A simple way to understand this behavior is to think of optical solitons
as the temporal modes of a nonlinear waveguide. Higher intensities in the pulse center
create a temporal waveguide by increasing the refractive index only in the central part
of the pulse. Such a waveguide supports temporal modes just as the core-cladding
index difference led to spatial modes in Section 2.2. When an input pulse does not
match a temporal mode precisely but is close to it, most of the pulse energy can still
be coupled into that temporal mode. The rest of the energy spreads in the form of
dispersive waves. It will be seen later that such dispersive waves affect the system
performance and should be minimized by matching the input conditions as close to
the ideal requirements as possible. When solitons adapt to perturbations adiabatically,
perturbation theory developed specifically for solitons can be used to study how the
soliton amplitude, width, frequency, speed, and phase evolve along the fiber.
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Figure 9.3: Pulse evolution for a “sech” pulse with N = 1.2 over the range ξ = 0–10. The pulse
evolves toward the fundamental soliton (N = 1) by adjusting its width and peak power.

9.1.3 Dark Solitons

The NLS equation can be solved with the inverse scattering method even in the case
of normal dispersion [16]. The intensity profile of the resulting solutions exhibits a dip
in a uniform background, and it is the dip that remains unchanged during propagation
inside the fiber [17]. For this reason, such solutions of the NLS equation are called
dark solitons. Even though dark solitons were discovered in the 1970s, it was only
after 1985 that they were studied thoroughly [18]–[28].

The NLS equation describing dark solitons is obtained from Eq. (9.1.5) by changing
the sign of the second term. The resulting equation can again be solved by postulating
a solution in the form of Eq. (9.1.8) and following the procedure outlined there. The
general solution can be written as [28]

ud(ξ ,τ) = (η tanhζ − iκ)exp(iu2
0ξ ), (9.1.12)

where
ζ = η(τ −κξ ), η = u0 cosφ , κ = u0 sinφ . (9.1.13)

Here, u0 is the amplitude of the continuous-wave (CW) background and φ is an internal
phase angle in the range 0 to π/2.

An important difference between the bright and dark solitons is that the speed of a
dark soliton depends on its amplitude η through φ . For φ = 0, Eq. (9.1.12) reduces to

ud(ξ ,τ) = u0 tanh(u0τ)exp(iu2
0ξ ). (9.1.14)

The peak power of the soliton drops to zero at the center of the dip only in the φ = 0
case. Such a soliton is called the black soliton. When φ �= 0, the intensity does not
drop to zero at the dip center; such solitons are referred to as the gray soliton. Another
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Figure 9.4: (a) Intensity and (b) phase profiles of dark solitons for several values of the internal
phase φ . The intensity drops to zero at the center for black solitons.

interesting feature of dark solitons is related to their phase. In contrast with bright
solitons which have a constant phase, the phase of a dark soliton changes across its
width. Figure 9.4 shows the intensity and phase profiles for several values of φ . For
a black soliton (φ = 0), a phase shift of π occurs exactly at the center of the dip. For
other values of φ , the phase changes by an amount π −2φ in a more gradual fashion.

Dark solitons were observed during the 1980s in several experiments using broad
optical pulses with a narrow dip at the pulse center. It is important to incorporate a
π phase shift at the pulse center. Numerical simulations show that the central dip can
propagate as a dark soliton despite the nonuniform background as long as the back-
ground intensity is uniform in the vicinity of the dip [18]. Higher-order dark solitons
do not follow a periodic evolution pattern similar to that shown in Fig. 9.1 for the third-
order bright soliton. The numerical results show that when N > 1, the input pulse forms
a fundamental dark soliton by narrowing its width while ejecting several dark-soliton
pairs in the process. In a 1993 experiment [19], 5.3-ps dark solitons, formed on a 36-ps
wide pulse from a 850-nm Ti:sapphire laser, were propagated over 1 km of fiber. The
same technique was later extended to transmit dark-soliton pulse trains over 2 km of
fiber at a repetition rate of up to 60 GHz. These results show that dark solitons can be
generated and maintained over considerable fiber lengths.

Several practical techniques were introduced during the 1990s for generating dark
solitons. In one method, a Mach–Zehnder modulator driven by nearly rectangular elec-
trical pulses, modulates the CW output of a semiconductor laser [20]. In an extension of
this method, electric modulation is performed in one of the arms of a Mach–Zehnder in-
terferometer. A simple all-optical technique consists of propagating two optical pulses,
with a relative time delay between them, in the normal-GVD region of the fiber [21].
The two pulses broaden, become chirped, and acquire a nearly rectangular shape as
they propagate inside the fiber. As these chirped pulses merge into each other, they
interfere. The result at the fiber output is a train of isolated dark solitons. In another
all-optical technique, nonlinear conversion of a beat signal in a dispersion-decreasing
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fiber was used to generate a train of dark solitons [22]. A 100-GHz train of 1.6-ps dark
solitons was generated with this technique and propagated over 2.2 km of (two soliton
periods) of a dispersion-shifted fiber. Optical switching using a fiber-loop mirror, in
which a phase modulator is placed asymmetrically, can also produce dark solitons [23].
In another variation, a fiber with comb-like dispersion profile was used to generate dark
soliton pulses with a width of 3.8 ps at the 48-GHz repetition rate [24].

An interesting scheme uses electronic circuitry to generate a coded train of dark
solitons directly from the nonreturn-to-zero (NRZ) data in electric form [25]. First,
the NRZ data and its clock at the bit rate are passed through an AND gate. The re-
sulting signal is then sent to a flip-flop circuit in which all rising slopes flip the signal.
The resulting electrical signal drives a Mach–Zehnder LiNbO 3 modulator and converts
the CW output from a semiconductor laser into a coded train of dark solitons. This
technique was used for data transmission, and a 10-Gb/s signal was transmitted over
1200 km by using dark solitons. Another relatively simple method uses spectral filter-
ing of a mode-locked pulse train through a fiber grating [26]. This scheme has also
been used to generate a 6.1-GHz train and propagate it over a 7-km-long fiber [27].
Numerical simulations show that dark solitons are more stable in the presence of noise
and spread more slowly in the presence of fiber losses compared with bright solitons.
Although these properties point to potential application of dark solitons for optical
communications, only bright solitons were being pursued in 2002 for commercial ap-
plications.

9.2 Soliton-Based Communications

Solitons are attractive for optical communications because they are able to maintain
their width even in the presence of fiber dispersion. However, their use requires sub-
stantial changes in system design compared with conventional nonsoliton systems. In
this section we focus on several such issues.

9.2.1 Information Transmission with Solitons

As discussed in Section 1.2.3, two distinct modulation formats can be used to generate
a digital bit stream. The NRZ format is commonly used because the signal bandwidth
is about 50% smaller for it compared with that of the RZ format. However, the NRZ
format cannot be used when solitons are used as information bits. The reason is easily
understood by noting that the pulse width must be a small fraction of the bit slot to
ensure that the neighboring solitons are well separated. Mathematically, the soliton
solution in Eq. (9.1.11) is valid only when it occupies the entire time window (−∞ <
τ < ∞). It remains approximately valid for a train of solitons only when individual
solitons are well isolated. This requirement can be used to relate the soliton width T0

to the bit rate B as

B =
1
TB

=
1

2q0T0
, (9.2.1)

where TB is the duration of the bit slot and 2q0 = TB/T0 is the separation between
neighboring solitons in normalized units. Figure 9.5 shows a soliton bit stream in the
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Figure 9.5: Soliton bit stream in RZ format. Each soliton occupies a small fraction of the bit
slot so that neighboring soliton are spaced far apart.

RZ format. Typically, spacing between the solitons exceeds four times their full width
at half maximum (FWHM).

The input pulse characteristics needed to excite the fundamental soliton can be
obtained by setting ξ = 0 in Eq. (9.1.11). In physical units, the power across the pulse
varies as

P(t) = |A(0,t)|2 = P0 sech2(t/T0). (9.2.2)

The required peak power P0 is obtained from Eq. (9.1.4) by setting N = 1 and is related
to the width T0 and the fiber parameters as

P0 = |β2|/(γ T 2
0 ). (9.2.3)

The width parameter T0 is related to the FWHM of the soliton as

Ts = 2T0 ln(1+
√

2) � 1.763T0. (9.2.4)

The pulse energy for the fundamental soliton is obtained using

Es =
∫ ∞

−∞
P(t)dt = 2P0T0. (9.2.5)

Assuming that 1 and 0 bits are equally likely to occur, the average power of the RZ
signal becomes P̄s = Es(B/2) = P0/2q0. As a simple example, T0 = 10 ps for a 10-Gb/s
soliton system if we choose q0 = 5. The pulse FWHM is about 17.6 ps for T0 = 10 ps.
The peak power of the input pulse is 5 mW using β2 = −1 ps2/km and γ = 2 W−1/km
as typical values for dispersion-shifted fibers. This value of peak power corresponds to
a pulse energy of 0.1 pJ and an average power level of only 0.5 mW.

9.2.2 Soliton Interaction

An important design parameter of soliton lightwave systems is the pulse width Ts. As
discussed earlier, each soliton pulse occupies only a fraction of the bit slot. For practical
reasons, one would like to pack solitons as tightly as possible. However, the presence of
pulses in the neighboring bits perturbs the soliton simply because the combined optical
field is not a solution of the NLS equation. This phenomenon, referred to as soliton
interaction, has been studied extensively [29]–[33].



9.2. SOLITON-BASED COMMUNICATIONS 413

Figure 9.6: Evolution of a soliton pair over 90 dispersion lengths showing the effects of soliton
interaction for four different choices of amplitude ratio r and relative phase θ . Initial spacing
q0 = 3.5 in all four cases.

One can understand the implications of soliton interaction by solving the NLS equa-
tion numerically with the input amplitude consisting of a soliton pair so that

u(0,τ) = sech(τ −q0)+ r sech[r(τ + q0)]exp(iθ ), (9.2.6)

where r is the relative amplitude of the two solitons, θ is the relative phase, and 2q 0

is the initial (normalized) separation. Figure 9.6 shows the evolution of a soliton pair
with q0 = 3.5 for several values of the parameters r and θ . Clearly, soliton interaction
depends strongly both on the relative phase θ and the amplitude ratio r.

Consider first the case of equal-amplitude solitons (r = 1). The two solitons at-
tract each other in the in-phase case (θ = 0) such that they collide periodically along
the fiber length. However, for θ = π/4, the solitons separate from each other after an
initial attraction stage. For θ = π/2, the solitons repel each other even more strongly,
and their spacing increases with distance. From the standpoint of system design, such
behavior is not acceptable. It would lead to jitter in the arrival time of solitons because
the relative phase of neighboring solitons is not likely to remain well controlled. One
way to avoid soliton interaction is to increase q0 as the strength of interaction depends
on soliton spacing. For sufficiently large q0, deviations in the soliton position are ex-
pected to be small enough that the soliton remains at its initial position within the bit
slot over the entire transmission distance.
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The dependence of soliton separation on q 0 can be studied analytically by using the
inverse scattering method [29]. A perturbative approach can be used for q 0 � 1. In the
specific case of r = 1 and θ = 0, the soliton separation 2qs at any distance ξ is given
by [30]

2 exp[2(qs−q0)] = 1+ cos[4ξ exp(−q0)]. (9.2.7)

This relation shows that the spacing qs(ξ ) between two neighboring solitons oscillates
periodically with the period

ξp = (π/2)exp(q0). (9.2.8)

A more accurate expression, valid for arbitrary values of q 0, is given by [32]

ξp =
π sinh(2q0) cosh(q0)

2q0 + sinh(2q0)
. (9.2.9)

Equation (9.2.8) is quite accurate for q0 > 3. Its predictions are in agreement with
the numerical results shown in Fig. 9.6 where q0 = 3.5. It can be used for system
design as follows. If ξpLD is much greater than the total transmission distance LT ,
soliton interaction can be neglected since soliton spacing would deviate little from its
initial value. For q0 = 6, ξp ≈ 634. Using LD = 100 km for the dispersion length,
LT � ξpLD can be realized even for LT = 10,000 km. If we use LD = T 2

0 /|β2| and
T0 = (2Bq0)−1 from Eq. (9.2.1), the condition LT � ξpLD can be written in the form
of a simple design criterion

B2LT � π exp(q0)
8q2

0|β2|
. (9.2.10)

For the purpose of illustration, let us choose β2 = −1 ps2/km. Equation (9.2.10) then
implies that B2LT � 4.4 (Tb/s)2-km if we use q0 = 6 to minimize soliton interactions.
The pulse width at a given bit rate B is determined from Eq. (9.2.1). For example,
Ts = 14.7 ps at B = 10 Gb/s when q0 = 6.

A relatively large soliton spacing, necessary to avoid soliton interaction, limits the
bit rate of soliton communication systems. The spacing can be reduced by up to a factor
of 2 by using unequal amplitudes for the neighboring solitons. As seen in Fig. 9.6, the
separation for two in-phase solitons does not change by more than 10% for an initial
soliton spacing as small as q0 = 3.5 if their initial amplitudes differ by 10% (r = 1.1).
Note that the peak powers or the energies of the two solitons deviate by only 1%.
As discussed earlier, such small changes in the peak power are not detrimental for
maintaining solitons. Thus, this scheme is feasible in practice and can be useful for
increasing the system capacity. The design of such systems would, however, require
attention to many details. Soliton interaction can also be modified by other factors,
such as the initial frequency chirp imposed on input pulses.

9.2.3 Frequency Chirp

To propagate as a fundamental soliton inside the optical fiber, the input pulse should
not only have a “sech” profile but also be chirp-free. Many sources of short optical
pulses have a frequency chirp imposed on them. The initial chirp can be detrimental to
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Figure 9.7: Evolution of a chirped optical pulse for the case N = 1 and C = 0.5. For C = 0 the
pulse shape does not change, since the pulse propagates as a fundamental soliton.

soliton propagation simply because it disturbs the exact balance between the GVD and
SPM [34]–[37].

The effect of an initial frequency chirp can be studied by solving Eq. (9.1.5) nu-
merically with the input amplitude

u(0,τ) = sech(τ)exp(−iCτ2/2), (9.2.11)

where C is the chirp parameter introduced in Section 2.4.2. The quadratic form of
phase variations corresponds to a linear frequency chirp such that the optical frequency
increases with time (up-chirp) for positive values of C. Figure 9.7 shows the pulse
evolution in the case N = 1 and C = 0.5. The pulse shape changes considerably even
for C = 0.5. The pulse is initially compressed mainly because of the positive chirp;
initial compression occurs even in the absence of nonlinear effects (see Section 2.4.2).
The pulse then broadens but is eventually compressed a second time with the tails
gradually separating from the main peak. The main peak evolves into a soliton over
a propagation distance ξ > 15. A similar behavior occurs for negative values of C,
although the initial compression does not occur in that case. The formation of a soliton
is expected for small values of |C| because solitons are stable under weak perturbations.
But the input pulse does not evolve toward a soliton when |C| exceeds a critical valve
Ccrit. The soliton seen in Fig. 9.7 does not form if C is increased from 0.5 to 2.

The critical value Ccrit of the chirp parameter can be obtained by using the inverse
scattering method [34]–[36]. It depends on N and is found to be C crit = 1.64 for N = 1.
It also depends on the form of the phase factor in Eq. (9.2.11). From the standpoint
of system design, the initial chirp should be minimized as much as possible. This is
necessary because even if the chirp is not detrimental for |C|< Ccrit, a part of the pulse
energy is shed as dispersive waves during the process of soliton formation [34]. For
instance, only 83% of the input energy is converted into a soliton for the case C = 0.5
shown in Fig. 9.7, and this fraction reduces to 62% when C = 0.8.



416 CHAPTER 9. SOLITON SYSTEMS

9.2.4 Soliton Transmitters

Soliton communication systems require an optical source capable of producing chirp-
free picosecond pulses at a high repetition rate with a shape as close to the “sech”
shape as possible. The source should operate in the wavelength region near 1.55 µm,
where fiber losses are minimum and where erbium-doped fiber amplifiers (EDFAs) can
be used for compensating them. Semiconductor lasers, commonly used for nonsoliton
lightwave systems, remain the lasers of choice even for soliton systems.

Early experiments on soliton transmission used the technique of gain switching for
generating optical pulses of 20–30 ps duration by biasing the laser below threshold and
pumping it high above threshold periodically [38]–[40]. The repetition rate was de-
termined by the frequency of current modulation. A problem with the gain-switching
technique is that each pulse becomes chirped because of the refractive-index changes
governed by the linewidth enhancement factor (see Section 3.5.3). However, the pulse
can be made nearly chirp-free by passing it through an optical fiber with normal GVD
(β2 > 0) such that it is compressed. The compression mechanism can be understood
from the analysis of Section 2.4.2 by noting that gain switching produces pulses with a
frequency chirp such that the chirp parameter C is negative. In a 1989 implementation
of this technique [39], 14-ps optical pulses were obtained at a 3-GHz repetition rate by
passing the gain-switched pulse through a 3.7-km-long fiber with β 2 = 23 ps2/km near
1.55 µm. An EDFA amplified each pulse to the power level required for launching
fundamental solitons. In another experiment, gain-switched pulses were simultane-
ously amplified and compressed inside an EDFA after first passing them through a nar-
rowband optical filter [40]. It was possible to generate 17-ps-wide, nearly chirp-free,
optical pulses at repetition rates in the range 6–24 GHz.

Mode-locked semiconductor lasers are also suitable for soliton communications
and are often preferred because the pulse train emitted from such lasers is nearly chirp-
free. The technique of active mode locking is generally used by modulating the laser
current at a frequency equal to the frequency difference between the two neighboring
longitudinal modes. However, most semiconductor lasers use a relatively short cavity
length (< 0.5 mm typically), resulting in a modulation frequency of more than 50 GHz.
An external-cavity configuration is often used to increase the cavity length and reduce
the modulation frequency. In a practical approach, a chirped fiber grating is spliced
to the pigtail attached to the optical transmitter to form the external cavity. Figure
9.8 shows the design of such a source of short optical pulses. The use of a chirped
fiber grating provides wavelength stability to within 0.1 nm. The grating also offers
a self-tuning mechanism that allows mode locking of the laser over a wide range of
modulation frequencies [41]. A thermoelectric heater can be used to tune the operat-
ing wavelength over a range of 6–8 nm by changing the Bragg wavelength associated
with the grating. Such a source produces soliton-like pulses of widths 12–18 ps at a
repetition rate as large as 40 GHz and can be used at a bit rate of 40 Gb/s [42].

The main drawback of external-cavity semiconductor lasers stems from their hy-
brid nature. A monolithic source of picosecond pulses is preferred in practice. Several
approaches have been used to produce such a source. Monolithic semiconductor lasers
with a cavity length of about 4 mm can be actively mode-locked to produce a 10-GHz
pulse train. Passive mode locking of a monolithic distributed Bragg reflector (DBR)
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Figure 9.8: Schematic of (a) the device and (b) the package for a hybrid soliton pulse source.
(After Ref. [41]; c©1995 IEEE; reprinted with permission.)

laser has produced 3.5-ps pulses at a repetition rate of 40 GHz [43]. An electroab-
sorption modulator, integrated with the semiconductor laser, offers another alterna-
tive. Such transmitters are commonly used for nonsoliton lightwave systems (see Sec-
tion 3.6). They can also be used to produce a pulse train by using the nonlinear nature of
the absorption response of the modulator. Chirp-free pulses of 10- to 20-ps duration at
a repetition rate of 20 GHz were produced in 1993 with this technique [44]. By 1996,
the repetition rate of modulator-integrated lasers could be increased to 50 GHz [45].
The quantum-confinement Stark effect in a multiquantum-well modulator can also be
used to produce a pulse train suitable for soliton transmission [46].

Mode-locked fiber lasers provide an alternative to semiconductor sources although
such lasers still need a semiconductor laser for pumping [47]. An EDFA is placed
within the Fabry–Perot (FP) or ring cavity to make fiber lasers. Both active and passive
mode-locking techniques have been used for producing short optical pulses. Active
mode locking requires modulation at a high-order harmonic of the longitudinal-mode
spacing because of relatively long cavity lengths (> 1 m) that are typically used for
fiber lasers. Such harmonically mode-locked fiber lasers use an intracavity LiNbO 3

modulator and have been employed in soliton transmission experiments [48]. A semi-
conductor optical amplifier can also be used for active mode locking, producing pulses
shorter than 10 ps at a repetition rate as high as 20 GHz [49]. Passively mode-locked
fiber lasers either use a multiquantum-well device that acts as a fast saturable absorber
or employ fiber nonlinearity to generate phase shifts that produce an effective saturable
absorber.

In a different approach, nonlinear pulse shaping in a dispersion-decreasing fiber is
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used to produce a train of ultrashort pulses. The basic idea consists of injecting a CW
beam, with weak sinusoidal modulation imposed on it, into such a fiber. The combi-
nation of GVD, SPM, and decreasing dispersion converts the sinusoidally modulated
signal into a train of ultrashort solitons [50]. The repetition rate of pulses is governed
by the frequency of initial sinusoidal modulation, often produced by beating two opti-
cal signals. Two distributed feedback (DFB) semiconductor lasers or a two-mode fiber
laser can be used for this purpose. By 1993, this technique led to the development of
an integrated fiber source capable of producing a soliton pulse train at high repetition
rates by using a comb-like dispersion profile, created by splicing pieces of low- and
high-dispersion fibers [50]. A dual-frequency fiber laser was used to generate the beat
signal and to produce a 2.2-ps soliton train at the 59-GHz repetition rate. In another
experiment, a 40-GHz soliton train of 3-ps pulses was generated using a single DFB
laser whose output was modulated with a Mach–Zehnder modulator before launching
it into a dispersion-tailored fiber with a comb-like GVD profile [51].

A simple method of pulse-train generation modulates the phase of the CW output
obtained from a DFB semiconductor laser, followed by an optical bandpass filter [52].
Phase modulation generates frequency modulation (FM) sidebands on both sides of the
carrier frequency, and the optical filter selects the sidebands on one side of the carrier.
Such a device generates a stable pulse train of widths ∼ 20 ps at a repetition rate that
is controlled by the phase modulator. It can also be used as a dual-wavelength source
by filtering sidebands on both sides of the carrier frequency, with a typical channel
spacing of about 0.8 nm at the 1.55-µm wavelength. Another simple technique uses
a single Mach–Zehnder modulator, driven by an electrical data stream in the NRZ
format, to convert the CW output of a DFB laser into an optical bit stream in the RZ
format [53]. Although optical pulses launched from such transmitters typically do not
have the “sech” shape of a soliton, they can be used for soliton systems because of the
soliton-formation capability of the fiber discussed earlier.

9.3 Loss-Managed Solitons

As discussed in Section 9.1, solitons use the nonlinear phenomenon of SPM to main-
tain their width even in the presence of fiber dispersion. However, this property holds
only if fiber losses were negligible. It is not difficult to see that a decrease in soli-
ton energy because of fiber losses would produce soliton broadening simply because a
reduced peak power weakens the SPM effect necessary to counteract the GVD. Opti-
cal amplifiers can be used for compensating fiber losses. This section focuses on the
management of losses through amplification of solitons.

9.3.1 Loss-Induced Soliton Broadening

Fiber losses are included through the last term in Eq. (9.1.1). In normalized units, the
NLS equation becomes [see Eq. (9.1.5)]

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + |u|2u = − i

2
Γu, (9.3.1)
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Figure 9.9: Broadening of fundamental solitons in lossy fibers (Γ = 0.07). The curve marked
“exact” shows numerical results. Dashed curve shows the behavior expected in the absence of
nonlinear effects. (After Ref. [55]; c©1985 Elsevier; reprinted with permission.)

where Γ = αLD represents fiber losses over one dispersion length. When Γ� 1, the last
term can be treated as a small perturbation [54]. The use of variational or perturbation
methods results in the following approximate solution of Eq. (9.3.1):

u(ξ ,τ) ≈ e−Γξ sech(τe−Γξ )exp[i(1− e−2Γξ )/4Γ]. (9.3.2)

The solution (9.3.2) shows that the soliton width increases exponentially because
of fiber losses as

T1(ξ ) = T0 exp(Γξ ) = T0 exp(αz). (9.3.3)

Such an exponential increase in the soliton width cannot be expected to continue for
arbitrarily long distances. Numerical solutions of Eq. (9.3.1) indeed show a slower
increase for ξ � 1 [55]. Figure 9.9 shows the broadening factor T1/T0 as a function of
ξ when a fundamental soliton is launched into a fiber with Γ = 0.07. The perturbative
result is also shown for comparison; it is reasonably accurate up to Γξ = 1. The dashed
line in Fig. 9.9 shows the broadening expected in the absence of nonlinear effects.
The important point to note is that soliton broadening is much less compared with the
linear case. Thus, the nonlinear effects can be beneficial even when solitons cannot be
maintained perfectly because of fiber losses. In a 1986 study, an increase in the repeater
spacing by more than a factor of 2 was predicted using higher-order solitons [56].

In modern long-haul lightwave systems, pulses are transmitted over long fiber
lengths without using electronic repeaters. To overcome the effect of fiber losses, soli-
tons should be amplified periodically using either lumped or distributed amplification
[57]–[60]. Figure 9.10 shows the two schemes schematically. The next two subsec-
tions focus on the design issues related to loss-managed solitons based on these two
amplification schemes.



420 CHAPTER 9. SOLITON SYSTEMS

Figure 9.10: (a) Lumped and (b) distributed amplification schemes for compensation of fiber
losses in soliton communication systems.

9.3.2 Lumped Amplification

The lumped amplification scheme shown in Fig. 9.10 is the same as that used for non-
soliton systems. In both cases, optical amplifiers are placed periodically along the fiber
link such that fiber losses between two amplifiers are exactly compensated by the am-
plifier gain. An important design parameter is the spacing L A between amplifiers—it
should be as large as possible to minimize the overall cost. For nonsoliton systems, L A

is typically 80–100 km. For soliton systems, LA is restricted to much smaller values
because of the soliton nature of signal propagation [57].

The physical reason behind smaller values of LA is that optical amplifiers boost soli-
ton energy to the input level over a length of few meters without allowing for gradual
recovery of the fundamental soliton. The amplified soliton adjusts its width dynami-
cally in the fiber section following the amplifier. However, it also sheds a part of its
energy as dispersive waves during this adjustment phase. The dispersive part can ac-
cumulate to significant levels over a large number of amplification stages and must be
avoided. One way to reduce the dispersive part is to reduce the amplifier spacing L A

such that the soliton is not perturbed much over this short length. Numerical simula-
tions show [57] that this is the case when LA is a small fraction of the dispersion length
(LA � LD). The dispersion length LD depends on both the pulse width T0 and the GVD
parameter β2 and can vary from 10 to 1000 km depending on their values.

Periodic amplification of solitons can be treated mathematically by adding a gain
term to Eq. (9.3.1) and writing it as [61]

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + |u|2u = − i

2
Γu+

i
2

g(ξ )LDu, (9.3.4)

where g(ξ ) = ∑NA
m=1 gmδ (ξ − ξm), NA is the total number of amplifiers, and gm is the

gain of the lumped amplifier located at ξm. If we assume that amplifiers are spaced
uniformly, ξ m = mξA, where ξA = LA/LD is the normalized amplifier spacing.
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Because of rapid variations in the soliton energy introduced by periodic gain–loss
changes, it is useful to make the transformation

u(ξ ,τ) =
√

p(ξ )v(ξ ,τ), (9.3.5)

where p(ξ ) is a rapidly varying and v(ξ ,τ) is a slowly varying function of ξ . Substi-
tuting Eq. (9.3.5) in Eq. (9.3.4), v(ξ ,τ) is found to satisfy

i
∂v
∂ξ

+
1
2

∂ 2v
∂τ2 + p(ξ )|v|2v = 0, (9.3.6)

where p(ξ ) is obtained by solving the ordinary differential equation

dp
dξ

= [g(ξ )LD −Γ]p. (9.3.7)

The preceding equations can be solved analytically by noting that the amplifier gain is
just large enough that p(ξ ) is a periodic function; it decreases exponentially in each
period as p(ξ ) = exp(−Γξ ) but jumps to its initial value p(0) = 1 at the end of each
period. Physically, p(ξ ) governs variations in the peak power (or the energy) of a
soliton between two amplifiers. For a fiber with losses of 0.2 dB/km, p(ξ ) varies by a
factor of 100 when LA = 100 km.

In general, changes in soliton energy are accompanied by changes in the soliton
width. Large rapid variations in p(ξ ) can destroy a soliton if its width changes rapidly
through emission of dispersive waves. The concept of the path-averaged or guiding-
center soliton makes use of the fact that solitons evolve little over a distance that is
short compared with the dispersion length (or soliton period). Thus, when ξ A � 1,
the soliton width remains virtually unchanged even though its peak power p(ξ ) varies
considerably in each section between two neighboring amplifiers. In effect, we can
replace p(ξ ) by its average value p̄ in Eq. (9.3.6) when ξ A � 1. Introducing u =

√
p̄v

as a new variable, this equation reduces to the standard NLS equation obtained for a
lossless fiber.

From a practical viewpoint, a fundamental soliton can be excited if the input peak
power Ps (or energy) of the path-averaged soliton is chosen to be larger by a factor 1/p̄.

Introducing the amplifier gain as G = exp(ΓξA) and using p̄ = ξ −1
A

∫ ξA
0 e−Γξ dξ , the

energy enhancement factor for loss-managed (LM) solitons is given by

fLM =
Ps

P0
=

1
p̄

=
ΓξA

1− exp(−ΓξA)
=

G lnG
G−1

, (9.3.8)

where P0 is the peak power in lossless fibers. Thus, soliton evolution in lossy fibers
with periodic lumped amplification is identical to that in lossless fibers provided (i)
amplifiers are spaced such that LA � LD and (ii) the launched peak power is larger by
a factor fLM. As an example, G = 10 and fLM ≈ 2.56 for 50-km amplifier spacing and
fiber losses of 0.2 dB/km.

Figure 9.11 shows the evolution of a loss-managed soliton over a distance of 10 Mm
assuming that solitons are amplified every 50 km. When the input pulse width corre-
sponds to a dispersion length of 200 km, the soliton is preserved quite well even after
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(a) (b)

Figure 9.11: Evolution of loss-managed solitons over 10,000 km for (a) LD = 200 km and (b)
25 km with LA = 50 km, α = 0.22 dB/km, and β2 = −0.5 ps2/km.

10 Mm because the condition ξA � 1 is reasonably well satisfied. However, if the
dispersion length is reduced to 25 km (ξA = 2), the soliton is unable to sustain itself
because of excessive emission of dispersive waves. The condition ξ A � 1 or LA � LD,
required to operate within the average-soliton regime, can be related to the width T0 by
using LD = T 2

0 /|β2|. The resulting condition is

T0 �
√
|β2|LA. (9.3.9)

Since the bit rate B is related to T0 through Eq. (9.2.1), the condition (9.3.9) can be
written in the form of the following design criterion:

B2LA � (4q2
0|β2|)−1. (9.3.10)

Choosing typical values β2 = −0.5 ps2/km, LA = 50 km, and q0 = 5, we obtain T0 �
5 ps and B � 20 GHz. Clearly, the use of path-averaged solitons imposes a severe
limitation on both the bit rate and the amplifier spacing for soliton communication
systems.

9.3.3 Distributed Amplification

The condition LA � LD, imposed on loss-managed solitons when lumped amplifiers are
used, becomes increasingly difficult to satisfy in practice as bit rates exceed 10 Gb/s.
This condition can be relaxed considerably when distributed amplification is used. The
distributed-amplification scheme is inherently superior to lumped amplification since
its use provides a nearly lossless fiber by compensating losses locally at every point
along the fiber link. In fact, this scheme was used as early as 1985 using the distributed
gain provided by Raman amplification when the fiber carrying the signal was pumped
at a wavelength of about 1.46 µm using a color-center laser [59]. Alternatively, the
transmission fiber can be doped lightly with erbium ions and pumped periodically to
provide distributed gain. Several experiments have demonstrated that solitons can be
propagated in such active fibers over relatively long distances [62]–[66].



9.3. LOSS-MANAGED SOLITONS 423

The advantage of distributed amplification can be seen from Eq. (9.3.7), which can
be written in physical units as

dp
dz

= [g(z)−α]p. (9.3.11)

If g(z) is constant and equal to α for all z, the peak power or energy of a soliton remains
constant along the fiber link. This is the ideal situation in which the fiber is effectively
lossless. In practice, distributed gain is realized by injecting pump power periodically
into the fiber link. Since pump power does not remain constant because of fiber losses
and pump depletion (e.g., absorption by dopants), g(z) cannot be kept constant along
the fiber. However, even though fiber losses cannot be compensated everywhere locally,
they can be compensated fully over a distance LA provided that

∫ LA

0
g(z)dz = αLA. (9.3.12)

A distributed-amplification scheme is designed to satisfy Eq. (9.3.12). The distance L A

is referred to as the pump-station spacing.
The important question is how much soliton energy varies during each gain–loss

cycle. The extent of peak-power variations depends on L A and on the pumping scheme
adopted. Backward pumping is commonly used for distributed Raman amplification
because such a configuration provides high gain where the signal is relatively weak.
The gain coefficient g(z) can be obtained following the discussion in Section 6.3.
If we ignore pump depletion, the gain coefficient in Eq. (9.3.11) is given by g(z) =
g0 exp[−αp(LA − z)], where αp accounts for fiber losses at the pump wavelength. The
resulting equation can be integrated analytically to obtain

p(z) = exp

{
αLA

[
exp(αpz)−1

exp(αpLA)−1

]
−αz

}
, (9.3.13)

where g0 was chosen to ensure that p(LA) = 1. Figure 9.12 shows how p(z) varies
along the fiber for LA = 50 km using α = 0.2 dB/km and α p = 0.25 dB/km. The case
of lumped amplification is also shown for comparison. Whereas soliton energy varies
by a factor of 10 in the lumped case, it varies by less than a factor of 2 in the case of
distributed amplification.

The range of energy variations can be reduced further using a bidirectional pumping
scheme. The gain coefficient g(z) in this case can be approximated (neglecting pump
depletion) as

g(z) = g1 exp(−αpz)+ g2 exp[−αp(LA − z)]. (9.3.14)

The constants g1 and g2 are related to the pump powers injected at both ends. Assuming
equal pump powers and integrating Eq. (9.3.11), the soliton energy is found to vary as

p(z) = exp

[
αLA

(
sinh[αp(z−LA/2)]+ sinh(αpLA/2)

2sinh(αpLA/2)

)
−αz

]
. (9.3.15)

This case is shown in Fig. 9.12 by a dashed line. Clearly, a bidirectional pumping
scheme is the best as it reduces energy variations to below 15%. The range over which
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Figure 9.12: Variations in soliton energy for backward (solid line) and bidirectional (dashed
line) pumping schemes with LA = 50 km. The lumped-amplifier case is shown by the dotted
line.

p(z) varies increases with LA. Nevertheless, it remains much smaller than that occur-
ring in the lumped-amplification case. As an example, soliton energy varies by a factor
of 100 or more when LA = 100 km if lumped amplification is used but by less than a
factor of 2 when the bidirectional pumping scheme is used for distributed amplification.

The effect of energy excursion on solitons depends on the ratio ξ A = LA/LD. When
ξA < 1, little soliton reshaping occurs. For ξA � 1, solitons evolve adiabatically with
some emission of dispersive waves (the quasi-adiabatic regime). For intermediate val-
ues of ξA, a more complicated behavior occurs. In particular, dispersive waves and
solitons are resonantly amplified when ξA � 4π . Such a resonance can lead to unsta-
ble and chaotic behavior [60]. For this reason, distributed amplification is used with
ξA < 4π in practice [62]–[66].

Modeling of soliton communication systems making use of distributed amplifica-
tion requires the addition of a gain term to the NLS equation, as in Eq. (9.3.4). In the
case of soliton systems operating at bit rates B > 20 Gb/s such that T0 < 5 ps, it is also
necessary to include the effects of third-order dispersion (TOD) and a new nonlinear
phenomenon known as the soliton self-frequency shift (SSFS). This effect was discov-
ered in 1986 [67] and can be understood in terms of intrapulse Raman scattering [68].
The Raman effect leads to a continuous downshift of the soliton carrier frequency when
the pulse spectrum becomes so broad that the high-frequency components of a pulse
can transfer energy to the low-frequency components of the same pulse through Ra-
man amplification. The Raman-induced frequency shift is negligible for T0 > 10 ps but
becomes of considerable importance for short solitons (T0 < 5 ps). With the inclusion
of SSFS and TOD, Eq. (9.3.4) takes the form [10]

i
∂u
∂ξ

+
1
2

∂ 2u
∂τ2 + |u|2u =

iLD

2
[g(ξ )−α]u+ iδ3

∂ 3u
∂τ3 + τRu

∂ |u|2
∂τ

, (9.3.16)
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where the TOD parameter δ3 and the Raman parameter τR are defined as

δ = β3/(6|β2|T0), τR = TR/T0. (9.3.17)

The quantity TR is related to the slope of the Raman gain spectrum and has a value of
about 3 fs for silica fibers [10].

Numerical simulations based on Eq. (9.3.16) show that the distributed-amplification
scheme benefits considerably high-capacity soliton communication systems [69]. For
example, when LD = 50 km but amplifiers are placed 100 km apart, fundamental soli-
tons with T0 = 5 ps are destroyed after 500 km in the case of lumped amplifiers but can
propagate over a distance of more than 5000 km when distributed amplification is used.
For soliton widths below 5 ps, the Raman-induced spectral shift leads to considerable
changes in the evolution of solitons as it modifies the gain and dispersion experienced
by solitons. Fortunately, the finite gain bandwidth of amplifiers reduces the amount of
spectral shift and stabilizes the soliton carrier frequency close to the gain peak [63].
Under certain conditions, the spectral shift can become so large that it cannot be com-
pensated, and the soliton moves out of the gain window, loosing all its energy.

9.3.4 Experimental Progress

Early experiments on loss-managed solitons concentrated on the Raman-amplification
scheme. An experiment in 1985 demonstrated that fiber losses can be compensated
over 10 km by the Raman gain while maintaining the soliton width [59]. Two color-
center lasers were used in this experiment. One laser produced 10-ps pulses at 1.56 µm,
which were launched as fundamental solitons. The other laser operated continuously
at 1.46 µm and acted as a pump for amplifying 1.56-µm solitons. In the absence of the
Raman gain, the soliton broadened by about 50% because of loss-induced broadening.
This amount of broadening was in agreement with Eq. (9.3.3), which predicts T 1/T0 =
1.51 for z = 10 km and α = 0.18 dB/km, the values used in the experiment. When the
pump power was about 125 mW, the 1.8-dB Raman gain compensated the fiber losses
and the output pulse was nearly identical with the input pulse.

A 1988 experiment transmitted solitons over 4000 km using the Raman-amplifica-
tion scheme [4]. This experiment used a 42-km fiber loop whose loss was exactly
compensated by injecting the CW pump light from a 1.46-µm color-center laser. The
solitons were allowed to circulate many times along the fiber loop and their width
was monitored after each round trip. The 55-ps solitons could be circulated along
the loop up to 96 times without a significant increase in their pulse width, indicating
soliton recovery over 4000 km. The distance could be increased to 6000 km with
further optimization. This experiment was the first to demonstrate that solitons could
be transmitted over transoceanic distances in principle. The main drawback was that
Raman amplification required pump lasers emitting more than 500 mW of CW power
near 1.46 µm. It was not possible to obtain such high powers from semiconductor
lasers in 1988, and the color-center lasers used in the experiment were too bulky to be
useful for practical lightwave systems.

The situation changed with the advent of EDFAs around 1989 when several exper-
iments used them for loss-managed soliton systems [38]–[40]. These experiments can



426 CHAPTER 9. SOLITON SYSTEMS

Figure 9.13: Setup used for soliton transmission in a 1990 experiment. Two EDFAs after the
LiNbO3 modulator boost pulse peak power to the level of fundamental solitons. (After Ref. [70];
c©1990 IEEE; reprinted with permission.)

be divided into two categories, depending on whether a linear fiber link or a recircu-
lating fiber loop is used for the experiment. The experiments using fiber link are more
realistic as they mimic the actual field conditions. Several 1990 experiments demon-
strated soliton transmission over fiber lengths ∼100 km at bit rates of up to 5 Gb/s
[70]–[72]. Figure 9.13 shows one such experimental setup in which a gain-switched
laser is used for generating input pulses. The pulse train is filtered to reduce the fre-
quency chirp and passed through a LiNbO 3 modulator to impose the RZ format on
it. The resulting coded bit stream of solitons is transmitted through several fiber sec-
tions, and losses of each section are compensated by using an EDFA. The amplifier
spacing is chosen to satisfy the criterion LA � LD and is typically in the range 25–40
km. In a 1991 experiment, solitons were transmitted over 1000 km at 10 Gb/s [73].
The 45-ps-wide solitons permitted an amplifier spacing of 50 km in the average-soliton
regime.

Since 1991, most soliton transmission experiments have used a recirculating fiber-
loop configuration because of cost considerations. Figure 9.14 shows such an exper-
imental setup schematically. A bit stream of solitons is launched into the loop and
forced to circulate many times using optical switches. The quality of the signal is
monitored after each round trip to ensure that the solitons maintain their width during
transmission. In a 1991 experiment, 2.5-Gb/s solitons were transmitted over 12,000 km
by using a 75-km fiber loop containing three EDFAs, spaced apart by 25 km [74]. In
this experiment, the bit rate–distance product of BL = 30 (Tb/s)-km was limited mainly
by the timing jitter induced by EDFAs. The use of amplifiers degrades the signal-to-
noise ratio (SNR) and shifts the position of solitons in a random fashion. These issues
are discussed in Section 9.5.

Because of the problems associated with the lumped amplifiers, several schemes
were studied for reducing the timing jitter and improving the performance of soliton
systems. Even the technique of Raman amplification was revived in 1999 and has
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Figure 9.14: Recirculating-loop configuration used in a 1991 experiment for transmitting soli-
tons over 12,000 km. (After Ref. [74]; c©1991 IEE; reprinted with permission.)

become quite common for both the soliton and nonsoliton systems. Its revival was
possible because of the technological advances in the fields of semiconductor and fiber
lasers, both of which can provide power levels in excess of 500 mW. The use of
dispersion management also helps in reducing the timing jitter. We turn to dispersion-
managed solitons next.

9.4 Dispersion-Managed Solitons

As discussed in Chapter 7, dispersion management is employed commonly for mod-
ern wavelength-division multiplexed (WDM) systems. It turns out that soliton sys-
tems benefit considerably if the GVD parameter β2 varies along the link length. This
section is devoted to such dispersion-managed solitons. We first consider dispersion-
decreasing fibers and then focus on dispersion maps that consist of multiple sections of
constant-dispersion fibers.

9.4.1 Dispersion-Decreasing Fibers

An interesting scheme proposed in 1987 relaxes completely the restriction L A � LD

imposed normally on loss-managed solitons, by decreasing the GVD along the fiber
length [75]. Such fibers are called dispersion-decreasing fibers (DDFs) and are de-
signed such that the decreasing GVD counteracts the reduced SPM experienced by
solitons weakened from fiber losses.

Since dispersion management is used in combination with loss management, soli-
ton evolution in a DDF is governed by Eq. (9.3.6) except that the second-derivative
term has a new parameter d that is a function of ξ because of GVD variations along
the fiber length. The modified NLS equation takes the form

i
∂v
∂ξ

+
1
2

d(ξ )
∂ 2v
∂τ2 + p(ξ )|v|2v = 0, (9.4.1)
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where v = u/
√

p, d(ξ ) = β2(ξ )/β2(0), and p(ξ ) takes into account peak-power vari-
ations introduced by loss management. The distance ξ is normalized to the dispersion
length, LD = T 2

0 /|β2(0)|, defined using the GVD value at the fiber input.
Because of the ξ dependence of the second and third terms, Eq. (9.4.1) is not a

standard NLS equation. However, it can be reduced to one if we introduce a new
propagation variable as

ξ ′ =
∫ ξ

0
d(ξ )dξ . (9.4.2)

This transformation renormalizes the distance scale to the local value of GVD. In terms
of ξ ′, Eq. (9.4.1) becomes

i
∂v
∂ξ ′ +

1
2

∂ 2v
∂τ2 +

p(ξ )
d(ξ )

|v|2v = 0. (9.4.3)

If the GVD profile is chosen such that d(ξ ) = p(ξ ) ≡ exp(−Γξ ), Eq. (9.4.3) reduces
the standard NLS equation obtained in the absence of fiber losses. As a result, fiber
losses have no effect on a soliton in spite of its reduced energy when DDFs are used.
Lumped amplifiers can be placed at any distance and are not limited by the condition
LA � LD.

The preceding analysis shows that fundamental solitons can be maintained in a
lossy fiber provided its GVD decreases exponentially as

|β2(z)| = |β2(0)|exp(−αz). (9.4.4)

This result can be understood qualitatively by noting that the soliton peak power P0

decreases exponentially in a lossy fiber in exactly the same fashion. It is easy to deduce
from Eq. (9.1.4) that the requirement N = 1 can be maintained, in spite of power losses,
if both |β2| and γ decrease exponentially at the same rate. The fundamental soliton then
maintains its shape and width even in a lossy fiber.

Fibers with a nearly exponential GVD profile have been fabricated [76]. A practical
technique for making such DDFs consists of reducing the core diameter along the fiber
length in a controlled manner during the fiber-drawing process. Variations in the fiber
diameter change the waveguide contribution to β 2 and reduce its magnitude. Typically,
GVD can be varied by a factor of 10 over a length of 20 to 40 km. The accuracy realized
by the use of this technique is estimated to be better than 0.1 ps 2/km [77]. Propagation
of solitons in DDFs has been demonstrated in several experiments [77]–[79]. In a 40-
km DDF, solitons preserved their width and shape in spite of energy losses of more than
8 dB [78]. In a recirculating loop made using DDFs, a 6.5-ps soliton train at 10 Gb/s
could be transmitted over 300 km [79].

Fibers with continuously varying GVD are not readily available. As an alternative,
the exponential GVD profile of a DDF can be approximated with a staircase profile
by splicing together several constant-dispersion fibers with different β 2 values. This
approach was studied during the 1990s, and it was found that most of the benefits of
DDFs can be realized using as few as four fiber segments [80]–[84]. How should one
select the length and the GVD of each fiber used for emulating a DDF? The answer
is not obvious, and several methods have been proposed. In one approach, power
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deviations are minimized in each section [80]. In another approach, fibers of different
GVD values Dm and different lengths L m are chosen such that the product DmLm is the
same for each section. In a third approach, Dm and Lm are selected to minimize shading
of dispersive waves [81].

9.4.2 Periodic Dispersion Maps

A disadvantage of the DDF is that the average dispersion along the link is often rel-
atively large. Generally speaking, operation of a soliton in the region of low average
GVD improves system performance. Dispersion maps consisting of alternating-GVD
fibers are attractive because their use lowers the average GVD of the entire link while
keeping the GVD of each section large enough that the four-wave mixing (FWM) and
TOD effects remain negligible.

The use of dispersion management forces each soliton to propagate in the normal-
dispersion regime of a fiber during each map period. At first sight, such a scheme
should not even work because the normal-GVD fibers do not support bright solitons
and lead to considerable broadening and chirping of the pulse. So, why should solitons
survive in a dispersion-managed fiber link? An intense theoretical effort devoted to
this issue since 1996 has yielded an answer with a few surprises [85]–[102]. Physically
speaking, if the map period is a fraction of the nonlinear length, the nonlinear effects
are relatively small, and the pulse evolves in a linear fashion over one map period. On
a longer length scale, solitons can still form if the SPM effects are balanced by the
average dispersion. As a result, solitons can survive in an average sense, even though
not only the peak power but also the width and shape of such solitons oscillate period-
ically. This section describes the properties of dispersion-managed (DM) solitons and
the advantages offered by them.

Consider a simple dispersion map consisting of two fibers with positive and nega-
tive values of the GVD parameter β2. Soliton evolution is still governed by Eq. (9.4.1)
used earlier for DDFs. However, we cannot use ξ and τ as dimensionless parameters
because the pulse width and GVD both vary along the fiber. It is better to use the
physical units and write Eq. (9.4.1) as

i
∂B
∂ z

− β2(z)
2

∂ 2B
∂ t2 + γ p(z)|B|2B = 0, (9.4.5)

where B = A/
√

p and p(z) is the solution of Eq. (9.3.11). The GVD parameter takes
values β2a and β2n in the anomalous and normal sections of lengths l a and ln, respec-
tively. The map period Lmap = la + ln can be different from the amplifier spacing LA.
As is evident, the properties of DM solitons will depend on several map parameters
even when only two types of fibers are used in each map period.

Equation (9.4.5) can be solved numerically using the split-step Fourier method.
Numerical simulations show that a nearly periodic solution can often be found by ad-
justing input pulse parameters (width, chirp, and peak power) even though these pa-
rameters vary considerably in each map period. The shape of such DM solitons is
typically closer to a Gaussian profile rather than the “sech” shape associated with stan-
dard solitons [86]–[88].
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Numerical solutions, although essential, do not lead to much physical insight. Sev-
eral techniques have been used to solve the NLS equation (9.4.5) approximately. A
common approach makes use of the variational method [89]–[91]. Another approach
expands B(z,t) in terms of a complete set of the Hermite–Gauss functions that are solu-
tions of the linear problem [92]. A third approach solves an integral equation, derived
in the spectral domain using perturbation theory [94]–[96].

To simplify the following discussion, we focus on the variational method used ear-
lier in Section 7.8.2. In fact, the Lagrangian density obtained there can be used directly
for DM solitons as well as Eq. (9.4.5) is identical to Eq. (7.8.4). Because the shape
of the DM soliton is close to a Gaussian pulse in numerical simulations, the soliton is
assumed to evolve as

B(z,t) = a exp[−(1+ iC)t2/2T 2 + iφ ], (9.4.6)

where a is the amplitude, T is the width, C is the chirp, and φ is the phase of the
soliton. All four parameters vary with z because of perturbations produced by periodic
variations of β2(z) and p(z).

Following Section 7.8.2, we can obtain four ordinary differential equations for the
four soliton parameters. The amplitude equation can be eliminated because a 2T =
a2

0T0 = E0/
√

π is independent of z and is related to the input pulse energy E 0. The
phase equation can also be dropped since T and C do not depend on φ . The DM
soliton then corresponds to a periodic solution of the following two equations for the
pulse width T and chirp C:

dT
dz

= β2(z)
C
T

, (9.4.7)

dC
dz

=
γE0 p(z)√

2πT
+

β2

T 2 (1+C2). (9.4.8)

These equations should be solved with the periodic boundary conditions

T0 ≡ T (0) = T (LA), C0 ≡C(0) = C(LA) (9.4.9)

to ensure that the soliton recovers its initial state after each amplifier. The periodic
boundary conditions fix the values of the initial width T0 and the chirp C0 at z = 0
for which a soliton can propagate in a periodic fashion for a given value of the pulse
energy E0. A new feature of the DM solitons is that the input pulse width depends
on the dispersion map and cannot be chosen arbitrarily. In fact, T0 cannot be below a
critical value that is set by the map itself.

Figure 9.15 shows how the pulse width T0 and the chirp C0 of allowed periodic so-
lutions vary with input pulse energy for a specific dispersion map. The minimum value
Tm of the pulse width occurring in the middle of the anomalous-GVD section of the
map is also shown. The map is suitable for 40-Gb/s systems and consists of alternating
fibers with GVD of −4 and 4 ps2/km and lengths la ≈ ln = 5 km such that the average
GVD is −0.01 ps2/km. The solid lines show the case of ideal distributed amplifica-
tion for which p(z) = 1 in Eq. (9.4.8). The lumped-amplification case is shown by the
dashed lines in Fig. 9.15 assuming 80-km amplifier spacing and 0.25 dB/km losses in
each fiber section.
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Figure 9.15: (a) Changes in T0 (upper curve) and Tm (lower curve) with input pulse energy E0
for α = 0 (solid lines) and 0.25 dB/km (dashed lines). The inset shows the input chirp C0 in the
two cases. (b) Evolution of the DM soliton over one map period for E0 = 0.1 pJ and LA = 80 km.

Several conclusions can be drawn from Fig. 9.15. First, both T0 and Tm decrease
rapidly as pulse energy is increased. Second, T0 attains its minimum value at a certain
pulse energy Ec while Tm keeps decreasing slowly. Third, T0 and Tm differ from each
other considerably for E0 > Ec. This behavior indicates that the pulse width changes
considerably in each fiber section when this regime is approached. An example of pulse
breathing is shown in Fig. 9.15(b) for E0 = 0.1 pJ in the case of lumped amplification.
The input chirp C0 is relatively large (C0 ≈ 1.8) in this case. The most important feature
of Fig. 9.15 is the existence of a minimum value of T0 for a specific value of the pulse
energy. The input chirp C0 = 1 at that point. It is interesting to note that the minimum
value of T0 does not depend much on fiber losses and is about the same for the solid
and dashed curves although the value of E c is much larger in the lumped amplification
case because of fiber losses.

As seen from Fig. 9.15, both the pulse width and the peak power of DM solitons
vary considerably within each map period. Figure 9.16(a) shows the width and chirp
variations over one map period for the DM soliton of Fig. 9.15(b). The pulse width
varies by more than a factor of 2 and becomes minimum nearly in the middle of each
fiber section where frequency chirp vanishes. The shortest pulse occurs in the middle
of the anomalous-GVD section in the case of ideal distributed amplification in which
fiber losses are compensated fully at every point along the fiber link. For comparison,
Fig. 9.16(b) shows the width and chirp variations for a DM soliton whose input energy
is close to Ec where the input pulse is shortest. Breathing of the pulse is reduced
considerably together with the range of chirp variations. In both cases, the DM soliton
is quite different from a standard fundamental soliton as it does not maintain its shape,
width, or peak power. Nevertheless, its parameters repeat from period to period at
any location within the map. For this reason, DM solitons can be used for optical
communications in spite of oscillations in the pulse width. Moreover, such solitons
perform better from a system standpoint.
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Figure 9.16: (a) Variations of pulse width and chirp over one map period for DM solitons with
the input energy (a) E0 � Ec = 0.1 pJ and (b) E0 close to Ec.

9.4.3 Design Issues

Figures 9.15 and 9.16 show that Eqs. (9.4.7)–(9.4.9) permit periodic propagation of
many different DM solitons in the same map by choosing different values of E 0, T0,
and C0. How should one choose among these solutions when designing a soliton sys-
tem? Pulse energies much smaller than Ec (corresponding to the minimum value of T0)
should be avoided because a low average power would then lead to rapid degradation of
SNR as amplifier noise builds up with propagation. On the other hand, when E 0 � Ec,
large variations in the pulse width in each fiber section would enhance the effects of
soliton interaction if two neighboring solitons begin to overlap. Thus, the region near
E0 = Ec is most suited for designing DM soliton systems. Numerical solutions of Eq.
(9.4.5) confirm this conclusion.

The 40-Gb/s system design shown in Figs. 9.15 and 9.16 was possible only because
the map period Lmap was chosen to be much smaller than the amplifier spacing of
80 km, a configuration referred to as the dense dispersion management. When L map

is increased to 80 km using la ≈ lb = 40 km while keeping the same value of average
dispersion, the minimum pulse width supported by the map increases by a factor of
3. The bit rate is then limited to about 20 Gb/s. In general, the required map period
becomes shorter as the bit rate increases.

It is possible to find the values of T0 and Tm by solving the variational equations
(9.4.7)–(9.4.9) approximately. Equation (9.4.7) can be integrated to relate T and C as

T 2(z) = T 2
0 + 2

∫ z

0
β2(z)C(z)dz. (9.4.10)

The chirp equation cannot be integrated but the numerical solutions show that C(z)
varies almost linearly in each fiber section. As seen in Fig. 9.16, C(z) changes from
C0 to −C0 in the first section and then back to C0 in the second section. Noting that
the ratio (1 +C2)/T 2 is related to the spectral width that changes little over one map
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period when the nonlinear length is much larger than the local dispersion length, we
average it over one map period and obtain the following relation between T 0 and C0:

T0 = Tmap

√
1+C2

0

|C0| , Tmap =
( |β2nβ2alnla|

β2nln −β2ala

)1/2

, (9.4.11)

where Tmap is a parameter with dimensions of time involving only the four map param-
eters. It provides a time scale associated with an arbitrary dispersion map in the sense
that the stable periodic solutions supported by it have input pulse widths that are close
to Tmap (within a factor of 2 or so). The minimum value of T0 occurs for |C0| = 1 and
is given by T min

0 =
√

2Tmap.
Equation (9.4.11) can also be used to find the shortest pulse within the map. Recall-

ing from Section 2.4 that the shortest pulse occurs at the point at which the propagating
pulse becomes unchirped, Tm = T0/(1 +C2

0)
1/2 = Tmap/

√|C0|. When the input pulse
corresponds to its minimum value (C0 = 1), Tm is exactly equal to Tmap. The optimum
value of the pulse stretching factor is equal to

√
2 under such conditions. These conclu-

sions are in agreement with the numerical results shown in Fig. 9.16 for a specific map
for which Tmap ≈ 3.16 ps. If dense dispersion management is not used for this map and
Lmap equals LA = 80 km, this value of Tmap increases to 9 ps. Since the FWHM of in-
put pulses then exceeds 21 ps, such a map is unsuitable for 40-Gb/s soliton systems. In
general, the required map period becomes shorter and shorter as the bit rate increases
as is evident from the definition of Tmap in Eq. (9.4.11).

It is useful to look for other combinations of the four map parameters that may play
an important role in designing a DM soliton system. Two parameters that help for this
purpose are defined as [89]

β̄2 =
β2nln + β2ala

ln + la
, Sm =

β2nln −β2ala
T 2

FWHM

, (9.4.12)

where TFWHM ≈ 1.665Tm is the FWHM at the location where pulse width is minimum
in the anomalous-GVD section. Physically, β̄2 represents the average GVD of the
entire link, while the map strength Sm is a measure of how much GVD varies between
two fibers in each map period. The solutions of Eqs. (9.4.7)–(9.4.9) as a function of
map strength S for different values of β̄2 reveal the surprising feature that DM solitons
can exist even when the average GVD is normal provided the map strength exceeds a
critical value Scr [97]–[101]. Moreover, when S m > Scr and β̄2 > 0, a periodic solution
can exist for two different values of the input pulse energy. Numerical solutions of Eqs.
(9.4.1) confirm these predictions but the critical value of the map strength is found to
be only 3.9 instead of 4.8 obtained from the variational equations [89].

The existence of DM solitons in maps with normal average GVD is quite intriguing
as one can envisage dispersion maps in which a soliton propagates in the normal-GVD
regime most of the time. An example is provided by the dispersion map in which
a short section of standard fiber (β2a ≈ −20 ps2/km) is used with a long section of
dispersion-shifted fiber (β2n ≈ 1 ps2/km) such that β̄2 is close to zero but positive. The
formation of DM solitons under such conditions can be understood by noting that when
Sm exceeds 4, input energy of a pulse becomes large enough that its spectral width is



434 CHAPTER 9. SOLITON SYSTEMS

considerably larger in the anomalous-GVD section compared with the normal-GVD
section. Noting that the phase shift imposed on each spectral component varies as
β2ω2 locally, one can define an effective value of the average GVD as [101]

β̄ eff
2 = 〈β2Ω2〉/〈Ω2〉, (9.4.13)

where Ω is the local value of the spectral width and the angle brackets indicate average
over the map period. If β̄ eff

2 is negative, the DM soliton can exist even if β̄2 is positive.
For map strengths below a critical value (about 3.9 numerically), the average GVD

is anomalous for DM solitons. In that case, one is tempted to compare them with
standard solitons forming in a uniform-GVD fiber link with β 2 = β̄2. For relatively
small values of Sm, variations in the pulse width and chirp are small enough that one
can ignore them. The main difference between the average-GVD and DM solitons
then stems from the higher peak power required to sustain DM solitons. The energy
enhancement factor for DM solitons is defined as [85]

fDM = EDM
0 /Eav

0 (9.4.14)

and can exceed 10 depending on the system design. The larger energy of DM solitons
benefits a soliton system in several ways. Among other things, it improves the SNR
and decreases the timing jitter; these issues are discussed in Section 9.5.

Dispersion-management schemes were used for solitons as early as 1992 although
they were referred to by names such as partial soliton communication and dispersion
allocation [103]. In the simplest form of dispersion management, a relatively short seg-
ment of dispersion-compensating fiber (DCF) is added periodically to the transmission
fiber, resulting in dispersion maps similar to those used for nonsoliton systems. It was
found in a 1995 experiment that the use of DCFs reduced the timing jitter consider-
ably [104]. In fact, in this 20-Gb/s experiment, the timing jitter became low enough
when the average dispersion was reduced to a value near −0.025 ps 2/km that the 20-
Gb/s signal could be transmitted over transoceanic distances.

Since 1996, a large number of experiments have shown the benefits of DM solitons
for lightwave systems [105]–[114]. In one experiment, the use of a periodic dispersion
map enabled transmission of a 20-Gb/s soliton bit stream over 5520 km of a fiber link
containing amplifiers at 40-km intervals [105]. In another 20-Gb/s experiment [106],
solitons could be transmitted over 9000 km without using any in-line optical filters
since the periodic use of DCFs reduced timing jitter by more than a factor of 3. A 1997
experiment focused on transmission of DM solitons using dispersion maps such that
solitons propagated most of the time in the normal-GVD regime [107]. This 10-Gb/s
experiment transmitted signals over 28 Mm using a recirculating fiber loop consist-
ing of 100 km of normal-GVD fiber and 8-km of anomalous-GVD fiber such that the
average GVD was anomalous (about −0.1 ps2/km). Periodic variations in the pulse
width were also observed in such a fiber loop [108]. In a later experiment, the loop
was modified to yield the average-GVD value of zero or slightly positive [109]. Stable
transmission of 10-Gb/s solitons over 28 Mm was still observed. In all cases, experi-
mental results were in excellent agreement with numerical simulations [110].

An important application of dispersion management consists for upgrading the ex-
isting terrestrial networks designed with standard fibers [111]–[114]. A 1997 exper-
iment used fiber gratings for dispersion compensation and realized 10-Gb/s soliton
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transmission over 1000 km. Longer transmission distances were realized using a re-
circulating fiber loop [112] consisting of 102 km of standard fiber with anomalous
GVD (β2 ≈ −21 ps2/km) and 17.3 km of DCF with normal GVD (β2 ≈ 160 ps2/km).
The map strength S was quite large in this experiment when 30-ps (FWHM) pulses
were launched into the loop. By 1999, 10-Gb/s DM solitons could be transmitted over
16 Mm of standard fiber when soliton interactions were minimized by choosing the
location of amplifiers appropriately [113].

9.5 Impact of Amplifier Noise

The use of in-line optical amplifiers affects the soliton evolution considerably. The
reason is that amplifiers, needed to restore the soliton energy, also add noise originating
from amplified spontaneous emission (ASE). As discussed in Section 6.5, the spectral
density of ASE depends on the amplifier gain G itself and is given by Eq. (6.1.15). The
ASE-induced noise degrades the SNR through amplitude fluctuations and introduces
timing jitter through frequency fluctuations, both of which impact the performance of
soliton systems. Timing jitter for solitons has been studied since 1986 and is referred
to as the Gordon–Haus jitter [115]–[125]. The moment method is used in this section
for studying the effects of amplifier noise.

9.5.1 Moment Method

The moment method has been introduced in Section 6.5.2 in the context of nonsoliton
pulses. The same treatment can be extended for solitons [122]. In the case of Eq.
(9.4.5), the three moments providing energy E, frequency shift Ω, and position q of the
pulse are given by

E =
∫ ∞

−∞
|B|2dt, q =

1
E

∫ ∞

−∞
t|B|2dt, (9.5.1)

Ω =
i

2E

∫ ∞

−∞

(
B∗ ∂B

∂ t
−B

∂B∗

∂ t

)
dt. (9.5.2)

The three quantities depend on z and vary along the fiber as the pulse shape governed
by |B(z,t)|2 evolves. Differentiating E, Ω, and q with respect to z and using Eq. (9.4.5),
the three moments are found to evolve with z as [124]

dE
dz

= ∑
n

δEnδ (z− zn), (9.5.3)

dΩ
dz

= ∑
n

δΩnδ (z− zn), (9.5.4)

dq
dz

= β2Ω +∑
n

δqnδ (z− zn), (9.5.5)

where δEn, δΩn, and δqn are random changes induced by ASE at the nth amplifier lo-
cated at zn. The sum in these equations extends over the total number NA of amplifiers.
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Fiber losses do not appear in Eq. (9.5.3) because of the transformation B = A/
√

p made
in deriving Eq. (9.4.5); the actual pulse energy is given by pE, where p(z) is obtained
by solving Eq. (9.3.11).

The physical meaning of the moment equations is clear from Eqs. (9.5.3)–(9.5.5).
Both E and Ω remain constant while propagating inside optical fibers but change in a
random fashion at each amplifier location. Equation (9.5.5) shows how frequency fluc-
tuations induced by an amplifier become temporal fluctuations because of the GVD.
Physically speaking, the group velocity of the pulse depends on frequency. A ran-
dom change in the group velocity results in a shift of the soliton position by a random
amount within the bit slot. As a result, frequency fluctuations are converted into timing
jitter by the GVD. The last term in Eq. (9.5.5) shows that ASE also shifts the soliton
position directly.

Fluctuations in the position and frequency of a soliton at any amplifier vanish on
average but their variances are finite. Moreover, the two fluctuations are not indepen-
dent as they are produced by the same physical mechanism (spontaneous emission).
We thus need to consider how the optical field B(z,t) is affected by ASE and then cal-
culate the variances and correlation functions of E, Ω, and q. At each amplifier, the
field B(z,t) changes by δB(z,t) because of ASE. The fluctuation δB(z,t) vanishes on
average; its second-order moment can be written as

〈δB(za,t)δB(za,t
′)〉 = Sspδ (t − t ′), (9.5.6)

where za denotes the location of an amplifier and

Ssp = nsphν0(G−1) (9.5.7)

is the spectral density of ASE noise assumed to be constant (white noise) by treating
the ASE process as a Markovian stochastic process [9]. This is justified in view of
the independent nature of each spontaneous-emission event. The angle brackets in Eq.
(9.5.6) denote an ensemble average over all such events. In Eq. (9.5.7), G represents
the amplifier gain, hν0 is the photon energy, and the spontaneous emission factor n sp is
related to the noise figure Fn of the amplifier as Fn = 2nsp.

The moments of δEn, δqn, and δΩn are obtained by replacing B in Eqs. (9.5.1) and
(9.5.2) with B + δB and linearizing in δB. For an arbitrary pulse shape, the second-
order moments are given by [122]

〈(δE)2〉 = 2Ssp

∫ ∞

−∞
|B|2 dt, 〈(δq)2〉 =

2Ssp

E2
0

∫ ∞

−∞
(t −q)2|B|2 dt, (9.5.8)

〈(δΩ)2〉 =
2Ssp

E2
0

∫ ∞

−∞

∣∣∣∣∂B
∂ t

∣∣∣∣
2

dt, 〈δE δq〉 =
2Ssp

E0

∫ ∞

−∞
(t −q)|B|2 dt, (9.5.9)

〈δE δΩ〉 =
iSsp

E0

∫ ∞

−∞

(
V ∗ ∂V

∂ t
−V

∂V ∗

∂ t

)
dt, (9.5.10)

〈δΩ δq〉 =
iSsp

2E2
0

∫ ∞

−∞
(t −q)

(
V ∗ ∂V

∂ t
−V

∂V ∗

∂ t

)
dt, (9.5.11)

where V = Bexp(iΩt). The integrals in these equations can be calculated if B(z a,t)
is known at the amplifier location. The variances and correlations of fluctuations are
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the same for all amplifiers because ASE in any two amplifiers is not correlated (the
subscript n has been dropped for this reason).

The pulse shape depends on whether the GVD is constant along the entire link or is
changing in a periodic manner through a dispersion map. In the case of DM solitons,
the exact form of B(za,t) can only be obtained by solving Eq. (9.4.5) numerically.
The use of Gaussian approximation for the pulse shape simplifies the analysis without
introducing too much error because the pulse shape deviates from Gaussian only in
the pulse wings (which contribute little to the integrals because of their low intensity
levels). However, Eq. (9.4.6) should be modified as

B(z,t) = a exp[−(1+ iC)(t −q)2/2T 2 − iΩ(t −q)+ iφ ] (9.5.12)

to include the frequency shift Ω and the position shift q explicitly, both of which are
zero in the absence of optical amplifiers. The six parameters (a,C,T,q,Ω, and φ ) vary
with z in a periodic fashion. Using Eq. (9.5.12) in Eqs. (9.5.8)–(9.5.11), the variances
and correlations of fluctuations are found to be

〈(δE)2〉 = 2SspE0, 〈(δΩ)2〉 = (Ssp/E0)[(1+C2
0)/T 2

0 ], (9.5.13)

〈(δq)2〉 = (Ssp/E0)T 2
0 , 〈δEδq〉 = 0, (9.5.14)

〈δΩδq)〉 = (Ssp/E0)C0, 〈δEδΩ〉 = (2π−1/2)SspC0/T0. (9.5.15)

The input pulse parameters appear in these equations because the pulse recovers its
original form at each amplifier for DM solitons.

In the case of constant-dispersion fibers or DDFs, the soliton remains unchirped
and maintains a “sech” shape. In this case, Eq. (9.5.12) should be replaced with

B(z,t) = asech[(t −q)/T ]− iΩ(t −q)+ iφ ]. (9.5.16)

Using Eq. (9.5.16) in Eqs. (9.5.8)–(9.5.11), the variances are given by

〈(δE)2〉 = 2SspE0, 〈(δΩ)2〉 =
2Ssp

3E0T 2
0

, 〈(δq)2〉 =
π2Ssp

6E0
T 2

0 , (9.5.17)

but all three cross-correlations are zero. The presence of chirp on the DM solitons is
responsible for producing cross-correlations.

9.5.2 Energy and Frequency Fluctuations

Energy fluctuations induced by optical amplifiers degrade the optical SNR. To find
the SNR, we integrate Eq. (9.5.3) between two neighboring amplifiers and obtain the
recurrence relation

E(zn) = E(zn−1)+ δEn, (9.5.18)

where E(zn) denotes energy at the output of the nth amplifier. It is easy to solve this
recurrence relation for a cascaded chain of NA amplifiers to obtain

E f = E0 +
NA

∑
n=1

δEn, (9.5.19)
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where E f is the output energy and E0 is the input energy of the pulse. The energy
variance is calculated using Eq. (9.5.13) with 〈δEn〉 = Ssp and is given by

σ2
E ≡ 〈E2

f 〉− 〈E f 〉2 = 2NASspE0. (9.5.20)

The optical SNR is obtained in a standard manner and is given by

SNR = E0/σE = (E0/2NASsp)1/2. (9.5.21)

Two conclusions can be drawn from this equation. First, the SNR decreases as the
number of in-line amplifiers increases because of the accumulation of ASE along the
link. Second, even though Eq. (9.5.21) applies for both the standard and DM soli-
tons, the SNR is improved for DM solitons because of their higher energies. In fact,

the improvement factor is given by f 1/2
DM, where fDM is the energy enhancement factor

associated with the DM solitons. As an example, the SNR is 14 dB after 100 am-
plifiers spaced 80-km apart for DM solitons with 0.1-pJ energy using n sp = 1.5 and
α = 0.2 dB/km.

Frequency fluctuations induced by optical amplifiers are found by integrating Eq.
(9.5.4) over one amplifier spacing, resulting in the recurrence relation

Ω(zn) = Ω(zn−1)+ δΩn, (9.5.22)

where Ω(zn) denotes frequency shift at the output of the nth amplifier. As before,
the total frequency shift Ω f for a cascaded chain of NA amplifiers is given by Ω f =
∑NA

n=1 δΩn, where the initial frequency shift at z = 0 is taken to be zero because the
soliton frequency equals the carrier frequency at the input end.

The variance of frequency fluctuations can be calculated using

σ2
Ω ≡ 〈Ω2

f 〉− 〈Ω f 〉2 =
NA

∑
n=1

NA

∑
m=1

〈δΩnδΩm〉, (9.5.23)

where we used 〈Ω f 〉 = 0. The average in this equation can be performed by not-
ing that frequency fluctuations at two different amplifiers are not correlated. Using
〈δΩnδΩm〉 = 〈(δΩ)2〉δnm with Eq. (9.5.13) and performing the double sum in Eq.
(9.5.23), the frequency variance for DM solitons is given by

σ2
Ω = NA(Ssp/E0)[(1+C2

0)/T 2
0 ] = NASsp/(E0T 2

m), (9.5.24)

where Tm is the minimum pulse width within the dispersion map at the location where
the pulse is transform-limited (no chirp). The variance increases linearly with the num-
ber of amplifiers. It also depends on the width T0 and C0 of the input pulse. However,
the chirp parameter can be eliminated if σ 2

Ω is written in terms of the minimum pulse
width. In practice, Tm is also the width of the pulse at the optical transmitter before it
is prechirped.

In the case of standard solitons, we should use Eq. (9.5.17) while performing the
average in Eq. (9.5.23). The variance of frequency fluctuations in this case becomes

σ2
Ω = NASsp/(3E0T 2

0 ). (9.5.25)
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Notice that T0 is also equal to Tm for standard solitons which remain unchirped during
propagation and maintain their width all along the fiber. At first site, it appears that DM
solitons have a variance larger by a factor of 3 compared with the standard solitons.
However, this is not the case if we recall that the input pulse energy E 0 is enhanced for
DM solitons by a factor typically exceeding 3. As a result, the variance of frequency
fluctuations is expected to be smaller for DM solitons.

Frequency fluctuations do not affect a soliton system directly unless a coherent
detection scheme with frequency or phase modulation is employed (see Chapter 10).
Nevertheless, they play a significant indirect role by inducing timing jitter such that the
pulse in each 1 bit shifts from the center of its assigned bit slot in a random fashion.
We turn to this issue next.

9.5.3 Timing Jitter

If optical amplifiers compensate for fiber losses, one may ask what limits the total
transmission distance of a soliton link. The answer is provided by the timing jitter
induced by optical amplifiers [115]–[125]. The origin of timing jitter can be understood
by noting that a change in the soliton frequency by Ω affects the group velocity or
the speed at which the pulse propagates through the fiber. If Ω fluctuates because of
amplifier noise, soliton transit time through the fiber link also becomes random.

To calculate the variance of pulse-position fluctuations, we integrate Eq. (9.5.5)
over the fiber section between two amplifiers and obtain the recurrence relation

q(zn) = q(zn−1)+ Ω(zn−1)
∫ zn

zn−1

β2(z)dz+ δqn, (9.5.26)

where q(zn) denotes the position at the output of the nth amplifier. This equation shows
that the pulse position changes between any two amplifiers for two reasons. First, the
cumulative frequency shift Ω(zn−1) produces a temporal shift if the GVD is not zero
because of changes in the group velocity. Second, the nth amplifier shifts the position
randomly by δqn. It is easy to solve this recurrence relation for a cascaded chain of NA

amplifiers to obtain the final position in the form

q f =
NA

∑
n=1

δqn + β̄2LA

NA

∑
n=1

n−1

∑
i=1

δΩi, (9.5.27)

where β̄2 is the average value of the GVD and the double sum stems from the cumula-
tive frequency shift appearing in Eq. (9.5.26).

Timing jitter is calculated from this equation using σ 2
t = 〈q2

f 〉−〈q f 〉2 together with
〈q f 〉 = 0. As before, the average can be performed by noting that fluctuations at two
different amplifiers are not correlated. However, the timing jitter depends not only on
the variances of position and frequency fluctuations but also on the cross-correlation
function 〈δq δΩ〉 at the same amplifier. The result can be written as

σ2
t =

NA

∑
n=1

〈(δq)2〉+ β̄2LA

NA

∑
n=1

(n−1)〈δq δΩ〉+(β̄2LA)2
NA

∑
n=1

(n−1)2〈(δΩ)2〉. (9.5.28)
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Figure 9.17: (a) ASE-induced timing jitter as a function of length for a 40-Gb/s system designed
with DM (solid curve) and standard (dashed line) solitons.

Using Eqs. (9.5.13)–(9.5.15) in this equation and performing the sums, the timing jitter
of DM solitons is given by [124]

σ2
t =

SspT 2
m

E0
[NA(1+C2

0)+ NA(NA −1)C0d + 1
6 NA(NA −1)(2NA −1)d2], (9.5.29)

where the normalized parameter d is related to the accumulated dispersion over one
amplifier spacing as

d =
1

T 2
m

∫ LA

0
β2(z)dz =

β̄2LA

T 2
m

. (9.5.30)

The three terms in Eq. (9.5.29) have the following origins. The first term inside
the square brackets results from direct position fluctuations of a soliton within each
amplifier. The second term is related to the cross-correlation between frequency and
position fluctuations because both are produced by the same ASE noise. The third
term is solely due to frequency fluctuations. For a long chain of cascaded amplifiers
(NA � 1), the jitter is dominated by the last term in Eq. (9.5.30) because of its N 3

A
dependence and is approximately given by

σ2
t

T 2
m
≈ Ssp

3E0
N3

Ad2 =
SspL3

T

3E0L2
DLA

, (9.5.31)

where Eq. (9.5.30) was used together with LD = T 2
m/|β̄2| and NA = LT /LA for a light-

wave system with the total transmission distance LT .
Because of the cubic dependence of σ 2

t on the system length LT , the timing jitter
can become an appreciable fraction of the bit slot for long-haul systems, especially at
bit rates exceeding 10 Gb/s for which the bit slot is shorter than 100 ps. Such jitter
would lead to large power penalties if left uncontrolled. As discussed in Section 6.5.2,
jitter should be less than 10% of the bit slot in practice. Figure 9.17 shows how timing
jitter increases with LT for a 40-Gb/s DM soliton system designed using a dispersion
map consisting of 10.5 km of anomalous-GVD fiber and 9.7 km of normal-GVD fiber
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[D = ±4 ps/(km-nm)]. Optical amplifiers with nsp = 1.3 (noise figure 4.1 dB) are
placed every 80.8 km (4 map periods) along the fiber link for compensating 0.2-dB/km
losses. Variational equations were used to find the input pulse parameters for which
the soliton recovers periodically after each map period: T0 = 6.87 ps, C0 = 0.56, and
E0 = 0.402 pJ. The nonlinear parameter γ was 1.7 W−1/km.

An important question is whether the use of dispersion management is helpful or
harmful from the standpoint of timing jitter. The timing jitter for standard solitons can
be found in a closed form by using Eq. (9.5.17) in Eq. (9.5.28) and is given by

σ2
t =

SspT 2
0

3Es
[NA + 1

6 NA(NA −1)(2NA −1)d2], (9.5.32)

where we have used Es for the input soliton energy to emphasize that it is different
from the DM soliton energy E0 used in Eq. (9.5.29). For a fair comparison of the DM
and standard solitons, we consider an identical soliton system except that the dispersion
map is replaced by a single fiber whose GVD is constant and equal to the average value
β̄2. The soliton energy Es can be found by using Eq. (9.2.3) in Eq. (9.2.5) and is given
by

Es = 2 fLM|β̄2|/(γT0), (9.5.33)

where the factor fLM is the enhancement factor resulting from loss management ( f LM ≈
3.8 for a 16-dB gain). The dashed line in Fig. 9.17 shows the timing jitter using Eqs.
(9.5.32) and (9.5.33). A comparison of the two curves shows that the jitter is consider-
ably smaller for DM solitons. The physical reason behind the jitter reduction is related
to the enhanced energy of the DM solitons. In fact, the energy ratio E 0/Es equals the
energy enhancement factor fDM introduced earlier in Eq. (9.4.14). From a practical
standpoint, reduced jitter of DM solitons permits much longer transmission distances
as evident from Fig. 9.17. Note that Eq. (9.5.32) also applies for DDFs because the
GVD variations along the fiber can be included through the parameter d as defined in
Eq. (9.5.30).

For long-haul soliton systems, the number of amplifiers is large enough that the N 3
A

term dominates in Eq. (9.5.32), and the timing jitter for standard solitons is approxi-
mately given by [116]

σ2
t

T 2
0

=
SspL3

T

9EsL2
DLA

. (9.5.34)

Comparing Eqs. (9.5.31) and (9.5.34), one can conclude that the timing jitter is reduced
by a factor of ( fDM/3)1/2 when DM solitons are used. The factor of 3 has its origin in
the nearly Gaussian shape of the DM solitons.

To find a simple design rule, we can use Eq. (9.5.34) with the condition σ t < b j/B,
where b j is the fraction of the bit slot by which a soliton can move without affecting
the system performance adversely. Using B = (2q0T0)−1 and Es from Eq. (9.5.33), the
bit rate–distance product BLT for standard solitons is found to be limited by

BLT <

(
9b2

j fLMLA

Sspq0γβ̄2

)1/3

. (9.5.35)
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For DM solitons the energy enhancement factor f LM is replaced by fLM fDM/3. The tol-
erable value of b j depends on the acceptable BER and on details of the receiver design;
typically, b j < 0.1. To see how amplifier noise limits the total transmission distance,
consider a standard soliton system operating close to the zero-dispersion wavelength
with parameter values q0 = 5, α = 0.2 dB/km, γ = 2 W−1/km, β̄2 = −1 ps/(km-nm),
nsp = 1.5, LA = 80 km, and b j = 0.1. Using G = 16 dB, we find fLM = 3.78 and
Ssp = 6.46× 10−6 pJ. With these values, BLT must be below 132 (Tb/s)-km. For a
40-Gb/s system, the transmission distance is limited to below 3300 km. This value can
be increased to above 10,000 km for DM solitons.

9.5.4 Control of Timing Jitter

As the timing jitter ultimately limits the performance of soliton systems, it is essential
to find a solution to the timing-jitter problem before the use of solitons can become
practical. Several techniques were developed during the 1990s for controlling the tim-
ing jitter [126]–[146]. This section is devoted to a brief discussion of them.

The use of optical filters for controlling the timing jitter of solitons was proposed
as early as 1991 [126]–[128]. This approach makes use of the fact that the ASE oc-
curs over the entire amplifier bandwidth but the soliton spectrum occupies only a small
fraction of it. The bandwidth of optical filters is chosen such that the soliton bit stream
passes through the filter but most of the ASE is blocked. If an optical filter is placed
after each amplifier, it improves the SNR because of the reduced ASE and also re-
duces the timing jitter simultaneously. This was indeed found to be the case in a 1991
experiment [127] but the reduction in timing jitter was less than 50%.

The filter technique can be improved dramatically by allowing the center frequency
of the successive optical filters to slide slowly along the link. Such sliding-frequency
filters avoid the accumulation of ASE within the filter bandwidth and, at the same time,
reduce the growth of timing jitter [129]. The physical mechanism behind the operation
of such filters can be understood as follows. As the filter passband shifts, solitons
shift their spectrum as well to minimize filter-induced losses. In contrast, the spectrum
of ASE cannot change. The net result is that the ASE noise accumulated over a few
amplifiers is filtered out later when the soliton spectrum has shifted by more than its
own bandwidth.

The moment method can be extended to include the effects of optical filters by
noting that each filter modifies the soliton field such that

B f (z f ,t) =
1

2π

∫ ∞

−∞
Hf (ω −ω f )B̃(z f ,ω)e−iωt dω , (9.5.36)

where B̃(z f ,ω) is the pulse spectrum and H f is the transfer function of the optical filter
located at ξ f . The filter passband is shifted by ω f from the soliton carrier frequency.
If we approximate the filter spectrum by a parabola over the soliton spectrum and use
Hf (ω −ω f ) = 1−b(ω −ω f )2, it is easy to see that the filter introduces an additional
loss for the soliton that should be compensated by increasing the gain of optical am-
plifiers. The analysis of timing jitter shows that sliding-frequency filters reduce jitter
considerably for both the standard and DM solitons [142].
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Figure 9.18: Timing jitter with (dotted curves) and without (solid curves) sliding-frequency fil-
ters at several bit rates as a function of distance. The inset shows a Gaussian fit to the numerically
simulated jitter at 10,000 km for a 10-Gb/s system. (After Ref. [129]; c©1992 OSA; reprinted
with permission.)

Figure 9.18 shows the predicted reduction in the timing jitter for standard solitons.
The bit-rate dependence is due to the acoustic jitter (discussed later); the B = 0 curves
show the contribution of the Gordon–Haus jitter alone. Optical filters help in reducing
both types of timing jitter and permit transmission of 10-Gb/s solitons over more than
20 Mm. In the absence of filters, timing jitter becomes so large that a 10-Gb/s soliton
system cannot be operated beyond 8000 km. The inset in Fig. 9.18 shows a Gaussian
fit to the timing jitter of 10-Gb/s solitons at a distance of 10 Mm calculated by solving
the NLS equation numerically after including the effects of both the ASE and sliding-
frequency filters [129]. The timing-jitter distribution is approximately Gaussian with a
standard deviation of about 1.76 ps. In the absence of filters, the jitter exceeds 10 ps
under the same conditions.

Optical filters benefit a soliton system in many other ways. Their use reduces in-
teraction between neighboring solitons [130]. The physical mechanism behind the
reduced interaction is related to the change in the soliton phase at each filter. A rapid
variation of the relative phase between neighboring solitons, occurring as a result of
filtering, averages out the soliton interaction by alternating the nature of the interaction
force from attractive to repulsive. Optical filters also help in reducing the accumulation
of dispersive waves [131]. The reason is easy to understand. As the soliton spectrum
shifts with the filters, dispersive waves produced at earlier stages are blocked by filters
together with the ASE.

Solitons can also be controlled in the time domain using the technique of syn-
chronous amplitude modulation, implemented in practice using a LiNbO 3 modula-
tor [132]. The technique works by introducing additional losses for those solitons that
have shifted from their original position (center of the bit slot). The modulator forces
solitons to move toward its transmission peak where the loss is minimum. Mathemati-
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cally, the action of modulator is to change the soliton amplitude as

B(zm,t) → Tm(t − tm)B(zm,t), (9.5.37)

where Tm(τ) is the transmission coefficient of the modulator located at ξ = ξm. The
moment method or perturbation theory can be used to show that timing jitter is reduced
considerably by modulators.

The synchronous modulation technique can also be implemented by using a phase
modulator [133]. One can understand the effect of periodic phase modulation by re-
calling that a frequency shift, δω = −dφ(t)/dt, is associated with any phase variation
φ(t). Since a change in soliton frequency is equivalent to a change in the group veloc-
ity, phase modulation induces a temporal displacement. Synchronous phase modula-
tion is implemented in such a way that the soliton experiences a frequency shift only if
it moves away from the center of the bit slot, which confines it to its original position
despite the timing jitter induced by ASE and other sources. Intensity and phase modu-
lations can be combined together to further improve the system performance [134].

Synchronous modulation can be combined with optical filters to control solitons
simultaneously in both the time and frequency domains. In fact, this combination per-
mits arbitrarily long transmission distances [135]. The use of intensity modulators also
permits a relatively large amplifier spacing by reducing the impact of dispersive waves.
This property of modulators was exploited in 1995 to transmit a 20-Gb/s soliton train
over 150,000 km with an amplifier spacing of 105 km [136]. Synchronous modula-
tors also help in reducing the soliton interaction and in clamping the level of amplifier
noise. The main drawback of modulators is that they require a clock signal that is
synchronized with the original bit stream.

A relatively simple approach uses postcompensation of accumulated dispersion for
reducing the timing jitter [137]. The basic idea can be understood from Eq. (9.5.29)
or Eq. (9.5.32) obtained for the timing jitter of DM and standard solitons, respectively.
The cubic term that dominates the jitter at long distances depends on the accumulated
dispersion through the parameter d defined in Eq. (9.5.30). If a fiber is added at the end
of the fiber link such that it reduces the accumulated GVD, it should help in reducing
the jitter. It is easy to include the contribution of the postcompensation fiber to the
timing jitter using the moment method. In the case of DM solitons, the jitter variance
at the end of a postcompensation fiber of length L c and GVD β2c is given by [124]

σ2
c = σ2

t +(SspT 2
m/E0)[2NAC0dc + NA(NA −1)ddc + NAd2

c ], (9.5.38)

where σ 2
t is given by Eq. (9.5.29) and dc = β2cLc/T 2

M. If we define y = −dc/(NAd) as
the fraction by which the accumulated dispersion NAd is compensated and retain only
the dominant cubic terms in Eq. (9.5.38), this equation can be written as

σ2
c = N3

Ad2T 2
m

Ssp

E0

(
1
3
− y+ y2

)
. (9.5.39)

The minimum value occurs for y = 0.5 for which σ 2
c is reduced by a factor of 4. Thus,

timing jitter of solitons can be reduced by a factor of 2 by postcompensating the accu-
mulated dispersion by 50%. The same conclusion holds for standard solitons [137].
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Several other techniques can be used for controlling the timing jitter. One approach
consists of inserting a fast saturable absorber periodically along the fiber link. Such
a device absorbs low-intensity light such as ASE and dispersive waves but leaves the
solitons intact by becoming transparent at high intensities. To be effective, it should
respond at a time scale shorter than the soliton width. It is difficult to find an absorber
that can respond at such short time scales. A nonlinear optical-loop mirror (see Section
8.4) can act as a fast saturable absorber and reduces the timing jitter of solitons while
also stabilizing their amplitude [138]. Re-timing of a soliton train can also be accom-
plished by taking advantage of cross-phase modulation [139]. The technique overlaps
the soliton data stream and another pulse train composed of only 1 bits (an optical
clock) inside a fiber where cross-phase modulation (XPM) induces a nonlinear phase
shift on each soliton in the signal bit stream. Such a phase modulation translates into
a net frequency shift only when the soliton does not lie in the middle of the bit slot.
Similar to the case of synchronous phase modulation, the direction of the frequency
shift is such that the soliton is confined to the center of the bit slot. Other nonlinear ef-
fects such as stimulated Raman scattering [140] and four-wave mixing (FWM) can also
be exploited for controlling the soliton parameters [141]. The technique of distributed
amplification also helps in reducing the timing jitter. As an example, if solitons are
amplified using distributed Raman amplification, timing jitter can be reduced by about
a factor of 2 [125].

9.6 High-Speed Soliton Systems

As seen in Section 8.4, the optical time-division multiplexing (OTDM) technique can
be used to increase the single-channel bit rate to beyond 10 Gb/s. As early as 1993,
the bit rate of a soliton-based system was extended to 80 Gb/s with this method [147].
The major limitation of such systems stems from nonlinear interaction between two
neighboring solitons. This problem is often solved by using a variant of polarization
multiplexing in which neighboring bit slots carry orthogonally polarized pulses. The
80-Gb/s signal could be transmitted over 80 km with this technique. The same tech-
nique was later used to extend the bit rate to 160 Gb/s [148]. At such high bit rates, the
bit slot is so small that the soliton width is typically reduced to below 5 ps, and sev-
eral higher-order nonlinear and dispersive effects should be considered. This section is
devoted to such issues.

9.6.1 System Design Issues

Both fiber losses and dispersion need to be managed properly in soliton systems de-
signed to operate at high bit rates. The main design issues are related to the choice of a
dispersion map and the relationship between the map period L map and amplifier spac-
ing LA. As discussed in Section 9.4.2, the parameter Tmap given in Eq. (9.4.11) sets
the scale for the shortest pulse that can be propagated in a periodic fashion. Thus, the
important design parameters are the local GVD and the length of various fiber sections
used to form the dispersion map.
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In the case of terrestrial systems operating over standard fibers and dispersion-
managed using DCFs, |β2| exceeds 20 ps2/km in both sections of the dispersion map.
Consider, as an example, the typical situation in which the map consists of 60–70
km of standard fiber whose dispersion is compensated with 10–15 km of DCFs. The
parameter Tmap exceeds 25 ps for such maps. At the same time, the map strength is
large enough that the pulse width oscillates over a wide range. These features make it
difficult to realize a bit rate of even 40 Gb/s although such a map permitted by 1997
transmission of four 20-Gb/s channels over 2000 km [149]. Numerical simulations
show the possibility of transmitting 40-Gb/s DM solitons over 2000 km of standard
fiber if the average GVD of the dispersion map is kept relatively low [150]. In a 1999
experiment, 40-Gb/s DM solitons were indeed transmitted over standard fibers but the
distance was limited to only 1160 km [151]. Interaction between solitons was the most
limiting factor in this experiment. By 2000, the use of highly nonlinear fibers together
with synchronous in-line modulation permitted transmission of 40-Gb/s solitons over
transoceanic distance [152].

To design high-speed soliton systems operating at 40 Gb/s or more, the Tmap pa-
rameter should be reduced to below 10 ps. If only a single-channel is transmitted,
one can use fibers with values of local GVD below 1 ps2/km. However, in the case
of WDM systems the GVD parameter should be relatively large (|β 2| > 4 ps2/km) in
both the normal and anomalous-GVD fiber sections for suppressing the nonlinear ef-
fects such as cross-phase modulation (XPM) and four-wave mixing (FWM). It follows
from Eq. (9.4.11) that the map period should become smaller and smaller as the bit
rate increases. For example, when |β2| = 5 ps2/km in the two sections, the map period
should be less than 15 km for realizing Tmap < 6 ps. Such a map is suitable at bit rates
of 40 Gb/s with only 25-ps bit slot. As an example, Fig. 9.19 shows the evolution of a
DM soliton with the map used earlier for Figs. 9.15 and 9.16; the pulse parameters cor-
respond to those of Fig. 9.16(b). The system design employs 8 map periods per 80-km
amplifier spacing. Pulses at each amplifier maintain their shape even after 10 Mm even
though pulse width and chirp oscillate within each map period as seen in Fig. 9.16(b).

The map used for Fig. 9.19 is suitable for 40-Gb/s systems but would not work at a
bit rate of 100 Gb/s. A 100-Gb/s system has a bit period of only 10 ps and would require
a dispersion map with Tmap < 4 ps. Such systems require the use of dense or short-
period dispersion management, a scheme in which the map period is a small fraction
of the amplifier spacing [153]–[158]. Numerical simulation show the possibility of
transmission at bit rates as high as 320 Gb/s [157] if the map period is reduced to
below 1 km. Such fiber links may be hard to construct although a short-period DM
cable with the map period of 9 km has been made [159]. In this cable, the dispersion
map consisted of two 4.5-km fiber sections with GVD values of 17 and −15 ps/(km-
nm), resulting in an average dispersion of 1 ps/(km-nm). It was used to demonstrate
640-Gb/s WDM transmission (32 channels at 20 Gb/s) over 280 km. The parameter
Tmap is about 6 ps for this dispersion map and can be reduced further by decreasing the
local and the average GVD. In principle, such a fiber cable should be able to operate at
40 Gb/s per channel.

If a lightwave system is designed to support a single channel only, the dispersion
map can be made using low-GVD fibers. For example, when β 2 = ±0.5 ps2/km and
section lengths are nearly equal to 40 km, Tmap ≈ 3.2 ps. Such a soliton system can op-
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Figure 9.19: Evolution of a DM soliton over 8000 km with dense dispersion management (8
map periods per amplifier spacing). The map and pulse parameters correspond to those of
Fig. 9.16(b).

erate at 40 Gb/s if the average GVD is kept low. In a 1998 experiment, 40-Gb/s solitons
were indeed transmitted over 8600 km using a 140-km-long fiber loop with an aver-
age dispersion of only −0.03 ps2/km [160]. Interaction between solitons was the most
limiting factor in this experiment. As discussed later in this section, it can be reduced
by alternating the polarization of neighboring bits. Indeed, the use of this technique
permitted by 1999 the transmission of 40-Gb/s solitons over more than 10 Mm with-
out employing any jitter-control technique [161]. The use of synchronous modulation
allowed transmission of even 80-Gb/s solitons over 10 Mm [162]. Much higher capac-
ities can be realized using the combination of WDM and OTDM techniques [163]. In
a 2000 experiment, a single OTDM channel at a bit rate of 1.28 Tb/s was transmitted
over 70 km using 380-fs optical pulses [164]. The transmission distance of such sys-
tems is limited by fiber dispersion; it was necessary to compensate for dispersion up to
fourth order.

9.6.2 Soliton Interaction

The interaction among neighboring pulses becomes a critical issue as the bit rate in-
creases. The reason is that the bit slot becomes so small (only 10 ps at 100 Gb/s)
that one is often forced to pack the solitons closely. The interaction between two DM
solitons can be studied numerically or by using a variational technique [165]–[170].
The qualitative features are similar to those discussed in Section 9.2.2 for the standard
solitons. In general, the parameter q0, related to the bit rate as B = (2q0T0)−1, should
exceed 4 for the system to work properly.

A new feature of the interaction among DM solitons is that the collision length
depends on details of the dispersion map. As a result, soliton systems can be optimized
by choosing the pulse and the map parameters appropriately. Numerical simulations
show that the system performance is optimum when the map strength is chosen to
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Figure 9.20: Propagation of a 32-bit soliton stream over 8000 km when the input pulse parame-
ters correspond to those used in Fig. 9.16. Pulse energy equals 0.1 pJ in the top panel but has its
optimum for the bottom panel.

be around 1.6 [165]. This value corresponds to a pulse energy in the vicinity of the
minimum seen in Fig. 9.15. As an example, Fig. 9.20 shows propagation of a pulse train
consisting of a 32-bit pattern over 8000 km for E 0 = 0.1 pJ (top panel) and its optimum
value (bottom panel). The periodic evolution of the chirp and pulse width in these two
cases is shown in Fig. 9.16. When the pulse energy is larger than the optimum value
(higher map strength), solitons begin to collide after 3000 km. In contrast, solitons can
propagate more than 8000 km before colliding when the pulse parameters are suitably
optimized.

A new multiplexing technique, called intrachannel polarization multiplexing, can
be used to reduce interaction among solitons. This technique is different from the
conventional polarization-division multiplexing in which two neighboring channels at
different wavelengths are made orthogonally polarized. In the case of intrachannel
polarization multiplexing, the bits of a single-wavelength channel are interleaved in
such a way that any two neighboring bits are orthogonally polarized. The technique was
used for solitons as early as 1992 and has been studied extensively since then [171]–
[179].

Figure 9.21 shows the basic idea behind polarization multiplexing schematically.
At first glance, such a scheme should not work unless polarization-maintaining fibers
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llel

Figure 9.21: (a) Polarization multiplexing scheme and (b) the improvement realized with its use
for a 40-Gb/s soliton system. (After Ref. [161]; c©1999 IEEE; reprinted with permission.)

are used since the polarization state of light changes randomly because of birefrin-
gence fluctuations resulting in polarization-mode dispersion (PMD). It turns out that
even though the polarization states of the bit train does change in an unpredictable
manner, the orthogonal nature of any two neighboring bits is nearly preserved. Be-
cause of this orthogonality, the interaction among solitons is much weaker compared
with the copolarized-solitons case. Figure 9.21 shows how the reduced interaction low-
ers the bit-error rate (BER) and increases the transmission distance of a 40-Gb/s soliton
system.

The use of polarization multiplexing helps to increase the bit rate as solitons can
be packed more tightly because of reduced interaction among them [172]. Its imple-
mentation is not difficult in practice when the OTDM technique is used. It requires
the generation of two bit streams using orthogonally polarized optical carriers and then
interleave them using an optical delay line (see Section 8.4). A polarizing beam split-
ter can be used in combination with a polarization controller to demultiplex the two
orthogonally polarized channels at the receiver end.

An important factor limiting the performance of polarization-multiplexed soliton
systems is the PMD induced by random changes in the fiber birefringence [177]. In
fact, PMD seriously limits the use of this technique for nonsoliton systems through
pulse depolarization (different parts of the pulse have different polarizations). The sit-
uation is different for solitons which are known to be much more robust to the PMD
effects [180]. The natural tendency of a soliton to preserve its integrity under vari-
ous perturbations also holds for perturbations affecting its state of polarization. Unlike
linear pulses, the state of polarization remains constant across the entire soliton (no
depolarization across the pulse), and the effect of PMD is to induce a small change in
the state of polarization of the entire soliton (a manifestation of its particle-like nature).
Such resistance of solitons to PMD, however, breaks down for large amounts of PMD.
The breakdown occurs for D p > 0.3D1/2 [181], where Dp is the PMD parameter intro-
duced in Section 2.3.5 and expressed in ps/

√
km and D is the dispersion parameter in

units of ps/(nm-km). Since typically D p < 0.1 ps/
√

km for high-quality optical fibers,
D must exceed 0.06 ps/(nm-km). In the case of DM solitons, D corresponds to the
average GVD of the link.
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An extension of the polarization-multiplexing technique, called polarization-multi-
level coding, has also been suggested [175]. In this technique, the information coded in
each bit is contained in the angle that the soliton state of polarization makes with one
of the principal birefringence axes. This technique is also limited by random variations
of fiber birefringence and by randomization of the polarization angle by the amplifier
noise and has not yet been implemented because of its complexity.

9.6.3 Impact of Higher-Order Effects

Higher-order effects such as TOD and intrapulse Raman scattering become quite im-
portant at high bit rates and must be accounted for a correct description of DM solitons
[182]–[185]. These effects can be included by adding two new terms to the standard
NLS equation as was done in Eq. (9.3.16) in the context of distributed amplification of
standard solitons. In the case of DM solitons, the Raman and TOD terms are added to
Eq. (9.4.5) to obtain the following generalized NLS equation:

i
∂B
∂ z

− β2(z)
2

∂ 2B
∂ t2 + γ p(z)|B|2B =

iβ3

6
∂ 3B
∂ t3 + TRγ p(z)B

∂ |B|2
∂ t

, (9.6.1)

where TR is the Raman parameter with a typical value of 3 fs [10]. The effective non-
linear parameter γ̄ ≡ γ p is z dependent because of variations in the soliton energy along
the fiber link. The Raman term leads to the Raman-induced frequency shift known as
the SSFS. This shift is negligible for 10-Gb/s systems but becomes increasingly im-
portant as the bit rate increases to 40 Gb/s and beyond. The TOD term also becomes
important at high bit rates, especially when the average GVD of the fiber link is close
to zero.

To understand the impact of TOD and SSFS on solitons, we use the moment method
of Section 9.5 and assume that the last two terms in Eq. (9.6.1) are small enough that
the pulse shape remains approximately Gaussian. Using Eq. (9.6.1) in Eqs. (9.5.1) and
(9.5.2), the frequency shift Ω, and soliton position q are found to evolve with z as

dΩ
dz

= − γ pTR

E

∫ ∞

−∞

(
∂ |B|2

∂ t

)2

dt +∑
n

δΩnδ (z− zn), (9.6.2)

dq
dz

= β2Ω +
β3

6E

∫ ∞

−∞

(
∂ |B|
∂ t

)2

dt +∑
n

δqnδ (z− zn), (9.6.3)

where the last term accounts for fluctuations induced by the amplifier noise. These
equations show that the Raman term in Eq. (9.6.1) leads to a frequency shift while the
TOD term produces a shift in the soliton position.

Consider the case of standard loss-managed solitons. If we ignore the noise terms
and integrate Eqs. (9.6.2) and (9.6.3) after using B(z,t) from Eq. (9.5.16), the Raman-
induced frequency shift Ω and the soliton position q are found to evolve along the fiber
length as

Ω(z) = −4γTREs

15T 3
0

∫ z

0
p(z)dz ≡−8 fLM|β2|

15T 4
0

∫ z

0
p(z)dz, (9.6.4)

q(z) = β2

∫ z

0
Ω(z)dz+

β3z

18T 2
0

+ β3

∫ z

0
Ω2 dz, (9.6.5)
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Figure 9.22: Pulse envelopes at distances ξ = z/LD = 0, 5, and 10 showing the delay of a soliton
because of the Raman-induced-frequency shift.

where Eq. (9.5.33) was used for the input soliton energy. The frequency shift grows
linearly with z in the case of perfect distributed amplification (p = 1) but follows energy
variations in the case of lumped amplification. In both cases, its magnitude scales with
pulse width as T−4

0 . It is this feature that makes the SSFS increasingly more important
as the bit rate increases. The soliton position q is affected by both the Raman-induced
frequency shift and the TOD parameter β3. This shift is deterministic in nature, in
contrast with the position shift induced by amplifier-induced frequency fluctuations.
The dominant contribution to q in Eq. (9.6.5) comes from the β 2 term.

One can understand the origin of changes in the soliton position by noting that
the Raman-induced frequency shift in the carrier frequency toward longer wavelengths
slows down a pulse propagating in the anomalous-GVD regime of the fiber. Figure
9.22 shows such a slowing down of a standard soliton (N = 1) by solving Eq. (9.6.1)
numerically with β3 = 0 and TR/T0 = 0.05. By the time the soliton has propagated over
10 dispersion lengths, it has been delayed by a significant fraction of its own width. A
delay in the arrival time of a soliton is not of much concern when all bits are delayed
by the same amount. However, the pulse energy and width fluctuate from bit to bit
because of fluctuations induced by the amplifier noise. Such fluctuations are converted
into timing jitter by the SSFS. The Raman-induced timing jitter is discussed later in
this section.

How is the Raman-induced frequency shift affected by dispersion management?
The width of DM solitons is not constant but oscillates in a periodic manner. Since the
SSFS depends on the pulse width, it is clear that it will also vary significantly within
each map period. The highest frequency shift occurs in the central region of each sec-
tion where the pulse is nearly unchirped and the width is shortest. The total frequency
shift will be less for DM solitons compared with the standard solitons for which the
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pulse remains unchirped throughout the link. Moreover, the SSFS will depend on the
map strength and will be lower for stronger maps [182].

The effects of TOD on DM solitons is apparent from Eq. (9.6.5). The second term
in this equation shows that the TOD produces a shift in the soliton position even in
the absence of the Raman term (TR = 0). The shift increases linearly with distance
as (β3/18T 2

0 )z and is negligible until T0 becomes much shorter than 10 ps. As an
example, the temporal shift is 5 fs/km for T0 = 1 ps and β3 = 0.09 ps3/km and becomes
comparable to the pulse width after 200 km of propagation. The shift increases in the
presence of SSFS as apparent from the last term in Eq. (9.6.5). This shift is relatively
small as it requires the presence of both the SSFS and TOD and can be neglected in
most cases of practical interest. The TOD also distorts the DM soliton and generates
dispersive waves [184]. Under certain conditions, a DM soliton can propagate over
long distances after some energy has been shed in the form of dispersive waves [183].

Numerical simulations based on Eq. (9.6.1) show that 80-Gb/s solitons can prop-
agate stably over 9000 km in the presence of higher-order effects if (i) TOD is com-
pensated within the map, (ii) optical filters are used to reduce soliton interaction, tim-
ing jitter, and the Raman-induced frequency shift, and (iii) the map period L map is
reduced to a fraction of amplifier spacing [153]. The bit rate can even be increased to
160 Gb/s by controlling the GVD slope and PMD, but the distance is limited to about
2000 km [155]. These results show that soliton systems operating at 160 Gb/s are
possible if their performance is not limited by timing jitter. We turn to this issue next.

9.6.4 Timing Jitter

Timing jitter discussed earlier in Section 9.5.4 increases considerably at higher bit rates
because of the use of shorter optical pulses. Both the Raman effect and TOD lead to
additional jitter that increases rapidly with the bit rate [186]–[189]. Moreover, several
other mechanisms begin to contribute to the timing jitter. In this section we consider
these additional sources of timing jitter.

Raman Jitter

The Raman jitter is a new source of timing jitter that dominates at high bit rates re-
quiring short optical pulses (T0 < 5 ps). Its origin can be understood as follows [187].
The Raman-induced frequency shift depends on the pulse energy as seen in Eq. (9.6.4).
This frequency shift by itself does not introduce jitter because of its deterministic na-
ture. However, fluctuations in the pulse energy introduced by amplifier noise can be
converted into fluctuations in the soliton frequency through the Raman effect, which
are in turn translated into position fluctuations by the GVD. The Raman jitter occurs
for both the standard and DM solitons. In the case of standard solitons, the use of DDFs
is often necessary but the analysis is simplified because the solitons are unchirped and
maintain their width during propagation [187].

In the case of DM solitons, the pulse energy, width, and chirp oscillate in a periodic
manner. To keep the discussion simple, the effects of TOD are ignored although they
can be easily included. Using Eqs. (9.6.2) and (9.6.3) and following the method used
in Section 9.5.4, the frequency shift and position of the soliton at the end of the nth
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amplifier can be written as

Ω(zn) = Ω(zn−1)+ bRE(zn−1)+ δΩn, (9.6.6)

q(zn) = q(zn−1)+ b2Ω(zn−1)+ b2RE(zn−1)+ δqn, (9.6.7)

where the parameters b2, bR, and b2R are defined as

b2 =
∫ LA

0
β2(z)dz, bR = − TR

2
√

π

∫ LA

0

dzγ(z)
T 3(z)

[∫ z

0
p(z1)dz1

]
, (9.6.8)

b2R = − TR

2
√

π

∫ LA

0
dzβ2(z)γ(z)

∫ z

0

dz1

T 3(z1)

[∫ z1

0
p(z2)dz2

]
, (9.6.9)

where p(z) takes into account variations in the pulse energy. In the case of lumped
amplification, p(z) = exp(−αz).

The physical meaning of Eqs. (9.6.6) and (9.6.7) is quite clear. Between any two
amplifiers, the Raman-induced frequency shift within the fiber should be added to the
ASE-induced frequency shift. The former, however, depends on the pulse energy and
would change randomly in response to energy fluctuations. The position of the pulse
changes because of the cumulative frequency shifts induced by the Raman effect and
amplifier noise. The two recurrence relations in Eqs. (9.6.6) and (9.6.7) should be
solved to find the final pulse position at the end of the last amplifier. The timing jitter
depends not only on the variances of δE δΩ, and δq but also on their cross-correlations
given in Eqs. (9.5.13)–(9.5.15). It can be written as

σ2
t = σ2

GH + R1〈(δE)2〉+ R2〈δEδΩ〉 (9.6.10)

where σGH is the Gordon–Haus jitter obtained earlier in Eq. (9.5.29).
The Raman contribution to the timing jitter adds two new terms whose magnitude

is governed by

R1 = b2
2b2

RNA(NA −1)(N3
A −10N2

A + 29NA−9)/120+ b2RNA(NA −1)
×[b2bR(19N2

A −65NA + 48)/96+ b2R(2NA −1)/6], (9.6.11)

R2 = b2NA(NA −1)[b2bR(NA −2)(3NA −1)/12+ b2R(2NA −1)/3]. (9.6.12)

The R1 term depends on the variance of energy fluctuations and scales as N 5
A for NA �

1. The R2 term has its origin in the cross-correlation between energy and frequency
fluctuations and scales as N4

A for large NA. The R1 term will generally dominate at long
distances for high bit rates requiring pulses shorter than 5 ps.

Figure 9.23 shows the growth of timing jitter with distance for a 160-Gb/s DM soli-
ton system. The dispersion map consists of alternating 1-km fiber sections with GVD
of −3.18 and 3.08 ps2/km, resulting in an average dispersion of −0.05 ps 2/km and
Tmap ≈ 1.25 ps. Fiber losses of 0.2 dB/km are compensated using lumped amplifiers
every 50 km. The nonlinear parameters have values γ = 2.25 W−1/km and TR = 3 fs.
The input pulse parameters are found by solving the variational equations of Section
9.4.2 and have values T0 = 1.25 ps, C0 = 1, and E0 = 0.12 pJ. The Raman and Gordon–
Haus contributions to the jitter are also shown separately to indicate when the Raman
effects begin to dominate. Because of the N 5

A dependence of the Raman contribution,
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Figure 9.23: Timing jitter as a function of distance for a 160-Gb/s DM system designed with
T0 = 1.25 ps. The Raman and Gordon–Haus contributions to timing jitter are also shown.

most of the timing jitter results from the SSFS after 1000 km. Noting that the tolerable
value of the timing jitter is less than 1 ps at 160 Gb/s, it is clear that the total trans-
mission distance of such systems would be limited to below 1000 km in the absence
of any jitter-control mechanism. Longer distances are possible at a lower bit rate of
80 Gb/s. The main conclusion is that the Raman jitter must be included whenever the
width (FWHM) of solitons is shorter than 5 ps.

Acoustic Jitter

A timing-jitter mechanism that limits the total transmission distance at high bit rates has
its origin in the generation of acoustic waves inside optical fibers [190]. Confinement
of the optical mode within the fiber core creates an electric-field gradient in the radial
direction of the fiber. This gradient creates an acoustic wave through electrostriction,
a phenomenon that produces density variations in response to changes in the electric
field. As the refractive index of any material depends on its density, the group velocity
also changes with the generation of acoustic waves.

The acoustic-wave-induced index changes produced by a single pulse can last for
more than 100 ns—the damping time associated with acoustic phonons. They can be
measured through the XPM-induced frequency shift ∆ν imposed on a probe signal and
given by ∆ν =−(Leff/λ )d(δna)/dt, where Leff is the effective length of the fiber [191].
As seen in Fig. 9.24(a), the measured frequency shift is in the form of multiple spikes,
each lasting for about 2 ns, roughly the time required for the acoustic wave to traverse
the fiber core. The 21-ns period between the spikes corresponds to the round-trip time
taken by the acoustic wave to reflect from the fiber cladding. Noting that L eff ≈ 20 km
for 0.2-dB/km fiber losses, acoustically induced changes are relatively small (∼ 10 −14)
but they lead to measurable jitter even at a bit rate of 10 Gb/s [6].

The origin of acoustic jitter can be understood by noting that pulses follow one
another with a time interval that is only 25 ps at B = 40 Gb/s and becomes shorter
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(b)(a)

Figure 9.24: (a) Temporal changes in the XPM-induced frequency shift produced by acoustic
waves in a 30-km-long fiber; (b) Increase in timing jitter produced by acoustic waves. (After
Ref. [191]; c©2001 Academic; reprinted with permission.)

at higher bit rates. As a result, the acoustic wave generated by a single pulse affects
hundreds of the following pulses. Physically, time-dependent changes in the refractive
index induced by acoustic waves modulate the optical phase and manifest as a shift in
the frequency (chirping) by a small amount (∼1 GHz in Fig. 9.24). Similar to the case
of SSFS and amplifier-induced noise, a frequency shift manifests as a shift in the pulse
position because of GVD. The main difference is that acoustic jitter has a deterministic
origin in contrast with the amplifier-induced jitter. In fact, if a pulse were to occupy
each bit slot, all pulses would be shifted in time by the same amount through acoustic
waves, resulting in a uniform shift of the pulse train but no timing jitter. However, any
information-coded bit stream consists of a random string of 1 and 0 bits. As the change
in the group velocity of each pulse depends on the presence or absence of pulses in
the preceding hundreds of bit slots, different solitons arrive at slightly different times,
resulting in timing jitter. The deterministic nature of acoustic jitter makes it possible to
reduce its impact in practice by moving the detection window at the receiver through
an automatic tracking circuit [192] or by using a coding scheme [193].

Acoustic jitter has been studied for both the standard and DM solitons [191]. In
the case of standard solitons propagating inside a constant-GVD fiber of length L, the
jitter scales as σacou = Ca|D|L2, where the parameter Ca depends on the index change
δna among other things. Figure 9.24(b) shows how the timing jitter is enhanced by the
acoustic effect for a 10-Gb/s system designed with D = 0.45 ps/(km-nm), T0 = 10 ps,
nsp = 1.6, and LA = 25 km. Sliding-frequency filters reduce both the ASE-induced
and acoustically induced timing jitters. The acoustic jitter then dominates because it
increases linearly with the system length L while the ASE-induced jitter scales as

√
L.

PMD-Induced Jitter

PMD is another mechanism that can generate timing jitter through random fluctuations
in the fiber birefringence [194]. As discussed in Section 2.3.5, the PMD effects are
quantified through the PMD parameter D p. In a practical lightwave system, all solitons
are launched with the same state of polarization at the input end of a fiber link. How-
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ever, as solitons are periodically amplified, their state of polarization becomes random
because of the ASE added at every amplifier. Such polarization fluctuations lead to
timing jitter in the arrival time of individual solitons through fiber birefringence be-
cause the two orthogonally polarized components travel with slightly different group
velocities. This timing jitter, introduced by the combination of ASE and PMD, can be
written as [194]

σpol = (πSsp fLM/16EsLA)1/2DpL. (9.6.13)

As a rough estimate, σpol ≈ 0.4 ps for a standard-soliton system designed with
α = 0.2 dB/km, LA = 50 km, Dp = 0.1 ps/

√
km, and L = 10 Mm. Such low values

of σpol are unlikely to affect 10-Gb/s soliton systems for which the bit slot is 100 ps
wide. However, for fibers with larger values of the PMD parameter (D p > 1 ps/

√
km),

the PMD-induced timing jitter becomes important enough that it should be considered
together with other sources of the timing jitter. If we assume that each source of timing
jitter is statistically independent, total timing jitter is obtained using

σ2
tot = σ2

t + σ2
acou + σ2

pol. (9.6.14)

Both σacou and σpol increase linearly with transmission distance L. The ASE-induced
jitter normally dominates because of its superlinear dependence on L but the situation
changes when in-line filters are used to suppress it.

An important issue is related to polarization-dependent loss and gain. If a light-
wave system contains multiple elements that amplify or attenuate the two polarization
components of a pulse differently, the polarization state is easily altered. In the worst
situation in which the polarization is oriented at 45◦ from the low-loss (or high-gain)
direction, the state of polarization rotates by 45◦ and gets aligned with the low-loss
direction only after 30–40 amplifiers for a gain–loss anisotropy of < 0.2 dB [195].
Even though the axes of polarization-dependent gain or loss are likely to be evenly
distributed along any soliton link, such effects may still become an important source of
timing jitter.

Interaction-Induced Jitter

In the preceding discussion of the timing jitter, individual pulses are assumed to be
sufficiently far apart that their position is not affected by the phenomenon of soliton–
soliton interaction. This is not always the case in practice. As seen in Section 9.2.2,
even in the absence of amplifier noise, solitons may shift their position because of
the attractive or repulsive forces experienced by them. As the interaction force be-
tween two solitons is strongly dependent on their separation and relative phase, both
of which fluctuate because of amplifier noise, soliton–soliton interactions modify the
ASE-induced timing jitter. By considering noise-induced fluctuations of the relative
phase of neighboring solitons, timing jitter of interacting solitons is generally found to
be enhanced by amplifier noise [196]. In contrast, when the input phase difference is
close to π between neighboring solitons, phase randomization leads to reduction in the
timing jitter.

An important consequence of soliton–soliton interaction is that the probability den-
sity of the timing jitter deviates considerably from the Gaussian statistics expected for
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the Gordon–Haus jitter in the absence of such interactions [197]. The non-Gaussian
corrections can occur even when the interaction is relatively weak (q 0 > 5). They af-
fect the bit-error rate of the system and must be included for an accurate estimate of
the system performance. When solitons are packed so tightly that their interaction be-
comes quite important, the probability density function of the timing jitter develops a
five-peak structure [198]. The use of numerical simulations is essential to study the
impact of timing jitter on a bit stream composed of interacting solitons.

In the case of DM solitons, interaction-induced jitter becomes quite important, es-
pecially for strong maps for which the pulse width varies by a large factor within each
map period [199]. It can be reduced by a proper design of the dispersion map. In fact,
local dispersion of each fiber section and the average GVD of the entire link need to
be optimized to reduce both the soliton–soliton interaction and the ASE-induced jitter
simultaneously [161].

Control of Timing Jitter

The increase in the timing jitter brought by the Raman and TOD effects and a shorter
bit slot at higher bit rates make the control of timing jitter essential before high-speed
systems can become practical. As discussed in Section 9.5, both optical filters and syn-
chronous modulators help in reducing the timing jitter. The technique of optical phase
conjugation (OPC), discussed in Section 7.7 in the context of dispersion compensation,
is also quite effective in improving the performance of soliton systems by reducing the
soliton–soliton interaction and the Raman-induced timing jitter [200]–[204].

The implementation of OPC requires either parametric amplifiers [10] in place of
EDFAs or insertion of a nonlinear optical device before each amplifier that changes the
soliton amplitude from A to A∗ while preserving all other features of the bit stream.
Such a change is equivalent to inverting the soliton spectrum around the wavelength
of the pump laser used for the FWM process. As discussed in Section 7.7, a few-
kilometer-long fiber can be used for spectral inversion. The timing jitter changes con-
siderably because of OPC. The moment method can be used to find the timing jitter in
the presence of parametric amplifiers. The dependence of the Gordon–Haus contribu-
tion on the number of amplifiers changes from N 3

A to NA. The Raman-induced jitter is
reduced even more dramatically—from N 5

A to NA [202]. These reductions result from
the OPC-induced spectral inversion, which provides compensation for the effects of
both the GVD and SSFS. However, OPC does not compensate for the effects of TOD.

The effects of TOD on the jitter are shown in Fig. 9.25 by plotting the timing jitter
of 2-ps (FWHM) solitons propagating inside DDFs and amplified using parametric
amplifiers. The Gordon–Haus timing jitter is shown by the thick solid line. Other
curves correspond to different values of the TOD parameter. For β 3 = 0.05 ps3/km, a
typical value for dispersion-shifted fibers, the transmission distance is limited by TOD
to below 1500 km. However, considerable improvement occurs when β 3 is reduced.
Transmission over 7500 km is possible for β3 = 0, and the distance can be increased
further for slightly negative values of β3. These results show that the compensation of
both β2 and β3 is necessary at high bit rates (see Section 7.9).
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Figure 9.25: Effect of third-order dispersion on timing jitter in a periodically amplified DDF-
based soliton system designed using parametric amplifiers.

9.7 WDM Soliton Systems

As discussed in Chapter 8, the capacity of a lightwave system can be increased consid-
erably by using the WDM technique. A WDM soliton system transmits several soliton
bit streams over the same fiber using different carrier frequencies. This section focuses
on the issues relevant for designing WDM soliton systems [205].

9.7.1 Interchannel Collisions

A new feature that becomes important for WDM systems is the possibility of collisions
among solitons belonging to different channels and traveling different group velocities.
To understand the importance of such collisions as simply as possible, we first focus on
standard solitons propagating in DDFs and use Eq. (9.4.3) as it includes the effects of
both loss and dispersion variations. Dropping prime over ξ for notational convenience,
this equation can be written as

i
∂v
∂ξ

+
1
2

∂ 2v
∂τ2 + b(ξ )|v|2v = 0, (9.7.1)

where b(ξ ) = p(ξ )/d(ξ ). The functional form of b(ξ ) depends on the details of the
loss- and dispersion-management schemes.

The effects of interchannel collisions on the performance of WDM systems can
be best understood by considering the simplest case of two WDM channels separated
by fch. In normalized units, solitons are separated in frequency by Ω ch = 2π fchT0.
Replacing v by u1 + u2 in Eq. (9.7.1) and neglecting the FWM terms, solitons in each
channel evolve according to the following two coupled equations [206]:

i
∂u1

∂ξ
+

1
2

∂ 2u1

∂τ2 + b(ξ )(|u1|2 + 2|u2|2)u1 = 0, (9.7.2)

i
∂u2

∂ξ
+

1
2

∂ 2u2

∂τ2 + b(ξ )(|u2|2 + 2|u1|2)u2 = 0. (9.7.3)
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Note that the two solitons are propagating at different speeds because of their different
frequencies. As a result, the XPM term is important only when solitons belonging to
different channels overlap during a collision.

It is useful to define the collision length L coll as the distance over which two solitons
interact (overlap) before separating. It is difficult to determine precisely the instant at
which a collision begins or ends. A common convention uses 2Ts for the duration of
the collision, assuming that a collision begins and ends when the two solitons overlap
at their half-power points [206]. Since the relative speed of two solitons is ∆V =
(|β2|Ωch/T0)−1, the collision length is given by Lcoll = (∆V )(2Ts) or

Lcoll =
2TsT0

|β2|Ωch
≈ 0.28

q0|β2|B fch
, (9.7.4)

where the relations Ts = 1.763T0 and B = (2q0T0)−1 were used. As an example, for
B = 10 Gb/s, q0 = 5, and β2 = −0.5 ps2/km, Lcoll ∼ 100 km for a channel spacing of
100 GHz but reduces to below 10 km when channels are separated by more than 1 THz.

Since XPM induces a time-dependent phase shift on each soliton, it leads to a shift
in the soliton frequency during a collision. One can use a perturbation technique or the
moment method to calculate this frequency shift. If we assume that the two solitons
are identical before they collide, u1 and u2 are given by

um(ξ ,τ) = sech(τ + δmξ )exp[−iδmτ + i(1− δ 2
m)ξ/2+ iφm], (9.7.5)

where δm = 1
2 Ωch for m = 1 and − 1

2 Ωch for m = 2. Using the moment method, the
frequency shift for the first channel evolves with distance as

dδ1

dξ
= b(ξ )

∫ ∞

−∞

∂ |u1|2
∂τ

|u2|2 dτ. (9.7.6)

The equation for δ2 is obtained by interchanging the subscripts 1 and 2. Noting from
Eq. (9.7.5) that

∂ |um|2
∂τ

=
1

δm

∂ |um|2
∂ξ

, (9.7.7)

and using δm = ± 1
2 Ωch in Eq. (9.7.6), the collision-induced frequency shift for the

slower moving soliton is governed by [206]

dδ1

dξ
=

b(ξ )
Ωch

d
dξ

[∫ ∞

−∞
sech2

(
τ − Ωchξ

2

)
sech2

(
τ +

Ωchξ
2

)
dτ

]
. (9.7.8)

The change in δ2 occurs by the same amount but in the opposite direction. The integral
over τ can be performed analytically to obtain

dδ1

dZ
=

4b(Z)
Ωch

d
dZ

(
Z cosh Z − sinh Z

sinh3 Z

)
, (9.7.9)

where Z = Ωchξ . This equation provides changes in soliton frequency during inter-
channel collisions under quite general conditions.
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(a) (b)

Figure 9.26: (a) Frequency shift during collision of two 50-ps solitons with 75-GHz channel
spacing. (b) Residual frequency shift after a collision because of lumped amplifiers (LA = 20
and 40 km for lower and upper curves, respectively). Numerical results are shown by solid dots.
(After Ref. [206]; c©1991 IEEE; reprinted with permission.)

Consider first the ideal case of constant-dispersion lossless fibers so that b = 1 in
Eq. (9.7.9). In that case, integration in Eq. (9.7.9) is trivial, and the frequency shift is
given by

∆δ1(Z) = 4(Z cosh Z − sinh Z)/(Ωch sinh3 Z). (9.7.10)

Figure 9.26(a) shows how the frequency of the slow-moving soliton changes during the
collision of two 50-ps solitons when channel spacing is 75 GHz. The frequency shifts
up over one collision length as two solitons approach each other, reaches a peak value
of about 0.6 GHz at the point of maximum overlap, and then decreases back to zero
as the two solitons separate. The maximum frequency shift depends on the channel
spacing. It occurs at Z = 0 in Eq. (9.7.10) and is found to be 4/(3Ω ch). In physical
units, the maximum frequency shift becomes

∆ fmax = (3π2T 2
0 fch)−1. (9.7.11)

Since the velocity of a soliton changes with its frequency, collisions speed up or
slow down a soliton, depending on whether its frequency increases or decreases. At
the end of the collision, each soliton recovers the frequency and speed it had before
the collision, but its position within the bit slot changes. The temporal shift can be
calculated by integrating Eq. (9.7.9). In physical units, it is given by

∆t = −T0

∫ ∞

−∞
∆δ1(ξ ) dξ =

4T0

Ω2
ch

=
1

π2T0 f 2
ch

. (9.7.12)

If all bit slots were occupied, such collision-induced temporal shifts would be of no
consequence since all solitons of a channel would be shifted by the same amount.
However, 1 and 0 bits occur randomly in real bit streams. Since different solitons of
a channel shift by different amounts, interchannel collisions induce some timing jitter
even in lossless fibers.
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9.7.2 Effect of Lumped Amplification

The situation is worse in loss-managed soliton systems in which fiber losses are com-
pensated periodically through lumped amplifiers. The reason is that soliton collisions
are affected adversely by variations in the pulse energy. Physically, large energy vari-
ations occurring over a collision length destroy the symmetric nature of the collision.
Mathematically, the ξ dependence of b(ξ ) in Eq. (9.7.8) changes the frequency shift.
As a result, solitons do not recover their original frequency and velocity after the col-
lision is over. Equation (9.7.9) can be used to calculate the residual frequency shift
for a given form of b(ξ ). Figure 9.26(b) shows the residual shift as a function of the
ratio Lcoll/Lpert, where Lpert is equal to the amplifier spacing LA [206]. Numerical sim-
ulations (circles) agree with the prediction of Eq. (9.7.9). The residual frequency shift
increases rapidly as Lcoll approaches LA and can become ∼ 0.1 GHz. Such shifts are
not acceptable in practice since they accumulate over multiple collisions and produce
velocity changes large enough to move the soliton out of the bit slot.

When Lcoll is large enough that a collision lasts over several amplifier spacings,
effects of gain–loss variations begin to average out, and the residual frequency shift
decreases. As seen in Fig. 9.26, it virtually vanishes for Lcoll > 2LA (safe region).
Since Lcoll is inversely related to the channel spacing Ωch, this condition sets a limit on
the maximum separation between the two outermost channels of a WDM system. The
shortest collision length is obtained by replacing Ωch in Eq. (9.7.4) with NchΩch. Using
Lcoll > 2LA, the number of WDM channels is limited to

Nch <
TsLD

T0ΩchLA
. (9.7.13)

One may think that the number of channels can be increased by reducing Ω ch. How-
ever, its minimum value is limited to about Ωch = 5∆ωs, where ∆ωs is the spectral width
(FWHM) of solitons, because of interchannel crosstalk [207]. Using this condition in
Eq. (9.7.13), the number of WDM channels is limited such that N ch < LD/3LA. Using
LD = T 2

0 /|β2| and B = (2q0T0)−1, this condition can be written as a simple design rule:

NchB2LA < (12q2
0|β2|)−1. (9.7.14)

For the typical values q0 = 5, |β2| = 0.8 ps2/km, and LA = 40 km, the condition be-
comes B

√
Nch < 10 Gb/s. The number of channels can be as large as 16 at a relatively

low bit rate of 2.5 Gb/s but only a single channel is allowed at 10 Gb/s. Clearly, inter-
channel collisions limit the usefulness of the WDM technique severely.

9.7.3 Timing Jitter

In addition to the sources of timing jitter discussed in Section 9.6 for a single isolated
channel, several other sources of jitter become important for WDM systems [208]–
[213]. First, each interchannel collision generates a temporal shift [see Eq. (9.7.12)]
of the same magnitude for both solitons but in opposite directions. Even though the
temporal shift scales as Ω−2

ch and decreases rapidly with increasing Ωch, the number
of collisions increases linearly with Ωch. As a result, the total time shift scales as



462 CHAPTER 9. SOLITON SYSTEMS

Ω−1
ch . Second, the number of collisions that two neighboring solitons in a given channel

undergo is slightly different. This difference arises because adjacent solitons in a given
channel interact with two different bit groups, shifted by one bit period. Since 1 and
0 bits occur in a random fashion, different solitons of the same channel are shifted by
different amounts. This source of timing jitter is unique to WDM systems because
of its dependence on the bit patterns of neighboring channels [211]. Third, collisions
involving more than two solitons can occur and should be considered. In the limit of a
large channel spacing (negligible overlap of soliton spectra), multisoliton interactions
are well described by pairwise collisions [210].

Two other mechanisms of timing jitter should be considered for realistic WDM
systems. As discussed earlier, energy variations due to gain–loss cycles make collisions
asymmetric when Lcoll becomes shorter than or comparable to the amplifier spacing L A.
Asymmetric collisions leave residual frequency shifts that affect a soliton all along the
fiber link because of a change in its group velocity. This mechanism can be made
ineffective by ensuring that Lcoll exceeds 2LA. The second mechanism produces a
residual frequency shift when solitons from different channels overlap at the input of
the transmission link, resulting in an incomplete collision [208]. This situation occurs
in all WDM solitons for some bits. For instance, two solitons overlapping completely
at the input end of a fiber link will acquire a net frequency shift of 4/(3Ω ch) since the
first half of the collision is absent. Such residual frequency shifts are generated only
over the first few amplification stages but pertain over the whole transmission length
and become an important source of timing jitter [209].

Similar to the case of single-channel systems, sliding-frequency filters can reduce
timing jitter in WDM systems [214]–[218]. Typically, Fabry–Perot filters are used
since their periodic transmission windows allow filtering of all channels simultane-
ously. For best operation, the mirror reflectivities are kept low (below 25%) to reduce
the finesse. Such low-contrast filters remove less energy from solitons but are as ef-
fective as filters with higher contrast. Their use allows channel spacing to be as little
as five times the spectral width of the solitons [218]. The physical mechanism remains
the same as for single-channel systems. More specifically, collision-induced frequency
shifts are reduced because the filter forces the soliton frequency to move toward its
transmission peak. The net result is that filters reduce the timing jitter considerably
even for WDM systems [215]. Filtering can also relax the condition in Eq. (9.7.13),
allowing Lcoll to approach LA, and thus helps to increase the number of channels in a
WDM system [217].

The technique of synchronous modulation can also be applied to WDM systems
for controlling timing jitter [219]. In a 1996 experiment involving four channels, each
operating at 10 Gb/s, transmission over transoceanic distances was achieved by us-
ing modulators every 500 km [220]. When modulators were inserted every 250 km,
three channels, each operating at 20 Gb/s, could be transmitted over transoceanic dis-
tances [221]. The main disadvantage of modulators is that demultiplexing of individual
channels is necessary. Moreover, they require a clock signal that is synchronized to the
bit stream. For this reason, the technique of synchronous modulation is rarely used in
practice.
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9.7.4 Dispersion Management

As discussed in Section 8.3.6, FWM is the most limiting factor for WDM systems when
GVD is kept constant along the fiber link. The FWM problem virtually disappears
when the dispersion-management technique is used. In fact, dispersion management
is essential if a WDM soliton system is designed to transmit more than two or three
channels. Starting in 1996, dispersion management was used for WDM soliton systems
almost exclusively.

Dispersion-Decreasing Fibers

It is intuitively clear that DDFs with a continuously varying GVD profile should help a
WDM system. We can use Eq. (9.7.1) for finding the optimum GVD profile. By tailor-
ing the fiber dispersion as p(ξ ) = exp(−Γξ ), the same exponential profile encountered
in Section 8.4.1, the parameter b becomes 1 all along the fiber link, resulting in an
unperturbed NLS equation. As a result, soliton collisions become symmetric despite
fiber losses, irrespective of the ratio Lcoll/LA. Consequently, no residual frequency
shifts occur after a soliton collision for WDM systems making use of DDFs with an
exponentially decreasing GVD.

Lumped amplifiers introduce a new mechanism of FWM in WDM systems. In their
presence, soliton energy varies in a periodic fashion over each loss–amplification cycle.
Such periodic variations in the peak power of solitons create a nonlinear-index grating
that can nearly phase-match the FWM process [222]. The phase-matching condition
can be written as

|β2|(Ωch/T0)2 = 2πm/LA, (9.7.15)

where m is an integer and the amplifier spacing LA is the period of the index grating.
As a result of such phase matching, a few percent of soliton energy can be transferred
to the FWM sidebands even when GVD is relatively large [222]. Moreover, FWM
occurring during simultaneous collision of three solitons leads to permanent frequency
shifts for the slowest- and fastest-moving solitons together with an energy exchange
among all three channels [223].

FWM phase-matched by the nonlinear-index grating can also be avoided by us-
ing DDFs with an exponential GVD profile. The reason is related to the symmetric
nature of soliton collisions in such systems. When collisions are symmetric, energy
transferred to the FWM sidebands during the first half of a collision is returned back
to the soliton during the second half of the same collision. Thus, the spectral side-
bands generated through FWM do not grow with propagation of solitons. In practice,
the staircase approximation for the exponential profile is used, employing multiple
constant-dispersion fibers between two amplifiers.

Figure 9.27 shows the residual energy remaining in a FWM sideband as a func-
tion of amplifier length LA when the exponential GVD profile is approximated using
m = 2, 3, and 4 fiber sections chosen such that the product D mLm is the same for all
m [222]. Here Dm is the dispersion parameter in the mth section of length Lm. The case
of constant-dispersion fibers is also shown for comparison. The average dispersion is
0.5 ps/(km-nm) in all cases. The double-peak nature of the curve in this case is due to
the phase-matching condition in Eq. (9.7.15), which can be satisfied for different values
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Figure 9.27: Fraction of soliton energy in an FWM sideband during a single collision when the
exponential GVD profile is approximated by a staircase with two, three, and four steps. The
case of constant-dispersion fibers is shown for comparison. (After Ref. [222]); c©1996 OSA;
reprinted with permission.)

of the integer m because a peak occurs whenever LA = 2πmLD/Ω2
ch. Numerical simu-

lations consider 20-ps solitons in two channels, spaced 75 GHz apart. Clearly, FWM
can be nearly suppressed, with as few as three fiber sections, for an amplifier spacing
below 60 km. An experiment in 1996 achieved transmission of seven 10-Gb/s channels
over 9400 km using only four fiber segments in a recirculating fiber loop [224]. In a
1998 experiment, eight 20-Gb/s channels were transmitted over 10,000 km by using the
same four-segment approach in combination with optical filters and modulators [225].

Periodic Dispersion Maps

Similar to the single-channel soliton systems discussed in Section 9.4.2, periodic dis-
persion maps consisting of two fiber segments with opposite GVD benefit the WDM
soliton systems enormously. Issues such as interchannel collisions, timing jitter, and
optimum dispersion maps were studied extensively during the 1990s [226]–[250]. The
use of design optimization techniques has resulted in WDM soliton systems capable of
operating at bit rates close to 1 Tb/s [251]–[262].

An important issue for WDM systems making use of DM solitons is how a dis-
persion map consisting of opposite-GVD fibers affects interchannel collisions and the
timing jitter. It is easy to see that the nature of soliton collisions is changed drastically
in such systems. Consider solitons in two different channels. A shorter-wavelength
soliton travels faster in the anomalous-GVD section but slower in the normal-GVD
section. Moreover, because of high local GVD, the speed difference is large. Also,
the pulse width changes in each map period and can become quite large in some re-
gions. The net result is that two colliding solitons move in a zigzag fashion and pass
through each other many times before they separate from each other because of the
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Figure 9.28: Collision-induced frequency and temporal shifts for a soliton surrounded by four
channels on each side (75 GHz spacing). Curves 1 and 2 represent the case copolarized and
orthogonally polarized solitons in neighboring channels, respectively. Curves 3 and 4 show the
improvement realized with sliding-frequency filters. The dotted line shows the prediction of an
analytical model. (After Ref. [238]); c©1999 OSA; reprinted with permission.)

much slower relative motion governed by the average value of GVD. Since the effec-
tive collision length is much larger than the map period (and the amplifier spacing),
the condition Lcoll > 2LA is satisfied even when soliton wavelengths differ by 20 nm
or more. This feature makes it possible to design WDM soliton systems with a large
number of high-bit-rate channels.

The residual frequency shift introduced during such a process depends on a large
number of parameters including the map period, map strength, and amplifier spacing
[236]–[240]. Physically speaking, residual frequency shifts occurring during complete
collisions average out to zero. However, not all collisions are complete. For example,
if solitons overlap initially, the incomplete nature of the collision will produce some
residual frequency shift. The zigzag motion of solitons can also produce frequency
shifts if the solitons approach each other near the junction of opposite-GVD fibers
since they will reverse direction before crossing each other. Such partial collisions can
result in large frequency shifts, which can shift solitons by a large amount within their
bit slots. This behavior is unacceptable from a system standpoint.

A simple solution to this problem is provided by sliding-frequency filters [238].
Such filters reduce the frequency and temporal shifts to manageable levels in the same
way they mitigate the effects of ASE-induced frequency shifts. Curve 1 in Figure 9.28
shows the frequency and temporal shifts (calculated numerically) for the middle chan-
nel surrounded by four channels on each side (channel spacing 75 GHz). The soliton
shifts by 100 ps (one bit slot) over 10,000 km because its frequency shifts by more than
10 GHz. The use of orthogonally polarized solitons (curve 2) improves the situation
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somewhat but does not solve the problem. However, if sliding-frequency filters are
employed, the temporal shift is reduced to below 15 ps for copolarized solitons (curve
3) and to below 10 ps for orthogonally polarized solitons (curve 4). In these numerical
simulations, the map period and amplifier spacing are equal to 40 km. The dispersion
map consists of 36 km of anomalous-GVD fiber and 4 km of DCF (β 2n ≈ 130 ps2/km)
such that average value of dispersion is 0.1 ps/(km-nm).

Many issues need to be addressed in designing WDM systems. These include the
SNR degradation because of the accumulation of ASE, timing jitter induced by ASE
and other sources (acoustic waves, ASE, Raman-induced frequency shift, PMD, etc.),
XPM-induced intrachannel interactions, and interchannel collisions. Most of them de-
pend on the choice of the map period, local value of the GVD in each fiber section, and
average dispersion of the entire link. The choice of loss-management scheme (lumped
versus distributed amplification) also impacts the system performance. These issues
are common to all WDM systems and can only be addressed by solving the underlying
NLS equation numerically (see Appendix E).

Figure 9.29 shows the role played by local dispersion by comparing the maximum
transmission distances for the lumped (EDFA) and distributed (Raman) amplification
schemes [248]. The dispersion map consists of a long fiber section with GVD in the
range 2–17 ps/(km-nm) and a short fiber section with the dispersion of−25 ps/(km-nm)
whose length is chosen to yield an average GVD of 0.04 ps/(km-nm). The map period
and amplifier spacing are equal to 50 km. Pulse parameters at a bit rate of 40 Gb/s cor-
respond to the periodic propagation of DM solitons. The curves marked “interactions”
provide the distance at which solitons have shifted by 30% of the 25-ps bit slot because
of intrachannel pulse-to-pulse interactions. The curves marked “XPM” denote the lim-
iting distance set by the XPM-induced interchannel interactions. The curves marked
“PIM” show the improvement realized by polarization-interleaved multiplexing (PIM)
of WDM channels. The two circles marked A and B denote the optimum values of
local GVD in the cases of lumped and distributed amplification, respectively. Several
points are noteworthy in Fig. 9.29. First, Raman amplification improves the transmis-
sion distance from the standpoint of intrachannel interactions but has a negative impact
when interchannel collisions are considered. Second, polarization multiplexing helps
for both lumped and distributed amplification. Third, the local value of GVD plays an
important role and its optimum value is different for lumped and distributed amplifi-
cation. The main conclusion is that numerical simulations are essential for optimizing
any WDM system.

On the experimental side, 16 channels at 20 Gb/s were transmitted in 1997 over
1300 km of standard fiber with a map period of 100 km using a DCF that compen-
sated partially both GVD and its slope [251]. In a 1998 experiment, 20 channels at
20 Gb/s were transmitted over 2000 km using dispersion-flattened fiber with a channel
spacing of 0.8 nm [252]. A capacity of 640 Gb/s was realized in a 2000 experiment
in which 16 channels at 40 Gb/s were transmitted over 1000 km [257]. In a later ex-
periment, the system capacity was extended to 1 Tb/s by transmitting 25 channels at
40 Gb/s over 1500 km with 100-GHz channel spacing [261]. The 250-km recirculat-
ing fiber loop employed a dispersion map with the 50-km map period and a relatively
low value of average dispersion for all channels. Dispersion slope (TOD) was nearly
compensated and had a value of less than 0.005 ps/(km-nm 2). A BER of 10−9 could



9.7. WDM SOLITON SYSTEMS 467

Figure 9.29: Maximum transmission distance as a function of local dispersion for a WDM
soliton system with 40-Gb/s channels spaced apart by 100 GHz. The curves with labels “In-
teractions” and “XPM” show limitations due to intrachannel and interchannel pulse interac-
tions, respectively. The PIM curves correspond to the case of polarization multiplexing. (After
Ref. [248]); c©2001 OSA; reprinted with permission.)

be achieved for all channels because of dispersion-slope compensation realized using
reverse-dispersion fibers. In a 2001 experiment, a system capacity of 2.56 Tb/s was
realized (32 channels at 80 Gb/s) by interleaving two orthogonally polarized 40-Gb/s
WDM pulse trains but the transmission distance was limited to 120 km [262]. The
use of polarization multiplexing in combination with the carrier-suppressed RZ format
permitted a spectral efficiency of 0.8 (b/s)/Hz in this experiment.

Many experiments have focused on soliton systems for transoceanic applications.
The total bit rate is lower for such systems because of long distances over which soli-
tons must travel. Transmission of eight channels at 10-Gb/s over transoceanic distances
was realized as early as 1996 [205]. Eight 20-Gb/s channels were transmitted in a
1998 experiment but the distance was limited to 4000 km [254]. By 2000, the 160-
Gb/s capacity was attained by transmitting eight 20-Gb/s channels over 10,000 km
using optical filters and synchronous modulators inside a 250-km recirculating fiber
loop [258]. It was necessary to use a polarization scrambler and a phase modulator
at the input end. The 160-Gb/s capacity was also realized using two 80-Gb/s chan-
nels. In another experiment, up to 27 WDM channels were transmitted over 9000 km
using a hybrid amplification scheme in which distributed Raman amplification (with
backward pumping) compensated for nearly 70% of losses incurred over the 56-km
map period [259]. In general, the use of distributed Raman amplification improves the
system performance considerably as it reduces the XPM-induced interactions among
solitons [248]. These experiments show that the use of DM solitons has the potential of
realizing transoceanic lightwave systems capable of operating with a capacity of 1 Tb/s
or more.
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Problems

9.1 A 10-Gb/s soliton system is operating at 1.55 µm using fibers with D = 2 ps/(km-
nm). The effective core area of the fiber is 50 µm 2. Calculate the peak power
and the pulse energy required for fundamental solitons of 30-ps width (FWHM).
Use n2 = 2.6×10−20 m2/W.

9.2 The soliton system of Problem 9.1 needs to be upgraded to 40 Gb/s. Calculate
the pulse width, peak power, and the energy of solitons using q 0 = 4. What is
the average launched power for this system?

9.3 Verify by direct substitution that the soliton solution given in Eq. (9.1.11) satis-
fies the NLS equation.

9.4 Solve the NLS equation using the split-step Fourier method (see Section 2.4 of
Ref. [10] for details on this method). Reproduce Figs. 9.1–9.3 using your pro-
gram. Any programming language, including software packages such as Mathe-
matica and Matlab, can be used.

9.5 Verify numerically by propagating a fundamental soliton over 100 dispersion
lengths that the shape of the soliton does not change on propagation. Repeat the
simulation using a Gaussian input pulse shape with the same peak power and
explain the results.

9.6 A 10-Gb/s soliton lightwave system is designed with q0 = 5 to ensure well-
separated solitons in the RZ bit stream. Calculate pulse width, peak power, pulse
energy, and the average power of the RZ signal assuming β 2 = −1 ps2/km and
γ = 2 W−1/km for the dispersion-shifted fiber.

9.7 A soliton communication system is designed to transmit data over 5000 km at
B = 10 Gb/s. What should be the pulse width (FWHM) to ensure that the neigh-
boring solitons do not interact during transmission? The dispersion parameter
D = 1 ps/(km-nm) at the operating wavelength. Assume that soliton interaction
is negligible when B2LT in Eq. (9.2.10) is 10% of its maximum allowed value.

9.8 Prove that the energy of standard solitons should be increased by the factor
G lnG/(G− 1) when the fiber loss α is compensated using optical amplifiers.
Here G = exp(αLA) is the amplifier gain and LA is the spacing between ampli-
fiers assumed to be much smaller than the dispersion length.

9.9 A 10-Gb/s soliton communication system is designed with 50-km amplifier spac-
ing. What should be the peak power of the input pulse to ensure that a funda-
mental soliton is maintained in an average sense in a fiber with 0.2 dB/km loss?
Assume that Ts = 20 ps, β2 = −0.5 ps2/km and γ = 2 W−1/km. What is the
average launched power for such a system?

9.10 Calculate the maximum bit rate for a soliton lightwave system designed with
q0 = 5, β2 = −1 ps2/km, and LA = 50 km. Assume that the condition (9.3.10)
is satisfied when B2LA is at the 20% level. What is the soliton width at the
maximum bit rate?
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9.11 Derive Eq. (9.3.15) by integrating Eq. (9.3.11) in the case of bidirectional pump-
ing. Plot p(z) for LA = 20, 40, 60, and 80 km using α = 0.2 dB/km and
αp = 0.25 dB/km.

9.12 Use Eq. (9.3.15) to determine the pump-station spacing L A for which the soliton
energy deviates at most 20% from its input value.

9.13 Consider soliton evolution in a dispersion-decreasing fiber using the NLS equa-
tion and prove that soliton remains unperturbed when the fiber dispersion de-
creases exponentially as β2(z) = β2(0)exp(−αz).

9.14 Starting from the NLS equation (9.4.5), derive the variational equations for the
pulse width T and the chirp C using the Gaussian ansatz given in Eq. (9.4.6).

9.15 Solve Eqs. (9.4.7) and (9.4.8) numerically by imposing the periodicity condition
given in Eq. (9.4.9). Plot T0 and C0 as a function of E0 for a dispersion map
made using 70 km of the standard fiber with D = 17 ps/(km-nm) and 10 km of
dispersion-compensating fiber with D = −115 ps/(km-nm). Use γ = 2 W−1/km
and α = 0.2 dB/km for the standard fiber and γ = 6 W−1/km and α = 0.5 dB/km
for the other fiber.

9.16 Calculate the map strength S and the map parameter Tmap for the map used in the
preceding problem. Estimate the maximum bit rate that this map can support.

9.17 Verify using Eqs. (9.5.8)–(9.5.12) that the variances and correlations of amplifier-
induced fluctuations are indeed given by Eqs. (9.5.13)–(9.5.15).

9.18 Prove that the variances of E, Ω, and q are given by Eq. (9.5.17) for the standard
solitons using Eq. (9.5.16) in Eqs. (9.5.8)–(9.5.11).

9.19 Derive Eq. (9.5.29) for the timing jitter starting from the recurrence relation in
Eq. (9.5.26). Show all the steps clearly.

9.20 Find the peak value of the collision-induced frequency and temporal shifts by
integrating Eq. (9.7.8) with b = 1.

9.21 Explain how soliton collisions limit the number of channels in a WDM soliton
system. Find how the maximum number of channels depends on the channel and
amplifier spacings using the condition Lcoll > 2LA.
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Chapter 10

Coherent Lightwave Systems

The lightwave systems discussed so far are based on a simple digital modulation scheme
in which an electrical bit stream modulates the intensity of an optical carrier inside the
optical transmitter and the optical signal transmitted through the fiber link is incident
directly on an optical receiver, which converts it to the original digital signal in the elec-
trical domain. Such a scheme is referred to as intensity modulation with direct detection
(IM/DD). Many alternative schemes, well known in the context of radio and microwave
communication systems [1]–[6], transmit information by modulating the frequency or
the phase of the optical carrier and detect the transmitted signal by using homodyne
or heterodyne detection techniques. Since phase coherence of the optical carrier plays
an important role in the implementation of such schemes, such optical communica-
tion systems are called coherent lightwave systems. Coherent transmission techniques
were studied during the 1980s extensively [7]–[16]. Commercial deployment of coher-
ent systems, however, has been delayed with the advent of optical amplifiers although
the research and development phase has continued worldwide.

The motivation behind using the coherent communication techniques is two-fold.
First, the receiver sensitivity can be improved by up to 20 dB compared with that of
IM/DD systems. Second, the use of coherent detection may allow a more efficient use
of fiber bandwidth by increasing the spectral efficiency of WDM systems. In this chap-
ter we focus on the design of coherent lightwave systems. The basic concepts behind
coherent detection are discussed in Section 10.1. In Section 10.2 we present new mod-
ulation formats possible with the use of coherent detection. Section 10.3 is devoted to
synchronous and asynchronous demodulation schemes used by coherent receivers. The
bit-error rate (BER) for various modulation and demodulation schemes is considered
in Section 10.4. Section 10.5 focuses on the degradation of receiver sensitivity through
mechanisms such as phase noise, intensity noise, polarization mismatch, fiber disper-
sion, and reflection feedback. The performance aspects of coherent lightwave systems
are reviewed in Section 10.6 where we also discuss the status of such systems at the
end of 2001.
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Figure 10.1: Schematic illustration of a coherent detection scheme.

10.1 Basic Concepts

10.1.1 Local Oscillator

The basic idea behind coherent detection consists of combining the optical signal co-
herently with a continuous-wave (CW) optical field before it falls on the photodetector
(see Fig. 10.1). The CW field is generated locally at the receiver using a narrow-
linewidth laser, called the local oscillator (LO), a term borrowed from the radio and
microwave literature. To see how the mixing of the received optical signal with the
LO output can improve the receiver performance, let us write the optical signal using
complex notation as

Es = As exp[−i(ω0t + φs)], (10.1.1)

where ω0 is the carrier frequency, As is the amplitude, and φs is the phase. The optical
field associated with the local oscillator is given by a similar expression,

ELO = ALO exp[−i(ωLOt + φLO)], (10.1.2)

where ALO, ωLO, and φLO represent the amplitude, frequency, and phase of the local
oscillator, respectively. The scalar notation is used for both E s and ELO after assuming
that the two fields are identically polarized (polarization-mismatch issues are discussed
later in Section 10.5.3). Since a photodetector responds to the optical intensity, the
optical power incident at the photodetector is given by P = K|E s +ELO|2, where K is a
constant of proportionality. Using Eqs. (10.1.1) and (10.1.2),

P(t) = Ps + PLO + 2
√

PsPLO cos(ωIFt + φs −φLO), (10.1.3)

where
Ps = KA2

s , PLO = KA2
LO, ωIF = ω0 −ωLO. (10.1.4)

The frequency νIF ≡ ωIF/2π is known as the intermediate frequency (IF). When ω0 �=
ωLO, the optical signal is demodulated in two stages; its carrier frequency is first con-
verted to an intermediate frequency ν IF (typically 0.1–5 GHz) before the signal is de-
modulated to the baseband. It is not always necessary to use an intermediate frequency.
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In fact, there are two different coherent detection techniques to choose from, depend-
ing on whether or not ωIF equals zero. They are known as homodyne and heterodyne
detection techniques.

10.1.2 Homodyne Detection

In this coherent-detection technique, the local-oscillator frequency ω LO is selected to
coincide with the signal-carrier frequency ω0 so that ωIF = 0. From Eq. (10.1.3), the
photocurrent (I = RP, where R is the detector responsivity) is given by

I(t) = R(Ps + PLO)+ 2R
√

PsPLO cos(φs −φLO) . (10.1.5)

Typically, PLO � Ps, and Ps + PLO ≈ PLO. The last term in Eq. (10.1.5) contains the
information transmitted and is used by the decision circuit. Consider the case in which
the local-oscillator phase is locked to the signal phase so that φ s = φLO. The homodyne
signal is then given by

Ip(t) = 2R
√

PsPLO. (10.1.6)

The main advantage of homodyne detection is evident from Eq. (10.1.6) if we note that
the signal current in the direct-detection case is given by Idd(t) = RPs(t). Denoting the
average optical power by P̄s, the average electrical power is increased by a factor of
4PLO/P̄s with the use of homodyne detection. Since PLO can be made much larger than
P̄s, the power enhancement can exceed 20 dB. Although shot noise is also enhanced,
it is shown later in this section that homodyne detection improves the signal-to-noise
ratio (SNR) by a large factor.

Another advantage of coherent detection is evident from Eq. (10.1.5). Because the
last term in this equation contains the signal phase explicitly, it is possible to trans-
mit information by modulating the phase or frequency of the optical carrier. Direct
detection does not allow phase or frequency modulation, as all information about the
signal phase is lost. The new modulation formats for coherent systems are discussed in
Section 10.2.

A disadvantage of homodyne detection also results from its phase sensitivity. Since
the last term in Eq. (10.1.5) contains the local-oscillator phase φ LO explicitly, clearly
φLO should be controlled. Ideally, φs and φLO should stay constant except for the inten-
tional modulation of φs. In practice, both φs and φLO fluctuate with time in a random
manner. However, their difference φ s − φLO can be forced to remain nearly constant
through an optical phase-locked loop. The implementation of such a loop is not sim-
ple and makes the design of optical homodyne receivers quite complicated. In addition,
matching of the transmitter and local-oscillator frequencies puts stringent requirements
on the two optical sources. These problems can be overcome by the use of heterodyne
detection, discussed next.

10.1.3 Heterodyne Detection

In the case of heterodyne detection the local-oscillator frequency ω LO is chosen to
differ form the signal-carrier frequency ω 0 such that the intermediate frequency ω IF is
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in the microwave region (νIF ∼ 1 GHz). Using Eq. (10.1.3) together with I = RP, the
photocurrent is now given by

I(t) = R(Ps + PLO)+ 2R
√

PsPLO cos(ωIFt + φs −φLO). (10.1.7)

Since PLO � Ps in practice, the direct-current (dc) term is nearly constant and can
be removed easily using bandpass filters. The heterodyne signal is then given by the
alternating-current (ac) term in Eq. (10.1.7) or by

Iac(t) = 2R
√

PsPLO cos(ωIFt + φs −φLO). (10.1.8)

Similar to the case of homodyne detection, information can be transmitted through
amplitude, phase, or frequency modulation of the optical carrier. More importantly, the
local oscillator still amplifies the received signal by a large factor, thereby improving
the SNR. However, the SNR improvement is lower by a factor of 2 (or by 3 dB)
compared with the homodyne case. This reduction is referred to as the heterodyne-
detection penalty. The origin of the 3-dB penalty can be seen by considering the signal
power (proportional to the square of the current). Because of the ac nature of I ac, the
average signal power is reduced by a factor of 2 when I 2

ac is averaged over a full cycle
at the intermediate frequency (recall that the average of cos 2 θ over θ is 1

2 ).
The advantage gained at the expense of the 3-dB penalty is that the receiver design

is considerably simplified because an optical phase-locked loop is no longer needed.
Fluctuations in both φs and φLO still need to be controlled using narrow-linewidth semi-
conductor lasers for both optical sources. However, as discussed in Section 10.5.1,
the linewidth requirements are quite moderate when an asynchronous demodulation
scheme is used. This feature makes the heterodyne-detection scheme quite suitable for
practical implementation in coherent lightwave systems.

10.1.4 Signal-to-Noise Ratio

The advantage of coherent detection for lightwave systems can be made more quanti-
tative by considering the SNR of the receiver current. For this purpose, it is necessary
to extend the analysis of Section 4.4 to the case of heterodyne detection. The receiver
current fluctuates because of shot noise and thermal noise. The variance σ 2 of current
fluctuations is obtained by adding the two contributions so that

σ2 = σ2
s + σ2

T , (10.1.9)

where
σ2

s = 2q(I + Id)∆ f , σ2
T = (4kBT/RL)Fn∆ f . (10.1.10)

The notation used here is the same as in Section 4.4. The main difference from the
analysis of Section 4.4 occurs in the shot-noise contribution. The current I in Eq.
(10.1.10) is the total photocurrent generated at the detector and is given by Eq. (10.1.5)
or Eq. (10.1.7), depending on whether homodyne or heterodyne detection is employed.
In practice, PLO � Ps, and I in Eq. (10.1.10) can be replaced by the dominant term
RPLO for both cases.
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The SNR is obtained by dividing the average signal power by the average noise
power. In the heterodyne case, it is given by

SNR =
〈I2

ac〉
σ2 =

2R2P̄sPLO

2q(RPLO + Id)∆ f + σ2
T

. (10.1.11)

In the homodyne case, the SNR is larger by a factor of 2 if we assume that φ s = φLO in
Eq. (10.1.5). The main advantage of coherent detection can be seen from Eq. (10.1.11).
Since the local-oscillator power PLO can be controlled at the receiver, it can be made
large enough that the receiver noise is dominated by shot noise. More specifically,
σ2

s � σ2
T when

PLO � σ2
T /(2qR∆ f ). (10.1.12)

Under the same conditions, the dark-current contribution to the shot noise is negligible
(Id 
 RPLO). The SNR is then given by

SNR ≈ RP̄s

q∆ f
=

ηP̄s

hν∆ f
, (10.1.13)

where R = ηq/hν was used from Eq. (4.1.3). The use of coherent detection allows one
to achieve the shot-noise limit even for p–i–n receivers whose performance is generally
limited by thermal noise. Moreover, in contrast with the case of avalanche photodiode
(APD) receivers, this limit is realized without adding any excess shot noise.

It is useful to express the SNR in terms of the number of photons, N p, received
within a single bit. At the bit rate B, the signal power P̄s is related to Np as P̄s = NphνB.
Typically, ∆ f ≈ B/2. By using these values of P̄s and ∆ f in Eq. (10.1.13), the SNR is
given by a simple expression

SNR = 2ηNp. (10.1.14)

In the case of homodyne detection, SNR is larger by a factor of 2 and is given by
SNR = 4ηNp. Section 10.4 discusses the dependence of the BER on SNR and shows
how receiver sensitivity is improved by the use of coherent detection.

10.2 Modulation Formats

As discussed in Section 10.1, an important advantage of using the coherent detection
techniques is that both the amplitude and the phase of the received optical signal can
be detected and measured. This feature opens up the possibility of sending information
by modulating either the amplitude, or the phase, or the frequency of an optical carrier.
In the case of digital communication systems, the three possibilities give rise to three
modulation formats known as amplitude-shift keying (ASK), phase-shift keying (PSK),
and frequency-shift keying (FSK) [1]–[6]. Figure 10.2 shows schematically the three
modulation formats for a specific bit pattern. In the following subsections we consider
each format separately and discuss its implementation in practical lightwave systems.
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Figure 10.2: ASK, PSK, and FSK modulation formats for a specific bit pattern shown on the
top.

10.2.1 ASK Format

The electric field associated with an optical signal can be written as [by taking the real
part of Eq. (10.1.1)]

Es(t) = As(t)cos[ω0t + φs(t)]. (10.2.1)

In the case of ASK format, the amplitude As is modulated while keeping ω0 and φs

constant. For binary digital modulation, As takes one of the two fixed values during
each bit period, depending on whether 1 or 0 bit is being transmitted. In most practical
situations, As is set to zero during transmission of 0 bits. The ASK format is then called
on–off keying (OOK) and is identical with the modulation scheme commonly used for
noncoherent (IM/DD) digital lightwave systems.

The implementation of ASK for coherent systems differs from the case of the
direct-detection systems in one important aspect. Whereas the optical bit stream for
direct-detection systems can be generated by modulating a light-emitting diode (LED)
or a semiconductor laser directly, external modulation is necessary for coherent com-
munication systems. The reason behind this necessity is related to phase changes that
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invariably occur when the amplitude As (or the power) is changed by modulating the
current applied to a semiconductor laser (see Section 3.5.3). For IM/DD systems, such
unintentional phase changes are not seen by the detector (as the detector responds only
to the optical power) and are not of major concern except for the chirp-induced power
penalty discussed in Section 5.4.4. The situation is entirely different in the case of
coherent systems, where the detector response depends on the phase of the received
signal. The implementation of ASK format for coherent systems requires the phase
φs to remain nearly constant. This is achieved by operating the semiconductor laser
continuously at a constant current and modulating its output by using an external mod-
ulator (see Section 3.6.4). Since all external modulators have some insertion losses,
a power penalty incurs whenever an external modulator is used; it can be reduced to
below 1 dB for monolithically integrated modulators.

As discussed in Section 3.64, a commonly used external modulator makes use of
LiNbO3 waveguides in a Mach–Zehnder (MZ) configuration [17]. The performance
of external modulators is quantified through the on–off ratio (also called extinction
ratio) and the modulation bandwidth. LiNbO 3 modulators provide an on–off ratio in
excess of 20 and can be modulated at speeds up to 75 GHz [18]. The driving voltage
is typically 5 V but can be reduced to near 3 V with a suitable design. Other materials
can also be used to make external modulators. For example, a polymeric electro-optic
MZ modulator required only 1.8 V for shifting the phase of a 1.55-µm signal by π in
one of the arms of the MZ interferometer [19].

Electroabsorption modulators, made using semiconductors, are often preferred be-
cause they do not require the use of an interferometer and can be integrated mono-
lithically with the laser (see Section 3.6.4). Optical transmitters with an integrated
electroabsorption modulator capable of modulating at 10 Gb/s were available commer-
cially by 1999 and are used routinely for IM/DD lightwave systems [20]. By 2001,
such integrated modulators exhibited a bandwidth of more than 50 GHz and had the
potential of operating at bit rates of up to 100 Gb/s [21]. They are likely to be employed
for coherent systems as well.

10.2.2 PSK Format

In the case of PSK format, the optical bit stream is generated by modulating the phase
φs in Eq. (10.2.1) while the amplitude As and the frequency ω0 of the optical carrier
are kept constant. For binary PSK, the phase φs takes two values, commonly chosen to
be 0 and π . Figure 10.2 shows the binary PSK format schematically for a specific bit
pattern. An interesting aspect of the PSK format is that the optical intensity remains
constant during all bits and the signal appears to have a CW form. Coherent detection is
a necessity for PSK as all information would be lost if the optical signal were detected
directly without mixing it with the output of a local oscillator.

The implementation of PSK requires an external modulator capable of changing
the optical phase in response to an applied voltage. The physical mechanism used
by such modulators is called electrorefraction. Any electro-optic crystal with proper
orientation can be used for phase modulation. A LiNbO 3 crystal is commonly used in
practice. The design of LiNbO3-based phase modulators is much simpler than that of
an amplitude modulator as a Mach–Zehnder interferometer is no longer needed, and
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a single waveguide can be used. The phase shift δφ occurring while the CW signal
passes through the waveguide is related to the index change δn by the simple relation

δφ = (2π/λ )(δn)lm, (10.2.2)

where lm is the length over which index change is induced by the applied voltage.
The index change δn is proportional to the applied voltage, which is chosen such that
δφ = π . Thus, a phase shift of π can be imposed on the optical carrier by applying the
required voltage for the duration of each “1” bit.

Semiconductors can also be used to make phase modulators, especially if a multi-
quantum-well (MQW) structure is used. The electrorefraction effect originating from
the quantum-confinement Stark effect is enhanced for a quantum-well design. Such
MQW phase modulators have been developed [22]–[27] and are able to operate at
a bit rate of up to 40 Gb/s in the wavelength range 1.3–1.6 µm. Already in 1992,
MQW devices had a modulation bandwidth of 20 GHz and required only 3.85 V for
introducing a π phase shift when operated near 1.55 µm [22]. The operating voltage
was reduced to 2.8 V in a phase modulator based on the electroabsorption effect in a
MQW waveguide [23]. A spot-size converter is sometimes integrated with the phase
modulator to reduce coupling losses [24]. The best performance is achieved when a
semiconductor phase modulator is monolithically integrated within the transmitter [25].
Such transmitters are quite useful for coherent lightwave systems.

The use of PSK format requires that the phase of the optical carrier remain stable
so that phase information can be extracted at the receiver without ambiguity. This re-
quirement puts a stringent condition on the tolerable linewidths of the transmitter laser
and the local oscillator. As discussed later in Section 10.5.1, the linewidth requirement
can be somewhat relaxed by using a variant of the PSK format, known as differential
phase-shift keying (DPSK). In the case of DPSK, information is coded by using the
phase difference between two neighboring bits. For instance, if φ k represents the phase
of the kth bit, the phase difference ∆φ = φk −φk−1 is changed by π or 0, depending on
whether kth bit is a 1 or 0 bit. The advantage of DPSK is that the transmittal signal can
be demodulated successfully as long as the carrier phase remains relatively stable over
a duration of two bits.

10.2.3 FSK Format

In the case of FSK modulation, information is coded on the optical carrier by shifting
the carrier frequency ω0 itself [see Eq. (10.2.1)]. For a binary digital signal, ω 0 takes
two values, ω0 + ∆ω and ω0 −∆ω , depending on whether a 1 or 0 bit is being trans-
mitted. The shift ∆ f = ∆ω/2π is called the frequency deviation. The quantity 2∆ f is
sometimes called tone spacing, as it represents the frequency spacing between 1 and 0
bits. The optical field for FSK format can be written as

Es(t) = As cos[(ω0 ±∆ω)t + φs], (10.2.3)

where + and − signs correspond to 1 and 0 bits. By noting that the argument of cosine
can be written as ω0t + (φs ±∆ωt), the FSK format can also be viewed as a kind of
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PSK modulation such that the carrier phase increases or decreases linearly over the bit
duration.

The choice of the frequency deviation ∆ f depends on the available bandwidth. The
total bandwidth of a FSK signal is given approximately by 2∆ f + 2B, where B is the
bit rate [1]. When ∆ f � B, the bandwidth approaches 2∆ f and is nearly independent
of the bit rate. This case is often referred to as wide-deviation or wideband FSK. In the
opposite case of ∆ f 
 B, called narrow-deviation or narrowband FSK, the bandwidth
approaches 2B. The ratio βFM = ∆ f/B, called the frequency modulation (FM) index,
serves to distinguish the two cases, depending on whether β FM � 1 or βFM 
 1.

The implementation of FSK requires modulators capable of shifting the frequency
of the incident optical signal. Electro-optic materials such as LiNbO 3 normally produce
a phase shift proportional to the applied voltage. They can be used for FSK by applying
a triangular voltage pulse (sawtooth-like), since a linear phase change corresponds to a
frequency shift. An alternative technique makes use of Bragg scattering from acoustic
waves. Such modulators are called acousto-optic modulators. Their use is somewhat
cumbersome in the bulk form. However, they can be fabricated in compact form using
surface acoustic waves on a slab waveguide. The device structure is similar to that of
an acousto-optic filter used for wavelength-division multiplexing (WDM) applications
(see Section 8.3.1). The maximum frequency shift is typically limited to below 1 GHz
for such modulators.

The simplest method for producing an FSK signal makes use of the direct-modulation
capability of semiconductor lasers. As discussed in Section 3.5.2, a change in the op-
erating current of a semiconductor laser leads to changes in both the amplitude and
frequency of emitted light. In the case of ASK, the frequency shift or the chirp of the
emitted optical pulse is undesirable. But the same frequency shift can be used to ad-
vantage for the purpose of FSK. Typical values of frequency shifts are ∼1 GHz/mA.
Therefore, only a small change in the operating current (∼ 1 mA) is required for pro-
ducing the FSK signal. Such current changes are small enough that the amplitude does
not change much from from bit to bit.

For the purpose of FSK, the FM response of a distributed feedback (DFB) laser
should be flat over a bandwidth equal to the bit rate. As seen in Fig. 10.3, most DFB
lasers exhibit a dip in their FM response at a frequency near 1 MHz [28]. The rea-
son is that two different physical phenomena contribute to the frequency shift when
the device current is changed. Changes in the refractive index, responsible for the fre-
quency shift, can occur either because of a temperature shift or because of a change in
the carrier density. The thermal effects contribute only up to modulation frequencies
of about 1 MHz because of their slow response. The FM response decreases in the
frequency range 0.1–10 MHz because the thermal contribution and the carrier-density
contribution occur with opposite phases.

Several techniques can be used to make the FM response more uniform. An equal-
ization circuit improves uniformity but also reduces the modulation efficiency. Another
technique makes use of transmission codes which reduce the low-frequency compo-
nents of the data where distortion is highest. Multisection DFB lasers have been devel-
oped to realize a uniform FM response [29]–[35]. Figure 10.3 shows the FM response
of a two-section DFB laser. It is not only uniform up to about 1 GHz, but its modula-
tion efficiency is also high. Even better performance is realized by using three-section
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Figure 10.3: FM response of a typical DFB semiconductor laser exhibiting a dip in the frequency
range 0.1–10 MHz. (After Ref. [12]; c©1988 IEEE; reprinted with permission.)

DBR lasers described in Section 3.4.3 in the context of tunable lasers. Flat FM re-
sponse from 100 kHz to 15 GHz was demonstrated [29] in 1990 in such lasers. By
1995, the use of gain-coupled, phase-shifted, DFB lasers extended the range of uni-
form FM response from 10 kHz to 20 GHz [33]. When FSK is performed through
direct modulation, the carrier phase varies continuously from bit to bit. This case is
often referred to as continuous-phase FSK (CPFSK). When the tone spacing 2∆ f is
chosen to be B/2 (βFM = 1

2 ), CPFSK is also called minimum-shift keying (MSK).

10.3 Demodulation Schemes

As discussed in Section 10.1, either homodyne or heterodyne detection can be used
to convert the received optical signal into an electrical form. In the case of homo-
dyne detection, the optical signal is demodulated directly to the baseband. Although
simple in concept, homodyne detection is difficult to implement in practice, as it re-
quires a local oscillator whose frequency matches the carrier frequency exactly and
whose phase is locked to the incoming signal. Such a demodulation scheme is called
synchronous and is essential for homodyne detection. Although optical phase-locked
loops have been developed for this purpose, their use is complicated in practice. Het-
erodyne detection simplifies the receiver design, as neither optical phase locking nor
frequency matching of the local oscillator is required. However, the electrical signal
oscillates rapidly at microwave frequencies and must be demodulated from the IF band
to the baseband using techniques similar to those developed for microwave commu-
nication systems [1]–[6]. Demodulation can be carried out either synchronously or
asynchronously. Asynchronous demodulation is also called incoherent in the radio
communication literature. In the optical communication literature, the term coherent
detection is used in a wider sense. A lightwave system is called coherent as long as
it uses a local oscillator irrespective of the demodulation technique used to convert
the IF signal to baseband frequencies. This section focuses on the synchronous and
asynchronous demodulation schemes for heterodyne systems.
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Figure 10.4: Block diagram of a synchronous heterodyne receiver.

10.3.1 Heterodyne Synchronous Demodulation

Figure 10.4 shows a synchronous heterodyne receiver schematically. The current gen-
erated at the photodiode is passed through a bandpass filter (BPF) centered at the inter-
mediate frequency ωIF. The filtered current in the absence of noise can be written as
[see Eq. (10.1.8)]

I f (t) = Ip cos(ωIFt −φ), (10.3.1)

where Ip = 2R
√

PsPLO and φ = φLO − φs is the phase difference between the local
oscillator and the signal. The noise is also filtered by the BPF. Using the in-phase and
out-of-phase quadrature components of the filtered Gaussian noise [1], the receiver
noise is included through

I f (t) = (Ip cosφ + ic)cos(ωIFt)+ (Ip sinφ + is)sin(ωIFt), (10.3.2)

where ic and is are Gaussian random variables of zero mean with variance σ 2 given
by Eq. (10.1.9). For synchronous demodulation, I f (t) is multiplied by cos(ωIFt) and
filtered by a low-pass filter. The resulting baseband signal is

Id = 〈I f cos(ωIFt)〉 = 1
2 (Ip cosφ + ic), (10.3.3)

where angle brackets denote low-pass filtering used for rejecting the ac components
oscillating at 2ωIF. Equation (10.3.3) shows that only the in-phase noise component
affects the performance of synchronous heterodyne receivers.

Synchronous demodulation requires recovery of the microwave carrier at the inter-
mediate frequency ωIF. Several electronic schemes can be used for this purpose, all
requiring a kind of electrical phase-locked loop [36]. Two commonly used loops are
the squaring loop and the Costas loop. A squaring loop uses a square-law device to
obtain a signal of the form cos2(ωIFt) that has a frequency component at 2ω IF. This
component can be used to generate a microwave signal at ω IF.

10.3.2 Heterodyne Asynchronous Demodulation

Figure 10.5 shows an asynchronous heterodyne receiver schematically. It does not
require recovery of the microwave carrier at the intermediate frequency, resulting in a
much simpler receiver design. The filtered signal I f (t) is converted to the baseband by
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Figure 10.5: Block diagram of an asynchronous heterodyne receiver.

using an envelope detector, followed by a low-pass filter. The signal received by the
decision circuit is just Id = |I f |, where I f is given by Eq. (10.3.2). It can be written as

Id = |I f | = [(Ip cosφ + ic)2 +(Ip sinφ + is)2]1/2. (10.3.4)

The main difference is that both the in-phase and out-of-phase quadrature components
of the receiver noise affect the signal. The SNR is thus degraded compared with the
case of synchronous demodulation. As discussed in Section 10.4, sensitivity degra-
dation resulting from the reduced SNR is quite small (about 0.5 dB). As the phase-
stability requirements are quite modest in the case of asynchronous demodulation, this
scheme is commonly used for coherent lightwave systems.

The asynchronous heterodyne receiver shown in Fig. 10.5 requires modifications
when the FSK and PSK modulation formats are used. Figure 10.6 shows two demod-
ulation schemes. The FSK dual-filter receiver uses two separate branches to process
the 1 and 0 bits whose carrier frequencies, and hence the intermediate frequencies, are
different. The scheme can be used whenever the tone spacing is much larger than the
bit rates, so that the spectra of 1 and 0 bits have negligible overlap (wide-deviation
FSK). The two BPFs have their center frequencies separated exactly by the tone spac-
ing so that each BPF passes either 1 or 0 bits only. The FSK dual-filter receiver can be
thought of as two ASK single-filter receivers in parallel whose outputs are combined
before reaching the decision circuit. A single-filter receiver of Fig. 10.5 can be used
for FSK demodulation if its bandwidth is chosen to be wide enough to pass the entire
bit stream. The signal is then processed by a frequency discriminator to identify 1 and
0 bits. This scheme works well only for narrow-deviation FSK, for which tone spacing
is less than or comparable to the bit rate (βFM ≤ 1).

Asynchronous demodulation cannot be used in the case the PSK format because
the phase of the transmitter laser and the local oscillator are not locked and can drift
with time. However, the use of DPSK format permits asynchronous demodulation by
using the delay scheme shown in Fig. 10.6(b). The idea is to multiply the received
bit stream by a replica of it that has been delayed by one bit period. The resulting
signal has a component of the form cos(φk − φk−1), where φk is the phase of the kth
bit, which can be used to recover the bit pattern since information is encoded in the
phase difference φk −φk−1. Such a scheme requires phase stability only over a few bits
and can be implemented by using DFB semiconductor lasers. The delay-demodulation
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Figure 10.6: (a) Dual-filter FSK and (b) DPSK asynchronous heterodyne receivers.

scheme can also be used for CPFSK. The amount of delay in that case depends on the
tone spacing and is chosen such that the phase is shifted by π for the delayed signal.

10.4 Bit-Error Rate

The preceding three sections have provided enough background material for calculat-
ing the bit-error rate (BER) of coherent lightwave systems. However, the BER, and
hence the receiver sensitivity, depend on the modulation format as well as on the de-
modulation scheme used by the coherent receiver. The section considers each case
separately.

10.4.1 Synchronous ASK Receivers

Consider first the case of heterodyne detection. The signal used by the decision circuit
is given by Eq. (10.3.3). The phase φ generally varies randomly because of phase fluc-
tuations associated with the transmitter laser and the local oscillator. As discussed in
Section 10.5, the effect of phase fluctuations can be made negligible by using semicon-
ductor lasers whose linewidth is a small fraction of the bit rate. Assuming this to be
the case and setting φ = 0 in Eq. (10.3.2), the decision signal is given by

Id = 1
2 (Ip + ic), (10.4.1)
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where Ip ≡ 2R(PsPLO)1/2 takes values I1 or I0 depending on whether a 1 or 0 bit is
being detected.

Consider the case I0 = 0 in which no power is transmitted during the 0 bits. Except
for the factor of 1

2 in Eq. (10.4.1), the situation is analogous to the case of direct detec-
tion discussed in Section 4.5. The factor of 1

2 does not affect the BER since both the
signal and the noise are reduced by the same factor, leaving the SNR unchanged. In
fact, one can use the same result [Eq. (4.5.9)],

BER =
1
2

erfc

(
Q√

2

)
, (10.4.2)

where Q is given by Eq. (4.5.10) and can be written as

Q =
I1 − I0

σ1 + σ0
≈ I1

2σ1
=

1
2
(SNR)1/2. (10.4.3)

In relating Q to SNR, we used I0 = 0 and set σ0 ≈ σ1. The latter approximation is justi-
fied for most coherent receivers whose noise is dominated by the shot noise induced by
local-oscillator power and remains the same irrespective of the received signal power.
Indeed, as shown in Section 10.1.4, the SNR of such receivers can be related to the
number of photons received during each 1 bit by the simple relation SNR = 2ηN p [see
Eq. (10.1.14)]. Equations (10.4.2) and (10.4.3) then provide the following expression
for the BER:

BER = 1
2 erfc(

√
ηNp/4). [ASK heterodyne] (10.4.4)

One can use the same method to calculate the BER in the case of ASK homodyne
receivers. Equations (10.4.2) and (10.4.3) still remain applicable. However, the SNR
is improved by 3 dB for the homodyne case, so that SNR = 4ηN p and

BER = 1
2 erfc(

√
ηNp/2). [ASK homodyne] (10.4.5)

Equations (10.4.4) and (10.4.5) can be used to calculate the receiver sensitivity at
a specific BER. Similar to the direct-detection case discussed in Section 4.4, we can
define the receiver sensitivity P̄rec as the average received power required for realizing
a BER of 10−9 or less. From Eqs. (10.4.2) and (10.4.3), BER = 10−9 when Q ≈ 6 or
when SNR = 144 (21.6 dB). For the ASK heterodyne case we can use Eq. (10.1.14)
to relate SNR to P̄rec if we note that P̄rec = P̄s/2 simply because signal power is zero
during the 0 bits. The result is

P̄rec = 2Q2hν∆ f/η = 72hν∆ f/η . (10.4.6)

For the ASK homodyne case, P̄rec is smaller by a factor of 2 because of the 3-dB
homodyne-detection advantage discussed in Section 10.1.3. As an example, for a 1.55-
µm ASK heterodyne receiver with η = 0.8 and ∆ f = 1 GHz, the receiver sensitivity is
about 12 nW and reduces to 6 nW if homodyne detection is used.

The receiver sensitivity is often quoted in terms of the number of photons N p us-
ing Eqs. (10.4.4) and (10.4.5) as such a choice makes it independent of the receiver
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bandwidth and the operating wavelength. Furthermore, η is also set to 1 so that the
sensitivity corresponds to an ideal photodetector. It is easy to verify that for realizing
a BER of = 10−9, Np should be 72 and 36 in the heterodyne and homodyne cases,
respectively. It is important to remember that N p corresponds to the number of photons
within a single 1 bit. The average number of photons per bit, N̄p, is reduced by a factor
of 2 if we assume that 0 and 1 bits are equally likely to occur in a long bit sequence.

10.4.2 Synchronous PSK Receivers

Consider first the case of heterodyne detection. The signal at the decision circuit is
given by Eq. (10.3.3) or by

Id = 1
2 (Ip cosφ + ic). (10.4.7)

The main difference from the ASK case is that I p is constant, but the phase φ takes
values 0 or π depending on whether a 1 or 0 is transmitted. In both cases, I d is a
Gaussian random variable but its average value is either I p/2 or −Ip/2, depending on
the received bit. The situation is analogous to the ASK case with the difference that
I0 = −I1 in place of being zero. In fact, one can use Eq. (10.4.2) for the BER, but Q is
now given by

Q =
I1 − I0

σ1 + σ0
≈ 2I1

2σ1
= (SNR)1/2, (10.4.8)

where I0 = −I1 and σ0 = σ1 was used. By using SNR = 2ηNp from Eq. (10.1.14), the
BER is given by

BER = 1
2 erfc(

√
ηNp ). [PSK heterodyne] (10.4.9)

As before, the SNR is improved by 3 dB, or by a factor of 2, in the case of PSK
homodyne detection, so that

BER = 1
2 erfc(

√
2ηNp ). [PSK homodyne] (10.4.10)

The receiver sensitivity at a BER of 10−9 can be obtained by using Q = 6 and Eq.
(10.1.14) for SNR. For the purpose of comparison, it is useful to express the receiver
sensitivity in terms of the number of photons N p. It is easy to verify that Np = 18 and
9 for the cases of heterodyne and homodyne PSK detection, respectively. The average
number of photons/bit, N̄p, equals Np for the PSK format because the same power
is transmitted during 1 and 0 bits. A PSK homodyne receiver is the most sensitive
receiver, requiring only 9 photons/bit. It should be emphasized that this conclusion is
based on the Gaussian approximation for the receiver noise [37].

It is interesting to compare the sensitivity of coherent receivers with that of a direct-
detection receiver. Table 10.1 shows such a comparison. As discussed in Section
4.5.3, an ideal direct-detection receiver requires 10 photons/bit to operate at a BER
of ≤ 10−9. This value is only slightly inferior to the best case of a PSK homodyne
receiver and considerably superior to that of heterodyne schemes. However, it is never
achieved in practice because of thermal noise, dark current, and many other factors,
which degrade the sensitivity to the extent that N̄p > 1000 is usually required. In the
case of coherent receivers, N̄p below 100 can be realized simply because shot noise
can be made dominant by increasing the local-oscillator power. The performance of
coherent receivers is discussed in Section 10.6.
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Table 10.1 Sensitivity of synchronous receivers

Modulation Format Bit-Error Rate Np N̄p

ASK heterodyne 1
2 erfc(

√
ηNp/4) 72 36

ASK homodyne 1
2 erfc(

√
ηNp/2) 36 18

PSK heterodyne 1
2 erfc(

√
ηNp) 18 18

PSK homodyne 1
2 erfc(

√
2ηNp) 9 9

FSK heterodyne 1
2 erfc(

√
ηNp/2) 36 36

Direct detection 1
2 exp(−ηNp) 20 10

10.4.3 Synchronous FSK Receivers

Synchronous FSK receivers generally use a dual-filter scheme similar to that shown in
Fig. 10.6(a) for the asynchronous case. Each filter passes only 1 or 0 bits. The scheme
is equivalent to two complementary ASK heterodyne receivers operating in parallel.
This feature can be used to calculate the BER of dual-filter synchronous FSK receivers.
Indeed, one can use Eqs. (10.4.2) and (10.4.3) for the FSK case also. However, the SNR
is improved by a factor of 2 compared with the ASK case. The improvement is due to
the fact that whereas no power is received, on average, half the time for ASK receivers,
the same amount of power is received all the time for FSK receivers. Hence the signal
power is enhanced by a factor of 2, whereas the noise power remains the same if we
assume the same receiver bandwidth in the two cases. By using SNR = 4ηN p in Eq.
(10.4.3), the BER is given by

BER = 1
2 erfc(

√
ηNp/2). [FSK heterodyne] (10.4.11)

The receiver sensitivity is obtained from Eq. (10.4.6) by replacing the factor of 72
by 36. In terms of the number of photons, the sensitivity is given by N p = 36. The
average number of photons/bit, N̄p, also equals 36, since each bit carries the same
energy. A comparison of ASK and FSK heterodyne schemes in Table 10.1 shows
that N̄p = 36 for both schemes. Therefore even though the ASK heterodyne receiver
requires 72 photons within the 1 bit, the receiver sensitivity (average received power)
is the same for both the ASK and FSK schemes. Figure 10.7 plots the BER as a
function of Np for the ASK, PSK, and FSK formats by using Eqs. (10.4.4), (10.4.9),
and (10.4.11). The dotted curve shows the BER for the case of synchronous PSK
homodyne receiver discussed in Section 10.4.2. The dashed curves correspond to the
case of asynchronous receivers discussed in the following subsections.

10.4.4 Asynchronous ASK Receivers

The BER calculation for asynchronous receivers is slightly more complicated than for
synchronous receivers because the noise statistics does not remain Gaussian when an
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Figure 10.7: Bit-error-rate curves for various modulation formats. The solid and dashed lines
correspond to the cases of synchronous and asynchronous demodulation, respectively.

envelope detector is used (see Fig. 10.5). The reason can be understood from Eq.
(10.3.4), which shows the signal received by the decision circuit. In the case of an
ideal ASK heterodyne receiver without phase fluctuations, φ can be set to zero so that
(subscript d is dropped for simplicity of notation)

I = [(Ip + ic)2 + i2s ]
1/2. (10.4.12)

Even though both Ip + ic and is are Gaussian random variables, the probability density
function (PDF) of I is not Gaussian. It can be calculated by using a standard tech-
nique [38] and is found to be given by [39]

p(I, Ip) =
I

σ2 exp

(
− I2 + I2

p

2σ 2

)
I0

(
IpI
σ2

)
, (10.4.13)

where I0 represents the modified Bessel function of the first kind. Both i c and is are
assumed to have a Gaussian PDF with zero mean and the same standard deviation σ ,
where σ is the RMS noise current. The PDF given by Eq. (10.4.13) is known as the
Rice distribution [39]. Note that I varies in the range 0 to ∞, since the output of an
envelope detector can have only positive values. When I p = 0, the Rice distribution
reduces to the Rayleigh distribution, well known in statistical optics [38].

The BER calculation follows the analysis of Section 4.5.1 with the only difference
that the Rice distribution needs to be used in place of the Gaussian distribution. The
BER is given by Eq. (4.5.2) or by

BER = 1
2 [P(0/1)+ P(1/0)], (10.4.14)
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where

P(0/1) =
∫ ID

0
p(I, I1)dI, P(1/0) =

∫ ∞

ID
P(I, I0)dI. (10.4.15)

The notation is the same as that of Section 4.5.1. In particular, ID is the decision
level and I1 and I0 are values of Ip for 1 and 0 bits. The noise is the same for all bits
(σ0 = σ1 = σ ) because it is dominated by the local oscillator power. The integrals in
Eq. (10.4.15) can be expressed in terms of Marcum’s Q function defined as [40]

Q(α,β ) =
∫ ∞

β
x exp

(
−x2 + α2

2

)
I0(αx)dx. (10.4.16)

The result for the BER is

BER =
1
2

[
1−Q

(
I1

σ
,

ID

σ

)
+ Q

(
I0

σ
,

ID

σ

)]
. (10.4.17)

The decision level ID is chosen such that the BER is minimum for given values
of I1, I0, and σ . It is difficult to obtain an analytic expression of ID under general
conditions. However, under typical operating conditions, I 0 ≈ 0, I1/σ � 1, and ID is
well approximated by I1/2. The BER then becomes

BER ≈ 1
2 exp(−I2

1/8σ 2) = 1
2 exp(−SNR/8). (10.4.18)

When the receiver noise σ is dominated by the shot noise, the SNR is given by Eq.
(10.1.14). Using SNR = 2ηNp, we obtain the final result,

BER = 1
2 exp(−ηNp/4), (10.4.19)

which should be compared with Eq. (10.4.4) obtained for the case of synchronous ASK
heterodyne receivers. Equation (10.4.19) is plotted in Fig. 10.7 with a dashed line. It
shows that the BER is larger in the asynchronous case for the same value of ηN p.
However, the difference is so small that the receiver sensitivity at a BER of 10−9 is
degraded by only about 0.5 dB. If we assume that η = 1, Eq. (10.4.19) shows that
BER = 10−9 for Np = 80 (Np = 72 for the synchronous case). Asynchronous receivers
hence provide performance comparable to that of synchronous receivers and are often
used in practice because of their simpler design.

10.4.5 Asynchronous FSK Receivers

Although a single-filter heterodyne receiver can be used for FSK, it has the disad-
vantage that one-half of the received power is rejected, resulting in an obvious 3-dB
penalty. For this reason, a dual-filter FSK receiver [see Fig. 10.6(a)] is commonly em-
ployed in which 1 and 0 bits pass through separate filters. The output of two envelope
detectors are subtracted, and the resulting signal is used by the decision circuit. Since
the average current takes values I p and −Ip for 1 and 0 bits, the decision threshold is
set in the middle (ID = 0). Let I and I ′ be the currents generated in the upper and lower



496 CHAPTER 10. COHERENT LIGHTWAVE SYSTEMS

branches of the dual filter receiver, where both of them include noise currents through
Eq. (10.4.12). Consider the case in which 1 bits are received in the upper branch. The
current I is then given by Eq. (10.4.12) and follows a Rice distribution with I p = I1

in Eq. (10.4.13). On the other hand, I ′ consists only of noise and its distribution is
obtained by setting Ip = 0 in Eq. (10.4.13). An error is made when I ′ > I, as the signal
is then below the decision level, resulting in

P(0/1) =
∫ ∞

0
p(I, I1)

[∫ ∞

I
p(I′,0)dI ′

]
dI, (10.4.20)

where the inner integral provides the error probability for a fixed value of I and the
outer integral sums it over all possible values of I. The probability P(1/0) can be
obtained similarly. In fact, P(1/0) = P(0/1) because of the symmetric nature of a
dual-filter receiver.

The integral in Eq. (10.4.20) can be evaluated analytically. By using Eq. (10.4.13)
in the inner integral with Ip = 0, it is easy to verify that

∫ ∞

I
p(I′,0)dI ′ = exp

(
− I2

2σ 2

)
. (10.4.21)

By using Eqs. (10.4.14), (10.4.20), and (10.4.21) with P(1/0) = P(0/1), the BER is
given by

BER =
∫ ∞

0

I
σ2 exp

(
− I2 + I2

1

2σ 2

)
I0

(
I1I
σ2

)
exp

(
− I2

2σ 2

)
dI, (10.4.22)

where p(I, Ip) was substituted from Eq. (10.4.13). By introducing the variable x =
√

2 I,
Eq. (10.4.22) can be written as

BER =
1
2

exp

(
− I2

4σ 2

)∫ ∞

0

x
σ2 exp

(
−x2 + I2

1/2
2σ 2

)
I0

(
I1x

σ2
√

2

)
dx. (10.4.23)

The integrand in Eq. (10.4.23) is just p(x, I1/
√

2) and the integral must be 1. The BER
is thus simply given by

BER = 1
2 exp(−I2

1/4σ 2) = 1
2 exp(−SNR/4). (10.4.24)

By using SNR = 2ηNp from Eq. (10.1.14), we obtain the final result

BER = 1
2 exp(−ηNp/2), (10.4.25)

which should be compared with Eq. (10.4.11) obtained for the case of synchronous
FSK heterodyne receivers. Figure 10.7 compares the BER in the two cases. Just as
in the ASK case, the BER is larger for asynchronous demodulation. However, the
difference is small, and the receiver sensitivity is degraded by only about 0.5 dB com-
pared with the synchronous case. If we assume that η = 1, N p = 40 at a BER of 10−9

(Np = 36 in the synchronous case). N̄p also equals 40, since the same number of pho-
tons are received during 1 and 0 bits. Similar to the synchronous case, N̄p is the same
for both the ASK and FSK formats.
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Table 10.2 Sensitivity of asynchronous receivers

Modulation Format Bit-Error Rate Np N̄p

ASK heterodyne 1
2 exp(−ηNp/4) 80 40

FSK heterodyne 1
2 exp(−ηNp/2) 40 40

DPSK heterodyne 1
2 exp(−ηNp) 20 20

Direct detection 1
2 exp(−ηNp) 20 10

10.4.6 Asynchronous DPSK Receivers

As mentioned in Section 10.2.2, asynchronous demodulation cannot be used for PSK
signals. A variant of PSK, known as DPSK, can be demodulated by using an asyn-
chronous DPSK receiver [see Fig. 10.6(b)]. The filtered current is divided into two
parts, and one part is delayed by exactly one bit period. The product of two currents
contains information about the phase difference between the two neighboring bits and
is used by the decision current to determine the bit pattern.

The BER calculation is more complicated for the DPSK case because the signal is
formed by the product of two currents. The final result is, however, quite simple and is
given by [11]

BER = 1
2 exp(−ηNp). (10.4.26)

It can be obtained from the FSK result, Eq. (10.4.24), by using a simple argument which
shows that the demodulated DPSK signal corresponds to the FSK case if we replace
I1 by 2I1 and σ 2 by 2σ 2 [13]. Figure 10.7 shows the BER by a dashed line (the curve
marked DPSK). For η = 1, a BER of 10−9 is obtained for Np = 20. Thus, a DPSK
receiver is more sensitive by 3 dB compared with both ASK and FSK receivers. Table
10.2 lists the BER and the receiver sensitivity for the three modulation schemes used
with asynchronous demodulation. The quantum limit of a direct-detection receiver is
also listed for comparison. The sensitivity of an asynchronous DPSK receiver is only
3 dB away from this quantum limit.

10.5 Sensitivity Degradation

The sensitivity analysis of the preceding section assumes ideal operating conditions
for a coherent lightwave system with perfect components. Many physical mechanisms
degrade the receiver sensitivity in practical coherent systems; among them are phase
noise, intensity noise, polarization mismatch, and fiber dispersion. In this section we
discuss the sensitivity-degradation mechanisms and the techniques used to improve the
performance with a proper receiver design.
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10.5.1 Phase Noise

An important source of sensitivity degradation in coherent lightwave systems is the
phase noise associated with the transmitter laser and the local oscillator. The reason
can be understood from Eqs. (10.1.5) and (10.1.7), which show the current generated
at the photodetector for homodyne and heterodyne receivers, respectively. In both
cases, phase fluctuations lead to current fluctuations and degrade the SNR. Both the
signal phase φs and the local-oscillator phase φLO should remain relatively stable to
avoid the sensitivity degradation. A measure of the duration over which the laser phase
remains relatively stable is provided by the coherence time. As the coherence time
is inversely related to the laser linewidth ∆ν , it is common to use the linewidth-to-
bit rate ratio, ∆ν/B, to characterize the effects of phase noise on the performance of
coherent lightwave systems. Since both φs and φLO fluctuate independently, ∆ν is
actually the sum of the linewidths ∆νT and ∆νLO associated with the transmitter and
the local oscillator, respectively. The quantity ∆ν = ∆νT + ∆νLO is often called the IF
linewidth.

Considerable attention has been paid to calculate the BER in the presence of phase
noise and to estimate the dependence of the power penalty on the ratio ∆ν/B [41]–[55].
The tolerable value of ∆ν/B for which the power penalty remains below 1 dB depends
on the modulation format as well as on the demodulation technique. In general, the
linewidth requirements are most stringent for homodyne receivers. Although the tol-
erable linewidth depends to some extent on the design of phase-locked loop, typically
∆ν/B should be < 5× 10−4 to realize a power penalty of less than 1 dB [43]. The
requirement becomes ∆ν/B < 1×10−4 if the penalty is to be kept below 0.5 dB [44].

The linewidth requirements are relaxed considerably for heterodyne receivers, es-
pecially in the case of asynchronous demodulation with the ASK or FSK modulation
format. For synchronous heterodyne receivers ∆ν/B < 5× 10−3 is required [46]. In
contrast, ∆ν/B can exceed 0.1 for asynchronous ASK and FSK receivers [49]–[52].
The reason is related to the fact that such receivers use an envelope detector (see
Fig. 10.5) that throws away the phase information. The effect of phase fluctuations
is mainly to broaden the signal bandwidth. The signal can be recovered by increasing
the bandwidth of the bandpass filter (BPF). In principle, any linewidth can be tolerated
if the BPF bandwidth is suitably increased. However, a penalty must be paid since
receiver noise increases with an increase in the BPF bandwidth. Figure 10.8 shows
how the receiver sensitivity (expressed in average number of photons/bit, N̄p) degrades
with ∆ν/B for the ASK and FSK formats. The BER calculation is rather cumbersome
and requires numerical simulations [51]. Approximate methods have been developed
to provide the analytic results accurate to within 1 dB [52].

The DPSK format requires narrower linewidths compared with the ASK and FSK
formats when asynchronous demodulation based on the delay scheme [see Fig. 10.6(b)]
is used. The reason is that information is contained in the phase difference between the
two neighboring bits, and the phase should remain stable at least over the duration of
two bits. Theoretical estimates show that generally ∆ν/B should be less than 1% to
operate with a < 1 dB power penalty [43]. For a 1-Gb/s bit rate, the required linewidth
is ∼ 1 MHz but becomes < 1 MHz at lower bit rates.

The design of coherent lightwave systems requires semiconductor lasers that oper-
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Figure 10.8: Receiver sensitivity N̄p versus ∆ν/B for asynchronous ASK and FSK heterodyne
receivers. The dashed line shows the sensitivity degradation for a synchronous PSK heterodyne
receiver. (After Ref. [49]; c©1988 IEEE; reprinted with permission.)

ate in a single longitudinal mode with a narrow linewidth and whose wavelength can
be tuned (at least over a few nanometers) to match the carrier frequency ω 0 and the
local-oscillator frequency ωLO either exactly (homodyne detection) or to the required
intermediate frequency. Multisection DFB lasers have been developed to meet these
requirements (see Section 3.4.3). Narrow linewidth can also be obtained using a MQW
design for the active region of a single-section DFB laser. Values as small as 0.1 MHz
have been realized using strained MQW lasers [56].

An alternative approach solves the phase-noise problem by designing special re-
ceivers known as phase-diversity receivers [57]–[61]. Such receivers use two or more
photodetectors whose outputs are combined to produce a signal that is independent of
the phase difference φIF = φs − φLO. The technique works quite well for ASK, FSK,
and DPSK formats. Figure 10.9 shows schematically a multiport phase-diversity re-
ceiver. An optical component known as an optical hybrid combines the signal and
local-oscillator inputs and provides its output through several ports with appropriate
phase shifts introduced into different branches. The output from each port is processed
electronically and combined to provide a current that is independent of φ IF. In the case
of a two-port homodyne receiver, the two output branches have a relative phase shift
of 90◦, so that the currents in the two branches vary as I p cosφIF and Ip sinφIF. When
the two currents are squared and added, the signal becomes independent of φ IF. In the
case of three-port receivers, the three branches have relative phase shifts of 0, 120 ◦, and
240◦. Again, when the currents are added and squared, the signal becomes independent
of φIF.

The preceding concept can be extended to design receivers with four or more
branches. However, the receiver design becomes increasingly complex as more branches
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Figure 10.9: Schematic of a multiport phase-diversity receiver.

are added. Moreover, high-power local oscillators are needed to supply enough power
to each branch. For these reasons, most phase-diversity receivers use two or three
ports. Several system experiments have shown that the linewidth can approach the bit
rate without introducing a significant power penalty even for homodyne receivers [58]–
[61]. Numerical simulations of phase-diversity receivers show that the noise is far from
being Gaussian [62]. In general, the BER is affected not only by the laser linewidth but
also by other factors, such as the the BPF bandwidth.

10.5.2 Intensity Noise

The effect of intensity noise on the performance of direct-detection receivers was dis-
cussed in Section 4.6.2 and found to be negligible in most cases of practical interest.
This is not the case for coherent receivers [63]–[67]. To understand why intensity noise
plays such an important role in coherent receivers, we follow the analysis of Section
4.6.2 and write the current variance as

σ2 = σ2
s + σ2

T + σ2
I , (10.5.1)

where σI = RPLOrI and rI is related to the relative intensity noise (RIN) of the local
oscillator as defined in Eq. (4.6.7). If the RIN spectrum is flat up to the receiver band-
width ∆ f , r2

I can be approximated by 2(RIN)∆ f . The SNR is obtained by using Eq.
(10.5.1) in Eq. (10.1.11) and is given by

SNR =
2R2P̄sPLO

2q(RPLO + Id)∆ f + σ2
T + 2R2P2

LO(RIN)∆ f
. (10.5.2)

The local-oscillator power PLO should be large enough to satisfy Eq. (10.1.12) if
the receiver were to operate in the shot-noise limit. However, an increase in PLO in-
creases the contribution of intensity noise quadratically as seen from Eq. (10.5.2). If
the intensity-noise contribution becomes comparable to shot noise, the SNR would de-
crease unless the signal power P̄s is increased to offset the increase in receiver noise.
This increase in P̄s is just the power penalty δI resulting from the local-oscillator inten-
sity noise. If we neglect Id and σ 2

T in Eq. (10.5.2) for a receiver designed to operate in
the shot-noise limit, the power penalty (in dB) is given by the simple expression

δI = 10log10[1+(η/hν)PLO(RIN)]. (10.5.3)
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Figure 10.10: Power penalty versus RIN for several values of the local-oscillator power.

Figure 10.10 shows δI as a function of RIN for several values of PLO using η = 0.8
and hν = 0.8 eV for 1.55-µm coherent receivers. The power penalty exceeds 2 dB
when PLO = 1 mW even for a local oscillator with a RIN of −160 dB/Hz, a value
difficult to realize for DFB semiconductor lasers. For a local oscillator with a RIN of
−150 dB/Hz, PLO should be less than 0.1 mW to keep the power penalty below 2 dB.
The power penalty can be made negligible at a RIN of −150 dB/Hz if only 10 µW
of local-oscillator power is used. However, Eq. (10.1.13) is unlikely to be satisfied for
such small values of PLO, and receiver performance would be limited by thermal noise.
Sensitivity degradation from local-oscillator intensity noise was observed in 1987 in
a two-port ASK homodyne receiver [63]. The power penalty is reduced for three-
port receivers but intensity noise remains a limiting factor for PLO > 0.1 mW [61]. It
should be stressed that the derivation of Eq. (10.5.3) is based on the assumption that
the receiver noise is Gaussian. A numerical approach is necessary for a more accurate
analysis of the intensity noise [65]–[67].

A solution to the intensity-noise problem is offered by the balanced coherent re-
ceiver [68] made with two photodetectors [69]–[71]. Figure 10.11 shows the receiver
design schematically. A 3-dB fiber coupler mixes the optical signal with the local os-
cillator and splits the combined optical signal into two equal parts with a 90 ◦ relative
phase shift. The operation of a balanced receiver can be understood by considering the
photocurrents I+ and I− generated in each branch. Using the transfer matrix of a 3-dB
coupler, the currents I+ and I− are given by

I+ = 1
2 R(Ps + PLO)+ R

√
PsPLO cos(ωIFt + φIF), (10.5.4)

I− = 1
2 R(Ps + PLO)−R

√
PsPLO cos(ωIFt + φIF), (10.5.5)

where φIF = φs −φLO + π/2.
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Figure 10.11: Schematic of a two-port balanced coherent receiver.

The subtraction of the two currents provides the heterodyne signal. The dc term is
eliminated completely during the subtraction process when the two branches are bal-
anced in such a way that each branch receives equal signal and local-oscillator powers.
More importantly, the intensity noise associated with the dc term is also eliminated
during the subtraction process. The reason is related to the fact that the same local
oscillator provides power to each branch. As a result, intensity fluctuations in the two
branches are perfectly correlated and cancel out during subtraction of the photocur-
rents I+ and I−. It should be noted that intensity fluctuations associated with the ac
term are not canceled even in a balanced receiver. However, their impact is less severe
on the system performance because of the square-root dependence of the ac term on
the local-oscillator power.

Balanced receivers are commonly used while designing a coherent lightwave sys-
tem because of the two advantages offered by them. First, the intensity-noise problem
is nearly eliminated. Second, all of the signal and local-oscillator power is used effec-
tively. A single-port receiver such as that shown in Fig. 10.1 rejects half of the signal
power Ps (and half of PLO) during the mixing process. This power loss is equivalent
to a 3-dB power penalty. Balanced receivers use all of the signal power and avoid
this power penalty. At the same time, all of the local-oscillator power is used by the
balanced receiver, making it easier to operate in the shot-noise limit.

10.5.3 Polarization Mismatch

The polarization state of the received optical signal plays no role in direct-detection
receivers simply because the photocurrent generated in such receivers depends only
on the number of incident photons. This is not the case for coherent receivers, whose
operation requires matching the state of polarization of the local oscillator to that of the
signal received. The polarization-matching requirement can be understood from the
analysis of Section 10.1, where the use of scalar fields Es and ELO implicitly assumed
the same polarization state for the two optical fields. If ê s and êLO represent the unit
vectors along the direction of polarization of E s and ELO, respectively, the interference
term in Eq. (10.1.3) contains an additional factor cosθ , where θ is the angle between
ês and êLO. Since the interference term is used by the decision circuit to reconstruct the
transmitted bit stream, any change in θ from its ideal value of θ = 0 reduces the signal
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Figure 10.12: Schematic of a polarization-diversity coherent receiver.

and affects the receiver performance. In particular, if the polarization states of E s and
ELO are orthogonal to each other (θ = 90◦), the signal disappears (complete fading).
Any change in θ affects the BER through changes in the receiver current and SNR.

The polarization state êLO of the local oscillator is determined by the laser and re-
mains fixed. This is also the case for the transmitted signal before it is launched into
the fiber. However, at the fiber output, the polarization state ê s of the signal received
differs from that of the signal transmitted because of fiber birefringence, as discussed in
Section 2.2.3 in the context of single-mode fibers. Such a change would not be a prob-
lem if ês remained constant with time because one could match it with ê LO by simple
optical techniques. The source of the problem lies in the polarization-mode dispersion
(PMD) or the fact that ês changes randomly in most fibers because of birefringence
fluctuations related to environmental changes (nonuniform stress, temperature varia-
tions, etc.). Such changes occur on a time scale ranging from seconds to microseconds.
They lead to random changes in the BER and render coherent receivers unusable unless
some scheme is devised to make the BER independent of polarization fluctuations. Al-
though polarization fluctuations do not occur in polarization-maintaining fibers, such
fibers are not used in practice because they are difficult to work with and have higher
losses than those of conventional fibers. Thus, a different solution to the polarization-
mismatch problem is required.

Several schemes have been developed for solving the polarization-mismatch prob-
lem [72]–[77]. In one scheme [72], the polarization state of the optical signal received
is tracked electronically and a feedback-control technique is used to match ê LO with
ês. In another, polarization scrambling or spreading is used to force ê s to change ran-
domly during a bit period [73]–[76]. Rapid changes of ê s are less of a problem than
slow changes because, on average, the same power is received during each bit. A third
scheme makes use of optical phase conjugation to solve the polarization problem [77].
The phase-conjugated signal can be generated inside a dispersion-shifted fiber through
four-wave mixing (see Section 7.7). The pump laser used for four-wave mixing can
also play the role of the local oscillator. The resulting photocurrent has a frequency
component at twice the pump-signal detuning that can be used for recovering the bit
stream.



504 CHAPTER 10. COHERENT LIGHTWAVE SYSTEMS

Figure 10.13: Four-port coherent DPSK receiver employing both phase and polarization diver-
sity. (After Ref. [80]; c©1987 IEE; reprinted with permission.)

The most commonly used approach solves the polarization problem by using a
two-port receiver, similar to that shown in Fig. 10.11, with the difference that the
two branches process orthogonal polarization components. Such receivers are called
polarization-diversity receivers [78]–[82] as their operation is independent of the polar-
ization state of the signal received. The polarization-control problem has been studied
extensively because of its importance for coherent lightwave systems [83]–[90].

Figure 10.12 shows the block diagram of a polarization-diversity receiver. A polar-
ization beam splitter is used to separate the orthogonally polarized components which
are processed by separate branches of the two-port receiver. When the photocurrents
generated in the two branches are squared and added, the electrical signal becomes
polarization independent. The power penalty incurred in following this technique de-
pends on the modulation and demodulation techniques used by the receiver. In the
case of synchronous demodulation, the power penalty can be as large as 3 dB [85].
However, the penalty is only 0.4–0.6 dB for optimized asynchronous receivers [78].

The technique of polarization diversity can be combined with phase diversity to
realize a receiver that is independent of both phase and polarization fluctuations of
the signal received [91]. Figure 10.13 shows such a four-port receiver having four
branches, each with its own photodetector. The performance of such receivers would
be limited by the intensity noise of the local oscillator, as discussed in Section 10.5.2.
The next step consists of designing a balanced phase- and polarization-diversity re-
ceiver by using eight branches with their own photodetectors. Such a receiver has been
demonstrated using a compact bulk optical hybrid [92]. In practical coherent systems, a
balanced, polarization-diversity receiver is used in combination with narrow-linewidth
lasers to simplify the receiver design, yet avoid the limitations imposed by intensity
noise and polarization fluctuations.

10.5.4 Fiber Dispersion

Section 5.4 discussed how fiber dispersion limits the bit-rate–distance product (BL) of
direct-detection (IM/DD) systems. Fiber dispersion also affects the performance of
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Figure 10.14: Dispersion-induced power penalty as a function of the dimensionless parameter
|β2|B2L for several modulation formats. The dashed line shows power penalty for a direct-
detection system. (After Ref. [95]; c©1988 IEEE; reprinted with permission.)

coherent systems although its impact is less severe than for IM/DD systems [93]–[97].
The reason is easily understood by noting that coherent systems, by necessity, use a
semiconductor laser operating in a single longitudinal mode with a narrow linewidth.
Frequency chirping is avoided by using external modulators. Moreover, it is possible
to compensate for fiber dispersion (see Section 7.2) through electronic equalization
techniques in the IF domain [98].

The effect of fiber dispersion on the transmitted signal can be calculated by using
the analysis of Section 2.4. In particular, Eq. (2.4.15) can be used to calculate the
optical field at the fiber output for any modulation technique. The power penalty has
been calculated for various modulation formats [95] through numerical simulations
of the eye degradation occurring when a pseudo-random bit sequence is propagated
through a single-mode fiber and demodulated by using a synchronous or asynchronous
receiver. Figure 10.14 shows the power penalty as a function of the dimensionless
parameter combination |β2|B2L for several kinds of modulation formats. The dashed
line shows, for comparison, the case of an IM/DD system. In all cases, the low-pass
filter (before the decision circuit) is taken to be a second-order Butterworth filter [99],
with the 3-dB bandwidth equal to 65% of the bit rate.

As seen in Fig. 10.14, fiber dispersion affects the performance of a coherent light-
wave system qualitatively in the same way for all modulation formats, although quan-
titative differences do occur. The power penalty increases most rapidly for CPFSK
and MSK formats, for which tone spacing is smaller than the bit rate. In all cases
system performance depends on the product B 2L rather than BL. One can estimate
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the limiting value of B2L by noting that the power penalty can be reduced to below
1 dB in most cases if the system is designed such that |β2|B2L < 0.1. For standard
fibers with β2 = −20 ps2/km near 1.55 µm, B2L is limited to 5000 (Gb/s)2-km, and L
should be <50 km at B = 10 Gb/s. Clearly, dispersion becomes a major limiting factor
for systems designed with standard fibers when transmission distance is increased us-
ing optical amplifiers. Dispersion management would solve this problem. Electronic
equalization can be used for compensating dispersion in coherent systems [100]. The
basic idea is to pass the intermediate-frequency signal through a filter whose transfer
function is the inverse of the transfer function associated with the fiber (see Section
7.2). It is also possible to compensate fiber dispersion through optical techniques such
as dispersion management [101]. PMD then becomes a limiting factor for long-haul
coherent systems [102]–[104].

10.5.5 Other Limiting Factors

Several other factors can degrade the performance of coherent lightwave systems and
should be considered during system design. Reflection feedback is one such limiting
factor. The effect of reflection feedback on IM/DD systems has been discussed in
Section 5.4.5. Essentially the same discussion applies to coherent lightwave systems.
Any feedback into the laser transmitter or the local oscillator must be avoided as it can
lead to linewidth broadening or multimode operation of the semiconductor laser, both
of which cannot be tolerated for coherent systems. The use of optical isolators within
the transmitter may be necessary for controlling the effects of optical feedback.

Multiple reflections between two reflecting surfaces along the fiber cable can con-
vert phase noise into intensity noise and affect system performance as discussed in
Section 5.4.5. For coherent systems such conversion can occur even inside the re-
ceiver, where short fiber segments are used to connect the local oscillator to other re-
ceiver components, such as an optical hybrid (see Fig. 10.10). Calculations for phase-
diversity receivers show that the reflectivity of splices and connectors should be below
−35 dB under typical operating conditions [105]. Such reflection effects become less
important for balanced receivers, where the impact of intensity noise on receiver per-
formance is considerably reduced. Conversion of phase noise into intensity noise can
occur even without parasitic reflections. However, the power penalty can be reduced
to below 0.5 dB by ensuring that the ratio ∆ν/B is below 20% in phase diversity ASK
receivers [106].

Nonlinear effects in optical fibers discussed in Section 2.6 also limit the coher-
ent system, depending on the optical power launched into the fiber [107]. Stimulated
Raman scattering is not likely to be a limiting factor for single-channel coherent sys-
tems but becomes important for multichannel coherent systems (see Section 7.3.3). On
the other hand, stimulated Brillouin scattering (SBS) has a low threshold and can af-
fect even single-channel coherent systems. The SBS threshold depends on both the
modulation format and the bit rate, and its effects on coherent systems have been stud-
ied extensively [108]–[110]. Nonlinear refraction converts intensity fluctuations into
phase fluctuation through self- (SPM) and cross-phase modulation (XPM) [107]. The
effects of SPM become important for long-haul systems using cascaded optical am-
plifiers [111]. Even XPM effects become significant in coherent FSK systems [112].
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Four-wave mixing also becomes a limiting factor for WDM coherent systems [113]
and need to be controlled employing high-dispersion locally but keeping the average
dispersion low through dispersion management.

10.6 System Performance

A large number of transmission experiments were performed during the 1980s to demon-
strate the potential of coherent lightwave systems. Their main objective was to show
that coherent receivers are more sensitive than IM/DD receivers. This section focuses
on the system performance issues while reviewing the state of the art of coherent light-
wave systems.

10.6.1 Asynchronous Heterodyne Systems

Asynchronous heterodyne systems have attracted the most attention in practice simply
because the linewidth requirements for the transmitter laser and the local oscillator are
so relaxed that standard DFB lasers can be used. Experiments have been performed
with the ASK, FSK, and DPSK modulation formats [114]–[116]. An ASK experi-
ment in 1990 showed a baseline sensitivity (without the fiber) of 175 photons/bit at
4 Gb/s [116]. This value is only 10.4 dB away from the quantum limit of 40 pho-
tons/bit obtained in Section 10.4.4. The sensitivity degraded by only 1 dB when the
signal was transmitted through 160 km of standard fiber with D ≈ 17 ps/(nm-km). The
system performance was similar when the FSK format was used in place of ASK. The
frequency separation (tone spacing) was equal to the bit rate in this experiment.

The same experiment was repeated with the DPSK format using a LiNbO 3 phase
modulator [116]. The baseline receiver sensitivity at 4 Gb/s was 209 photons/bit and
degraded by 1.8 dB when the signal was transmitted over 160 km of standard fiber.
Even better performance is possible for DPSK systems operating at lower bit rates. A
record sensitivity of only 45 photons/bit was realized in 1986 at 400 Mb/s [114]. This
value is only 3.5 dB away from the quantum limit of 20 photons/bit. For compari-
son, the receiver sensitivity of IM/DD receivers is such that N̄p typically exceeds 1000
photons/bit even when APDs are used.

DPSK receivers have continued to attract attention because of their high sensitivity
and relative ease of implementation [117]–[125]. The DPSK signal at the transmitter
can be generated through direct modulation of a DFB laser [117]. Demodulation of
the DPSK signal can be done optically using a Mach-Zehnder interferometer with a
one-bit delay in one arm, followed by two photodetectors at each output port of the
interferometer. Such receivers are called direct-detection DPSK receivers because they
do not use a local oscillator and exhibit performance comparable to their heterodyne
counterparts [118]. In a 3-Gb/s experiment making use of this scheme, only 62 pho-
tons/bit were needed by an optically demodulated DPSK receiver designed with an
optical preamplifier [119]. In another variant, the transmitter sends a PSK signal but
the receiver is designed to detect the phase difference such that a local oscillator is not
needed [120]. Considerable work has been done to quantify the performance of various
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DPSK and FSK schemes through numerical models that include the effects of phase
noise and the preamplifier noise [121]–[125].

Asynchronous heterodyne schemes have also been used for long-haul coherent sys-
tems using in-line optical amplifiers for increasing the transmission distance. A 1991
experiment realized a transmission distance of 2223 km at 2.5 Gb/s by using 25 erbium-
doped fiber amplifiers at approximately 80-km intervals [126]. The performance of
long-haul coherent systems is affected by the amplifier noise as well as by the non-
linear effects in optical fibers. Their design requires optimization of many operating
parameters, such as amplifier spacing, launch power, laser linewidth, IF bandwidth,
and decision threshold [127]–[129]. In the case of WDM systems, the use of DPSK
can reduce the XPM-induced interaction among channels and improve the system per-
formance [130].

10.6.2 Synchronous Heterodyne Systems

As discussed in Section 10.4, synchronous heterodyne receivers are more sensitive than
asynchronous receivers. They are also more difficult to implement as the microwave
carrier must be recovered from the received data for synchronous demodulation. Since
the sensitivity advantage is minimal (less than 0.5 dB) for ASK and FSK formats (com-
pare Tables 10.1 and 10.2), most of the laboratory experiments have focused on the
PSK format [131]–[135] for which the receiver sensitivity is only 18 photons/bit. A
problem with the PSK format is that the carrier is suppressed when the phase shift
between 1 and 0 bits is exactly 180◦ because the transmitted power is then entirely
contained in the modulation sidebands. This feature poses a problem for carrier re-
covery. A solution is offered by the pilot-carrier scheme in which the phase shift is
reduced below 180◦ (typically 150–160◦) so that a few percent of the power remains in
the carrier and can be used for synchronous demodulation at the receiver.

Phase noise is a serious problem for synchronous heterodyne receivers. As dis-
cussed in Section 10.5.1, the ratio ∆ν/B must be less than 5× 10−3, where ∆ν =
∆νT + ∆νLO is the IF linewidth. For bit rates below 1 Gb/s, the laser linewidth should
be less than 2 MHz. External-cavity semiconductor lasers are often used in the syn-
chronous experiments, as they can provide linewidths below 0.1 MHz. Several exper-
iments have been performed using diode-pumped Nd:YAG lasers [131]–[133], which
operate at a fixed wavelength near 1.32 µm but provide linewidths as small as 1 kHz.
In one experiment, the bit rate was 4 Gb/s, but the receiver sensitivity of 631 pho-
tons/bit was 15.4 dB away from the quantum limit of 18 photons/bit, mainly because
of the residual thermal noise and the intensity noise as a balanced configuration was not
used [133]. The receiver sensitivity could be improved to 235 photons/bit at a lower
bit rate of 2 Gb/s. This sensitivity is still not as good as that obtained for asynchronous
heterodyne receivers. The performance of multichannel heterodyne systems has also
been analyzed [134].

10.6.3 Homodyne Systems

As seen in Table 10.1, homodyne systems with the PSK format offer the best re-
ceiver sensitivity as they require, in principle, only 9 photons/bit. Implementation
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Figure 10.15: BER curves for a 4-Gb/s PSK homodyne transmission experiment with 5 m
(empty squares) and 167 km (filled squares) of fiber. The quantum limit is shown for com-
parison. The inset shows the eye diagram after 167 km of fiber at −44 dBm received power.
(After Ref. [145]; c©1990 IEEE; reprinted with permission.)

of such systems requires an optical phase-locked loop [136]–[141]. Many transmis-
sion experiments have shown the potential of PSK homodyne systems using He–Ne
lasers, Nd:YAG lasers, and semiconductor lasers [142]–[150]. The receiver sensitivity
achieved in these experiments depends on the bit rate. At a relatively low bit rate of
140 Mb/s, receiver sensitivities of 26 photons/bit at 1.52 µm [143] and 25 photons/bit
at 1.32 µm [144] have been obtained using He–Ne and Nd:YAG lasers, respectively.
In a 1992 experiment, a sensitivity of 20 photons/bit at 565 Mb/s was realized using
synchronization bits for phase locking [147]. These values, although about 4 dB away
from the quantum limit of 9 photons/bit, illustrate the potential of homodyne systems.
In terms of the bit energy, 20 photons at 1.52 µm correspond to an energy of only 3
attojoules!

The sensitivity of PSK homodyne receivers decreases as the bit rate increases. A
sensitivity of 46 photons/bit was found in a 1-Gb/s experiment that used external-cavity
semiconductor lasers operating near 1.5 µm and transmitted the signal over 209 km of
a standard fiber [142]. Dispersion penalty was negligible (about 0.1 dB) in this experi-
ment, as expected from Fig. 10.15. In another experiment, the bit rate was extended to
4 Gb/s [145]. The baseline receiver sensitivity (without the fiber) was 72 photons/bit.
When the signal was transmitted over 167 km of standard single-mode fiber, the re-
ceiver sensitivity degraded by only 0.6 dB (83 photons/bit), indicating that dispersion
was not a problem even at 4 Gb/s. Figure 10.15 shows the BER curves obtained in this
experiment with and without the fiber together with the eye diagram (inset) obtained
after 167 km of fiber. Another experiment increased the bit rate to 10 Gb/s by us-
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ing a 1.55-µm external-cavity DFB laser whose output was phase-modulated through
a LiNbO3 external modulator [146]. The receiver sensitivity at 10 Gb/s was 297 pho-
tons/bit. The signal was transmitted through 151 km of dispersion-shifted fiber without
any dispersion-induced power penalty.

Long-haul homodyne systems use optical amplifiers for compensating fiber losses
together with a dispersion-compensation scheme. In a 1993 experiment, a 6-Gb/s PSK
signal was transmitted over 270 km using multiple in-line amplifiers [149]. A mi-
crostrip line was used as a delay equalizer (see Section 7.2) for compensating the fiber
dispersion. Its use was feasible because of the implementation of the single-sideband
technique. In a later experiment, the bit rate was extended to 10 Gb/s by using the
vestigial-sideband technique [150]. The 1.55-µm PSK signal could be transmitted over
126 km of standard telecommunication fiber with dispersion compensation provided
by a 10-cm microstrip line. The design of long-haul homodyne systems with in-line
amplifiers requires consideration of many factors such as phase noise, shot noise, im-
perfect phase recovery, and amplifier noise. Numerical simulations are often used to
optimize the system performance [151]–[154].

10.6.4 Current Status

Any new technology must be tested through field trials before it can be commercial-
ized. Several field trials for coherent lightwave systems were carried out in the early
1990s [155]–[161]. In all cases, an asynchronous heterodyne receiver was used be-
cause of its simplicity and not-so-stringent linewidth requirements. The modulation
format of choice was the CPFSK format. This choice avoids the use of an external
modulator, thereby simplifying the transmitter design. Furthermore, the laboratory ex-
periments have shown that high-sensitivity receivers can be designed at bit rates as high
as 10 Gb/s. A balanced polarization-diversity heterodyne receiver is used to demodu-
late the transmitted signal.

Field trials have included testing of both land- and sea-based telecommunication
systems. In the case of one submarine trial [159], the system was operated at 560 Mb/s
with the CPFSK format over 90 km of fiber cable. In another submarine trial [160],
the system was operated at 2.5 Gb/s with the CPFSK format over fiber lengths of up to
431 km by using regenerators. Both trials showed that the use of polarization-diversity
receivers is essential for practical coherent systems. In addition, the receiver incorpo-
rated electronic circuitry for automatic gain and frequency controls.

In spite of the successful field trials, coherent lightwave systems had not reached
the commercial stage in 2002. As mentioned earlier, the main reason is related to
the success of the WDM technology with the advent of the erbium-doped fiber am-
plifiers. A second reason can be attributed to the complexity of coherent transmitters
and receivers. The integration of these components on a single chip should address the
reliability concerns. Considerable development effort was directed in the 1990s toward
designing optoelectronic integrated circuits (OEICs) for coherent lightwave systems
[162]–[170]. By 1994, a balanced, polarization-diversity heterodyne receiver contain-
ing four photodiodes and made by using the InP/InGaAsP material system, exhibited a
bandwidth in excess of 10 GHz [164]. A tunable local oscillator can also be integrated
on the same chip. Such a tunable polarization diversity heterodyne OEIC receiver was
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used in a 140-Mb/s system experiment, intended mainly for video distribution [165].
A balanced heterodyne OEIC receiver with a 9-GHz bandwidth was fabricated in 1996
by integrating a local oscillator and two photodiodes with a 3-dB coupler [168]. The
coherent techniques may turn out to be more suitable for multichannel access networks
for which bit rates per channel are relatively low but number of channels can be quite
large [161]. An integrated transceiver suitable for bidirectional access networks has
been developed for such applications [170].

Problems

10.1 Prove the 3-dB advantage of homodyne detection by showing that the average
electrical power generated by a coherent receiver is twice as large for homodyne
detection as for heterodyne detection under identical operating conditions.

10.2 Derive an expression for the SNR of a homodyne receiver by taking into account
both the shot noise and the thermal noise.

10.3 Consider a 1.55-µm heterodyne receiver with a p–i–n photodiode of 90% quan-
tum efficiency connected to a 50-Ω load resistance. How much local-oscillator
power is needed to operate in the shot-noise limit? Assume that shot-noise limit
is achieved when the thermal-noise contribution at room temperature to the noise
power is below 1%.

10.4 Prove that the SNR of an ideal PSK homodyne receiver (perfect phase locking
and 100% quantum efficiency) approaches 4 N̄p, where N̄p is the average number
of photons/bit. Assume that the receiver bandwidth equals half the bit rate and
that the receiver operates in the shot-noise limit.

10.5 Show how an electro-optic material such as LiNbO 3 can be used for generating
optical bit streams with ASK, PSK, and FSK modulation formats. Use diagrams
as necessary.

10.6 A 1.55-µm DFB laser is used for the FSK modulation at 100 Mb/s with a tone
spacing of 300 MHz. The modulation efficiency is 500 MHz/mA and the dif-
ferential quantum efficiency equals 50% at the bias level of 3 mW. Estimate the
power change associated with FSK by assuming that the two facets emit equal
powers.

10.7 Derive an expression for the BER of a synchronous heterodyne ASK receiver by
assuming that the in-phase noise component i c has a probability density function

p(ic) =
1

σ
√

2
exp

(
−
√

2
σ

|ic|
)

.

Determine the SNR required to achieve a BER of 10−9.

10.8 Calculate the sensitivity (in dBm units) of a homodyne ASK receiver operating at
1.55 µm in the shot-noise limit by using the SNR expression obtained in Problem
10.2. Assume that η = 0.8 and ∆ f = 1 GHz. What is the receiver sensitivity
when the PSK format is used in place of ASK?
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10.9 Derive the Rice distribution [Eq. (10.4.13)] for the signal current I given Eq.
(10.4.12) for an asynchronous heterodyne ASK receiver. Assume that both quadra-
ture components of noise obey Gaussian statistics with standard deviation σ .

10.10 Show that the BER of an asynchronous heterodyne ASK receiver [Eq. (10.4.17)]
can be approximated as

BER = 1
2 exp[−I2

1/(8σ 2)]

when I1/σ � 1 and I0 = 0. Assume that ID = I1/2.

10.11 Asynchronous heterodyne FSK receivers are commonly used for coherent light-
wave systems. What is the SNR required by such receivers to operate at a BER
of 10−9? Calculate the receiver sensitivity (in dBm units) at 2 Gb/s in the shot-
noise limit by assuming 1.2-GHz receiver bandwidth, 80% quantum efficiency,
and a 1.55-µm operating wavelength.

10.12 Derive an expression for the SNR in terms of the intensity noise parameter r I

by including intensity noise through Eq. (10.5.1). Prove that the optimum value
of PLO at which the SNR is maximum is given by PLO = σT /(RrI) when the
dark-current contribution to the shot noise is neglected.

10.13 Derive an expression for the power penalty as a function of r I by using the SNR
obtained in Problem 10.12.

10.14 Consider an optical carrier whose amplitude and frequency are constant but
whose phase is modulated sinusoidally as φ(t) = φ0 sin(ωmt). Show that the
amplitude becomes modulated during propagation inside the fiber because of
fiber dispersion.

10.15 Discuss the effect of laser linewidth on coherent communication systems. Why
is the homodyne PSK receiver most sensitive to phase fluctuations? How is this
sensitivity reduced for asynchronous heterodyne receivers?

References

[1] M. Schwartz, Information Transmission, Modulation, and Noise, 4th ed., McGraw-Hill,
New York, 1990.

[2] R. E. Ziemer, Principles of Communications; Systems, Modulation and Noise, Wiley,
New York, 1994.

[3] L. W. Couch II, Digital and Analog Communication Systems, 5th ed., Prentice Hall, Up-
per Saddle River, NJ, 1995.

[4] M. S. Roden, Analog and Digital Communication Systems, Prentice Hall, Upper Saddle
River, NJ, 1995.

[5] B. P. Lathi, Modern Digital and Analog Communication Systems, Oxford University
Press, New York, 1995.

[6] W. R. Bennett, Communication Systems and Techniques, IEEE Press, Piscataway, NJ,
1995.

[7] J. Salz, AT&T Tech. J. 64, 2153 (1985); IEEE Commun. Mag. 24 (6), 38 (1986).
[8] E. Basch and T. Brown, in Optical Fiber Transmission, E. E. Basch, Ed., SAMS, Indi-

anapolis, IN, 1986, Chap. 16.



REFERENCES 513

[9] T. Okoshi, J. Lightwave Technol. 5, 44 (1987).
[10] T. Kimura, J. Lightwave Technol. 5, 414 (1987)
[11] T. Okoshi and K. Kikuchi, Coherent Optical Fiber Communications, Kluwer Academic,

Boston, 1988.
[12] R. A. Linke and A. H. Gnauck, J. Lightwave Technol. 6, 1750 (1988).
[13] J. R. Barry and E. A. Lee, Proc. IEEE 78, 1369 (1990).
[14] P. S. Henry and S. D. Persoinick, Eds., Coherent Lightwave Communications, IEEE

Press, Piscataway, NJ, 1990.
[15] S. Betti, G. de Marchis, and E. Iannone, Coherent Optical Communication Systems, Wi-

ley, New York, 1995.
[16] S. Ryu, Coherent Lightwave Communication Systems, Artec House, Boston, 1995.
[17] F. Heismann, S. K. Korotky, and J. J. Veselka, in Optical Fiber Telecommunications III,

Vol. B, I. P. Kaminow and T. L. Loch, Eds., Academic Press, San Diego, CA, 1997,
Chap. 8.

[18] K. Noguchi, O. Mitomi, and H. Miyazawa, J. Lightwave Technol. 16, 615 (1998).
[19] H. Zhang, M. C. Oh, A. Szep, W. H. Steier, L. R. Dalton, H. Erlig, Y. Chang, D. H.

Chang, and H. R. Fetterman, Appl. Phys. Lett. 78, 3136 (2001).
[20] Y. Kim, S. K. Kim, J. Lee, Y. Kim, J. Kang, W. Choi, and J. Jeong, Opt. Fiber Technol.

7, 84 (2001).
[21] Y. Akage, K. Kawano, S. Oku, R. Iga, H. Okamoto, Y. Miyamoto, and H. Takeuchi,

Electron. Lett. 37, 299 (2001).
[22] K. Wakita, I. Kotaka, and H. Asai, IEEE Photon. Technol. Lett. 4, 29 (1992).
[23] S. Yoshida, Y. Tada, I. Kotaka, and K. Wakita, Electron. Lett. 30, 1795 (1994).
[24] N. Yoshimoto, K. Kawano, Y. Hasumi, H. Takeuchi, S. Kondo, and Y. Noguchi, IEEE

Photon. Technol. Lett. 6, 208 (1994).
[25] K. Wakita and I. Kotaka, Microwave Opt. Tech. Lett. 7, 120 (1994).
[26] E. M. Goldys and T. L. Tansley, Microelectron. J. 25, 697 (1994).
[27] A. Segev, A. Saar, J. Oiknine-Schlesinger, and E. Ehrenfreund, Superlattices Microstruct.

19, 47 (1996).
[28] S. Kobayashi, Y. Yamamoto, M. Ito, and T. Kimura, IEEE J. Quantum Electron. 18, 582

(1982).
[29] S. Ogita, Y. Kotaki, M. Matsuda, Y. Kuwahara, H. Onaka, H. Miyata, and H. Ishikawa,

IEEE Photon. Technol. Lett. 2, 165 (1990).
[30] M. Kitamura, H. Yamazaki, H. Yamada, S. Takano, K. Kosuge, Y. Sugiyama, M. Yam-

aguchi, and I. Mito, IEEE J. Quantum Electron. 29, 1728 (1993).
[31] M. Okai, M. Suzuki, and T. Taniwatari, Electron. Lett. 30, 1135 (1994).
[32] B. Tromborg, H. E. Lassen, and H. Olesen, IEEE J. Quantum Electron. 30, 939 (1994).
[33] M. Okai, M. Suzuki, and M. Aoki, IEEE J. Sel. Topics Quantum Electron. 1, 461 (1995).
[34] J.-I. Shim, H. Olesen, H. Yamazaki, M. Yamaguchi, and M. Kitamura, IEEE J. Sel. Topics

Quantum Electron. 1, 516 (1995).
[35] M. Ferreira, IEEE J. Quantum Electron. 32, 851 (1996).
[36] F. M. Gardner, Phaselock Techniques, Wiley, New York, 1985.
[37] M. I. Irshid and S. Y. Helo, J. Opt. Commun. 15, 133 (1994).
[38] J. W. Goodman, Statistical Optics, Wiley, New York, 1985.
[39] S. O. Rice, Bell Syst. Tech. J. 23, 282 (1944); 24, 96 (1945).
[40] J. I. Marcum, IRE Trans. Inform. Theory 6, 259 (1960).



514 CHAPTER 10. COHERENT LIGHTWAVE SYSTEMS

[41] K. Kikuchi, T. Okoshi, M. Nagamatsu, and H. Henmi, J. Lightwave Technol. 2, 1024
(1984).

[42] G. Nicholson, Electron. Lett. 20, 1005 (1984).
[43] L. G. Kazovsky, J. Lightwave Technol. 3, 1238 (1985); J. Opt. Commun. 7, 66 (1986); J.

Lightwave Technol. 4, 415 (1986).
[44] B. Glance, J. Lightwave Technol. 4, 228 (1986).
[45] I. Garrett and G. Jacobsen, Electron. Lett. 21, 280 (1985); J. Lightwave Technol. 4, 323

(1986); 5, 551 (1987).
[46] T. G. Hodgkinson, J. Lightwave Technol. 5, 573 (1987).
[47] G. Jacobsen and I. Garrett, IEE Proc. 134, Pt. J, 303 (1987); J. Lightwave Technol. 5, 478

(1987).
[48] L. G. Kazovsky, P. Meissner, and E. Patzak, J. Lightwave Technol. 5, 770 (1987).
[49] G. J. Foschini, L. J. Greenstein, and G. Vannuchi, IEEE Trans. Commun. 36, 306 (1988).
[50] L. J. Greenstein, G. Vannuchi, and G. J. Foschini, IEEE Trans. Commun. 37, 405 (1989).
[51] I. Garrett, D. J. Bond, J. B. Waite, D. S. L. Lettis, and G. Jacobsen, J. Lightwave Technol.

8, 329 (1990).
[52] L. G. Kazovsky and O. K. Tonguz, J. Lightwave Technol. 8, 338 (1990).
[53] R. Corvaja and G. L. Pierobon, J. Lightwave Technol. 12, 519 (1994).
[54] R. Corvaja, G. L. Pierobon, and L. Tomba, J. Lightwave Technol. 12, 1665 (1994).
[55] H. Ghafouri-Shiraz, Y. H. Heng, and T. Aruga, Microwave Opt. Tech. Lett. 11, 14 (1996).
[56] F. Kano, T. Yamanaka, N. Yamamoto, H. Mawatan, Y. Tohmori, and Y. Yoshikuni, IEEE

J. Quantum Electron. 30, 533 (1994).
[57] T. G. Hodgkinson, R. A. Harmon, and D.W. Smith, Electron. Lett. 21, 867 (1985).
[58] A. W. Davis and S. Wright, Electron. Lett. 22, 9 (1986).
[59] A. W. Davis, M. J. Pettitt, J. P. King, and S. Wright, J. Lightwave Technol. 5, 561 (1987).
[60] L. G. Kazovsky, R. Welter, A. F. Elrefaie, and W. Sessa, J. Lightwave Technol. 6, 1527

(1988).
[61] L. G. Kazovsky, J. Lightwave Technol. 7, 279 (1989).
[62] C.-L. Ho and H.-N. Wang, J. Lightwave Technol. 13, 971 (1995).
[63] L. G. Kazovsky, A. F. Elrefaie, R. Welter, P. Crepso, J. Gimlett, and R. W. Smith, Elec-

tron. Lett. 23, 871 (1987).
[64] A. F. Elrefaie, D. A. Atlas, L. G. Kazovsky, and R. E. Wagner, Electron. Lett. 24, 158

(1988).
[65] R. Gross, P. Meissner, and E. Patzak, J. Lightwave Technol. 6, 521 (1988).
[66] W. H. C. de Krom, J. Lightwave Technol. 9, 641 (1991).
[67] Y.-H. Lee, C.-C. Kuo, and H.-W. Tsao, Microwave Opt. Tech. Lett. 5, 168 (1992).
[68] H. Van de Stadt, Astron. Astrophys. 36, 341 (1974).
[69] G. L. Abbas, V. W. Chan, and T. K. Yee, J. Lightwave Technol. 3, 1110 (1985).
[70] B. L. Kasper, C. A. Burrus, J. R. Talman, and K. L. Hall, Electron. Lett. 22, 413 (1986).
[71] S. B. Alexander, J. Lightwave Technol. 5, 523 (1987).
[72] T. Okoshi, J. Lightwave Technol. 3, 1232 (1985).
[73] T. G. Hodgkinson, R. A. Harmon, and D. W. Smith, Electron. Lett. 23, 513 (1987).
[74] M. W. Maeda and D. A. Smith, Electron. Lett. 27, 10 (1991).
[75] P. Poggiolini and S. Benedetto, IEEE Trans. Commun. 42, 2105 (1994).
[76] S. Benedetto and P. Poggiolini, IEEE Trans. Commun. 42, 2915 (1994).
[77] G. P. Agrawal, Quantum Semiclass. Opt. 8, 383 (1996).



REFERENCES 515

[78] B. Glance, J. Lightwave Technol. 5, 274 (1987).
[79] D. Kreit and R. C. Youngquist, Electron. Lett. 23, 168 (1987).
[80] T. Okoshi and Y. C. Cheng, Electron. Lett. 23, 377 (1987).
[81] A. D. Kersey, A. M. Yurek, A. Dandridge, and J. F. Weller, Electron. Lett. 23, 924 (1987).
[82] S. Ryu, S. Yamamoto, and K. Mochizuki, Electron. Lett. 23, 1382 (1987).
[83] M. Kavehrad and B. Glance, J. Lightwave Technol. 6, 1386 (1988).
[84] I. M. I. Habbab and L. J. Cimini, J. Lightwave Technol. 6, 1537 (1988).
[85] B. Enning, R. S. Vodhanel, E. Dietrich, E. Patzak, P. Meissner, and G. Wenke, J. Light-

wave Technol. 7, 459 (1989).
[86] N. G. Walker and G. R. Walker, Electron. Lett. 3, 290 (1987); J. Lightwave Technol. 8,

438 (1990).
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Appendix A

System of Units

The international system of units (known as the SI, short for Syst ème International) is
used in this book. The three fundamental units in the SI are meter (m), second (s), and
kilogram (kg). A prefix can be added to each of them to change its magnitude by a
multiple of 10. Mass units are rarely required in this book. Most common measures
of distance used are km (103 m) and Mm (106 m). On the other hand, common time
measures are ns (10−9 s), ps (10−12 s), and fs (10−15 s). Other common units in this
book are Watt (W) for optical power and W/m2 for optical intensity. They can be related
to the fundamental units through energy because optical power represents the rate of
energy flow (1 W = 1 J/s). The energy can be expressed in several other ways using
E = hν = kBT = mc2, where h is the Planck constant, kB is the Boltzmann constant, and
c is the speed of light. The frequency ν is expressed in hertz (1 Hz = 1 s−1). Of course,
because of the large frequencies associated with the optical waves, most frequencies in
this book are expressed in GHz or THz.

In the design of optical communication systems the optical power can vary over
several orders of magnitude as the signal travels from the transmitter to the receiver.
Such large variations are handled most conveniently using decibel units, abbreviated
dB, commonly used by engineers in many different fields. Any ratio R can be converted
into decibels by using the general definition

R (in dB) = 10 log10 R. (A.1)

The logarithmic nature of the decibel allows a large ratio to be expressed as a much
smaller number. For example, 109 and 10−9 correspond to 90 dB and −90 dB, respec-
tively. Since R = 1 corresponds to 0 dB, ratios smaller than 1 are negative in the decibel
system. Furthermore, negative ratios cannot be written using decibel units.

The most common use of the decibel scale occurs for power ratios. For instance,
the signal-to-noise ratio (SNR) of an optical or electrical signal is given by

SNR = 10 log10(PS/PN), (A.2)

where PS and PN are the signal and noise powers, respectively. The fiber loss can also
be expressed in decibel units by noting that the loss corresponds to a decrease in the

518

Fiber-Optic Communications Systems, Third Edition. Govind P. Agrawal
Copyright  2002 John Wiley & Sons, Inc.

ISBNs: 0-471-21571-6 (Hardback); 0-471-22114-7 (Electronic)



APPENDIX A. SYSTEM OF UNITS 519

optical power during transmission and thus can be expressed as a power ratio. For
example, if a 1-mW signal reduces to 1 µW after transmission over 100 km of fiber,
the 30-dB loss over the entire fiber span translates into a loss of 0.3 dB/km. The same
technique can be used to define the insertion loss of any component. For instance,
a 1-dB loss of a fiber connector implies that the optical power is reduced by 1 dB
(by about 20%) when the signal passes through the connector. The bandwidth of an
optical filter is defined at the 3-dB point, corresponding to 50% reduction in the signal
power. The modulation bandwidth of ight-emitting diodes (LEDs) in Section 3.2 and
of semiconductor lasers in Section 3.5 is also defined at the 3-dB point, at which the
modulated powers drops by 50%.

Since the losses of all components in a fiber-optic communication systems are ex-
pressed in dB, it is useful to express the transmitted and received powers also by using
a decibel scale. This is achieved by using a derived unit, denoted as dBm and defined
as

power (in dBm) = 10 log10

(power
1 mW

)
, (A.3)

where the reference level of 1 mW is chosen simply because typical values of the
transmitted power are in that range (the letter m in dBm is a reminder of the 1-mW
reference level). In this decibel scale for the absolute power, 1 mW corresponds to
0 dBm, whereas powers below 1 mW are expressed as negative numbers. For example,
a 10-µW power corresponds to −20 dBm. The advantage of decibel units becomes
clear when the power budget of lightwave systems is considered in Chapter 5. Because
of the logarithmic nature of the decibel scale, the power budget can be made simply by
subtracting various losses from the transmitter power expressed in dBm units.



Appendix B

Acronyms

Each scientific field has its own jargon, and the field of optical communications is not
an exception. Although an attempt was made to avoid extensive use of acronyms, many
still appear throughout the book. Each acronym is defined the first time it appears in a
chapter so that the reader does not have to search the entire text to find its meaning. As
a further help, we list all acronyms here, in alphabetical order.

ac alternating current
AM amplitude modulation
AON all-optical network
APD avalanche photodiode
ASE amplified spontaneous emission
ASK amplitude-shift keying
ATM asynchronous transfer mode
AWG arrayed-waveguide grating
BER bit-error rate
BH buried heterostructure
BPF bandpass filter
CATV common-antenna (cable) television
CDM code-division multiplexing
CDMA code-division multiple access
CNR carrier-to-noise ratio
CPFSK continuous-phase frequency-shift keying
CRZ chirped return-to-zero
CSMA carrier-sense multiple access
CSO composite second-order
CVD chemical vapor deposition
CW continuous wave
CTB composite triple beat
DBR distributed Bragg reflector
dc direct current
DCF dispersion-compensating fiber
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DDF dispersion-decreasing fiber
DFB distributed feedback
DGD differential group delay
DIP dual in-line package
DM dispersion-managed
DPSK differential phase-shift keying
EDFA erbium-doped fiber amplifier
FDDI fiber distributed data interface
FDM frequency-division multiplexing
FET field-effect transistor
FM frequency modulation
FP Fabry–Perot
FSK frequency-shift keying
FWHM full-width at half-maximum
FWM four-wave mixing
GVD group-velocity dispersion
HBT heterojunction-bipolar transistor
HDTV high-definition television
HEMT high-electron-mobility transistor
HFC hybrid fiber-coaxial
HIPPI high-performance parallel interface
IC integrated circuit
IF intermediate frequency
IMD intermodulation distortion
IM/DD intensity modulation with direct detection
IMP intermodulation product
IP Internet protocol
ISDN integrated services digital network
ISI intersymbol interference
ITU International Telecommunication Union
LAN local-area network
LEAF large effective-area fiber
LED light-emitting diode
LO local oscillator
LPE liquid-phase epitaxy
LPF low-pass filter
MAN metropolitan-area network
MBE molecular-beam epitaxy
MCVD modified chemical vapor deposition
MEMS micro-electro-mechanical system
MOCVD metal-organic chemical vapor deposition
MONET multiwavelength optical network
MPEG motion-picture entertainment group
MPN mode-partition noise
MQW multiquantum well
MSK minimum-shift keying
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MSM metal–semiconductor–metal
MSR mode-suppression ratio
MTTF mean time to failure
MZ Mach–Zehnder
NA numerical aperture
NEP noise-equivalent power
NLS nonlinear Schrödinger
NOLM nonlinear optical-loop mirror
NRZ nonreturn to zero
NSE nonlinear Schrödinger equation
NSDSF nonzero-dispersion-shifted fiber
OC optical carrier
OEIC opto-electronic integrated circuit
OOK on–off keying
OPC optical phase conjugation
OTDM optical time-division multiplexing
OVD outside-vapor deposition
OXC optical cross-connect
PCM pulse-code modulation
PDF probability density function
PDM polarization-division multiplexing
P–I power–current
PIC photonic integrated circuit
PM phase modulation
PMD polarization-mode dispersion
PON passive optical network
PSK phase-shift keying
PSP principal state of polarization
QAM quadrature amplitude modulation
RDF reverse-dispersion fiber
RF radio frequency
RIN relative intensity noise
RMS root-mean-square
RZ return to zero
SAGCM separate absorption, grading, charge, and multiplication
SAGM separate absorption, grading, and multiplication
SAM separate absorption and multiplication
SBS stimulated Brillouin scattering
SCM subcarrier multiplexing
SDH synchronous digital hierarchy
SI Système International
SLM single longitudinal mode
SNR signal-to-noise ratio
SOA semiconductor optical amplifier
SONET synchronized optical network
SPM self-phase modulation
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SRS stimulated Raman scattering
SSFS soliton self-frequency shift
STM synchronous transport module
STS synchronous transport signal
TCP transmission control protocol
TDM time-division multiplexing
TE transverse electric
TM transverse magnetic
TOAD terahertz optical asymmetric demultiplexer
TOD third-order dispersion
TW traveling wave
VAD vapor-axial deposition
VCSEL vertical-cavity surface-emitting laser
VPE vapor-phase epitaxy
VSB vestigial sideband
WAN wide-area network
WDM wavelength-division multiplexing
WDMA wavelength-division multiple access
WGR waveguide-grating router
XPM cross-phase modulation
YAG yttrium aluminium garnet
YIG yttrium iron garnet
ZDWL zero-dispersion wavelength



Appendix C

General Formula for Pulse
Broadening

The discussion of pulse broadening in Section 2.4 assumes the Gaussian-shape pulses
and includes dispersive effects only up to the third order. In this appendix, a general
formula is derived that can be used for pulses of arbitrary shape. Moreover, it makes
no assumption about the dispersive properties of the fiber and can be used to include
dispersion to any order. The basic idea behind the derivation consists of the observation
that the pulse spectrum does not change in a linear dispersive medium irrespective of
what happens to the pulse shape. It is thus better to calculate the changes in the pulse
width in the spectral domain.

For pulses of arbitrary shapes, a measure of the pulse width is provided by the
quantity σ 2 = 〈t2〉− 〈t〉2, where the first and second moments are calculated using the
pulse shape as indicated in Eq. (2.4.21). These moments can also be defined in terms
of the pulse spectrum as

〈t〉 =
∫ ∞

−∞
t|A(z,t)|2 dt ≡ −i

2π

∫ ∞

−∞
Ã∗(z,ω)Ãω (z,ω)dω , (C.1)

〈t2〉 =
∫ ∞

−∞
t2|A(z,t)|2 dt ≡ 1

2π

∫ ∞

−∞
|Ãω(z,ω)|2 dω , (C.2)

where Ã(z,ω) is the Fourier transform of A(z,t) and the subscript ω denotes partial
derivative with respect to ω . For simplicity of discussion, we normalize A and Ã such
that ∫ ∞

−∞
|A(z,t)|2 dt =

1
2π

∫ ∞

−∞
|Ã(z,ω)|2 dω = 1. (C.3)

As discussed in Section 2.4, when nonlinear effects are negligible, different spectral
components propagate inside the fiber according to the simple relation

Ã(z,ω) = Ã(0,ω)exp(iβ z) = [S(ω)eiθ ]exp(iβ z), (C.4)

where S(ω) represents the spectrum of the input pulse and θ (ω) accounts for the ef-
fects of input chirp. As seen in Eq. (2.4.13), the spectrum of chirped pulses acquires
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a frequency-dependent phase. The propagation constant β depends on frequency be-
cause of dispersion. It can also depend on z when dispersion management is used or
when fiber parameters such as the core diameter are not uniform along the fiber.

If we substitute Eq. (C.4) in Eqs. (C.1) and (C.2), perform the derivatives as indi-
cated, and calculate σ 2 = 〈t2〉− 〈t〉2, we obtain

σ2 = σ2
0 +[〈τ2〉− 〈τ〉2]+ 2[〈τθω〉− 〈τ〉〈θω〉], (C.5)

where the angle brackets now denote average over the input pulse spectrum such that

〈 f 〉 =
1

2π

∫ ∞

−∞
f (ω)|S(ω)|2 dω . (C.6)

In Eq. (C.5), σ0 is the root-mean-square (RMS) width of input pulses, θω = dθ/dω ,
and τ is the group delay defined as

τ(ω) =
∫ L

0

∂β (z,ω)
∂ω

dz (C.7)

for a fiber of length L. Equation (C.5) can be used for pulses of arbitrary shape, width,
and chirp. It makes no assumption about the form of β (z,ω) and thus can be used for
dispersion-managed fiber links containing fibers with arbitrary dispersion characteris-
tics.

As a simple application of Eq. (C.5), one can use it to derive Eq. (2.4.22). Assuming
uniform dispersion and expanding β (z,ω) to third-order in ω , the group delay is given
by

τ(ω) = (β1 + β2ω + 1
2 β3ω2)L. (C.8)

For a chirped Gaussian pulse, Eq. (2.4.13) provides the following expressions for S and
θ :

S(ω) =

√
4πT 2

0

1+C2 exp

[
− ω2T 2

0

2(1+C2)

]
, θ (ω) =

Cω2T 2
0

2(1+C2)
− tan−1 C. (C.9)

The averages in Eq. (C.5) can be performed analytically using Eqs. (C.8) and (C.9) and
result in Eq. (2.4.22).

As another application of Eq. (C.5), consider the derivation of Eq. (2.4.23) that
includes the effects of a wide source spectrum. For such a pulse, the input field can
be written as A(0,t) = A0(t) f (t), where f (t) represents the pulse shape and A0(t) is
fluctuating because of the partially coherent nature of the source. The spectrum S(ω)
now becomes a convolution of the pulse spectrum and the source spectrum such that

S(ω) =
1

2π

∫ ∞

−∞
Sp(ω −ω1)F(ω1)dω1, (C.10)

where Sp is the pulse spectrum and F(ωs) is the fluctuating field spectral component at
the source with the correlation function of the form

〈F∗(ω1)F(ω2)〉s = G(ω1)δ (ω1 −ω2). (C.11)
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The quantity G(ω) represents the source spectrum. The subscript s in Eq. (C.11) is a
reminder that the angle brackets now denote an ensemble average over the field fluctu-
ations.

The moments 〈t〉 and 〈t 2〉 are now replaced by 〈〈t〉〉s and 〈〈t2〉〉s where the outer
angle brackets stand for the ensemble average over field fluctuations. Both of them
can be calculated in the special case in which the source spectrum is assumed to be
Gaussian, i.e.,

G(ω) =
1

σω
√

2π
exp

(
− ω2

2σ 2
ω

)
, (C.12)

where σω is the RMS spectral width of the source. For example,

〈〈t〉〉s =
∫ ∞

−∞
τ(ω)〈|S(ω)|2〉s dω − i

∫ ∞

−∞
〈S∗(ω)Sω (ω〉s dω

= L
∫ ∫ ∞

−∞
(β1 + β2ω + 1

2 β3ω2)|Sp(ω −ω1)|2G(ω1)dω1 dω (C.13)

Since both the pulse spectrum and the source spectrum are assumed to be Gaussian, the
integral over ω1 can be performed first, resulting in another Gaussian spectrum. The
integral over ω is then straightforward in Eq. (C.13) and yields

〈〈t〉〉s = L

[
β1 +

β3

8σ 2
0

(1+C2 +V 2
ω)

]
, (C.14)

where Vω = 2σωσ0. Repeating the same procedure for 〈〈t 2〉〉s, we recover Eq. (2.4.13)
for the ratio σ/σ0.



Appendix D

Ultimate System Capacity

With the advent of wavelength-division multiplexing (WDM) technology, lightwave
systems with a capacity of more than 1 Tb/s have become available commercially.
Moreover, system capacities in excess of 10 Tb/s have been demonstrated in several
laboratory experiments. Every communication channel has a finite bandwidth, and
optical fibers are no exception to this general rule. One may thus ask: What is the
ultimate capacity of a fiber-optic communication system? This appendix focuses on
this question.

The performance of any communication system is ultimately limited by the noise
of the received signal. This limitation can be stated more formally by using the concept
of channel capacity introduced within the framework of information theory [1]. It turns
out that a maximum possible bit rate exists for error-free transmission of a binary digital
signal in the presence of Gaussian noise. This rate is called the channel capacity. More
specifically, the maximum capacity of a noisy communication channel is given by

Cs = ∆ fch log2(1+ S/N), (D.1)

where ∆ fch is the channel bandwidth, S is the average signal power, and N is the average
noise power. Equation (D.1) is valid for a linear channel with additive noise. It shows
that the system capacity (i.e., the bit rate) can exceed the bandwidth of the transmission
channel if the noise level is low enough to maintain a high signal-to-noise ratio (SNR).
In fact, it is common to define the spectral efficiency of a communication channel as
ηs = Cs/(∆ fch) that is a measure of bits transmitted per second per unit bandwidth and
is measured in units of (b/s)/Hz. For a SNR of >30 dB, ηs exceeds 10 (b/s)/Hz.

Equation (D.1) does not always apply to fiber-optic communication systems be-
cause of the nonlinear effects occurring inside optical fibers. It can nonetheless be
used to provide an upper limit on the system capacity. The bandwidth ∆ f ch of mod-
ern lightwave systems is limited by the bandwidth of optical amplifiers and is below
10 Tb/s (80 nm) even when both the C and L bands are used simultaneously. With
the advent of new kinds of fibers and amplification techniques, one may expect that
eventually ∆ fch will approach 50 THz by using the entire low-loss region extending
from 1.25 to1.65 µm. The SNR should exceed 100 in practice to realize a bit-error rate
below 10−9. Using these values in Eq. (D.1), the maximum system capacity is close to
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350 Tb/s assuming that the optical fiber acts as a linear channel. The highest capacity
realized for WDM systems in a 2001 experiment was 10.9 Tb/s [2]. The most limiting
factor is the spectral efficiency; it is typically limited to below 0.8 (b/s)/Hz because of
the use of the binary amplitude-shift keying (ASK) format (on–off keying). The use
of phase-shift and frequency-shift keying (PSK and FSK) formats in combination with
advanced coding techniques is likely to improve the spectral efficiency.

The impact of the nonlinear effects and the amplifier noise on the ultimate capacity
of lightwave systems has been studied in several recent publications [3]–[8]. Because
the amplifier noise builds up in long-haul systems, the maximum channel capacity
depends on the transmission distance and is generally larger for shorter distances. It
also depends on the number of channels transmitted. The most important conclusion is
that the maximum spectral efficiency is limited to 3–4 (b/s)/Hz because of the nonlinear
effects. As a result, the system capacity may remain below 150 Tb/s even under the
best operating conditions.
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Appendix E

Software Package

The back cover of the book contains a software package for designing fiber-optic com-
munication system on a compact disk (CD) provided by the Optiwave Corporation
(Website: www.optiwave.com). This is an especially prepared version of the software
package called “OptiSystem Lite” and marketed commercially by Optiwave under the
name OptiSystem. The CD contains a set of problems for each chapter that are ap-
propriate for the readers of this book. The reader is encouraged to try these numerical
exercises as they will help in understanding the important issues involved in the design
of lightwave systems.

The CD should work on any PC running the Microsoft Windows software. The first
step is to install the software package. The installation procedure should be straight-
forward for most users. Simply insert the CD in the CD-ROM drive, and follow the
instructions. If the installer does not start automatically for some reason, one may have
to click on the ”setup” program in the root directory of the CD. After the installa-
tion, the user simply has to click on the icon named “OptiSys Design 1.0” to start the
program.

The philosophy behind the computer-aid design of lightwave systems has been dis-
cussed in Section 5.5. Similar to the setup seen in Fig. 5.15, the main window of
the program is used to layout the lightwave system using various components from
the component library. Once the layout is complete, the optical bit stream is propa-
gated through the fiber link by solving the nonlinear Schrödinger (NLS) equation as
discussed in Section 5.5. It is possible to record the temporal and spectral features
of the bit stream at any location along the fiber link by inserting the appropriate data-
visualization components.

The OptiSystem Lite software can be used for solving many problems assigned at
the end of each chapter. Consider, for example, the simple problem of the propagation
of optical pulses inside optical fibers as discussed in Section 2.4. Figure E.1 shows the
layout for solving this problem. The input bit pattern should have the return-to-zero
(RZ) format and be of the form “000010000” so that a single isolated pulse is propa-
gated. The shape of this pulse can be specified directly or calculated in the case of direct
modulation by solving the rate equations associated with semiconductor lasers. In the
case of external modulation, a Mach–Zehnder modulator module should be used. The
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Optical Time Domain Visualizer 1.0

Optical Spectrum Analyzer 1.0 Optical Spectrum Analyzer 1.0

Nonlinear Dispersive Fiber 1.0
Length = 10  km

Optical Time Domain Visualizer 1.0

User Defined Bit Sequence Generator 1.0

RZ Pulse Generator 1.0

Laser Rate Equations 1.0
Frequency = 193.1  THz
Power = 0  dBm

Figure E.1: An example of the layout for studying the propagation of optical pulses inside
optical fibers. All the components are available in the standard component library supplied with
the OptiSystem Lite software.

output of the laser or the modulator is connected to an “optical time-domain visualizer”
and an “optical spectrum analyzer” so that the input pulse shape and spectrum can be
observed graphically. The optical bit stream is transmitted through a fixed length of
optical fiber whose output is again connected to the two visualizers to record the pulse
shape and its spectrum. If the nonlinear effects are turned off, the spectrum should not
change but the pulse would exhibit considerable broadening. For Gaussian pulse, the
results would then agree with the theory of Section 2.4.

There are a large number of prepared samples that the user can use to understand
how the program functions. On most computers, they will be stored in the directory
“C:/Program Files/Optiwave/OptiSystem Lite 1.0/Book.” Folders in this directory are
named “Samples” and “Technical Descriptions.” There are subfolders within the “Sam-
ples” folder for individual chapters which contain problems that can be solved by using
the software. Most users of this book will benefit by solving these problems and ana-
lyzing the graphical output. A portable-data format (PDF) file is also included for each
chapter within the folder “Technical Descriptions”; it can be consulted to find more
details about each problem.


