
1
COMPUTER BASICS

1.0. INTRODUCTION
Every organisation regardless of its size or purpose is concerned with processing of facts
or data for its smooth and efficient functioning. With the ever-increasing amount of data
to be processed in shortest possible time, organisations felt the need for faster, cheaper
and more efficient methods of processing data. To fill this need various types of auto-
mated devices were developed and foremost among them was the introduction of the
electronic computer in the later half of the 20th century. Nowadays, the computers have
come up in such a big way that their presence is felt in every sphere of life like education,
business, research, medicine, banking, airflight, etc., to mention a few. This chapter deals
with basics of computer.

1.1. DATA, INFORMATION AND DATA PROCESSING
The word data is the plural of datum, which means facts. The term data includes all
facts and figures or description of an idea, object, condition or situation. Every field of
activity produces data—names of employees, marks obtained by students, details of
purchase made, etc.

Information is processed data that is organized and meaningful to the person receiv-
ing it. Data is thus a raw material that is transformed into information by processing.
For example, the temperature, the atmospheric pressure, humidity, etc., at a certain place
represent data item. These data items when processed become more meaningful and
predict the weather as Sunny day, Cloudy day, Rainy day, etc., which is an information.

Data proces;ing is a process that converts the data into information.

	

I Input	 Process	 [.............,,,,	 Output

	

(Data)	 i (Data Processing)J	 (Information)

Fig. 1.1 Information by processing data
With the development of electronic computer, the data processing is done by com-

puter system in many ways. Thus, when we talk of data processing, it is in reference to
the computer data processing.

1.2. WIT IS ACOMPUTER?
computer is an automatic machine made up of electronic and electro-mechanical

devicesthat processes data under program control to generate meaningful information
with speed and accuracy. Thus, the compt. ,ter can be called as "Electronic Data Processor"

or "n "Automatic Data Processor")

ii. CH/LtCTPJSTICS OF COMPUTERS
() Spei At tix mputer is electronic, its internal speed is virtually instantaneous. The
speed of eecvt*.s of operations by modern computer is several million operations per
second. The time required for computers to execute basic operations, such as addition
and su,traction, varies from a few microseconds (10) for small computers to nanosec-
onds (10) and for large ones even the picoseconds (102).

E!e,nent.c of Computer Science

(b) Automatic operation: Computers are automatic in operation. Once data and pro-
gram are fed to a computer, operation of the computer is automatic in the sequence of
steps defined by the program as opposed to mechanical or electronic calculator in which
operator intervention is required.

(c) Storage: For automatic processing of data at a very high speed by the computer,
it is necessary that both data and specified sequence of instructions to be performed be
stored somewhere within the computer in advance. Modern supercomputers have several
millions of words of primary memory. Large volume of data can be conveniently stored,
accessed and altered.

(d) Versatility: Computers are extremely versatile, and are capable of performing
almost any task, provided that the task can be reduced to a series of logical steps. The
machine can be used to solve problems relating to various different fields like complex
scientific problems, business problems, the problem of traffic at an airport, etc.

(e) Diligence: A computer, being a machine, does not suffer from boredom, tiredness
or lack of concentration even if it has to work for long hours. Moreover, even after work-
ing for long hours, there is no loss of accuracy in its results. Thus, if a computer is to
perform millions of calculations, it will perform the last calculation with the same accu-
racy and perfection as it will do the first one.

(f) Reliability: Today's computers are extremely reliable and results are always same
as per design. There are two sources of errors: (i) Human error in program design and
logic, (ii) Machine error but due to increased efficiency in error-detecting techniques, these
seldom lead to false results.

1.4. TYPES OF COMPUTER

Computers are of two main types—Analog and Digital, although there are Hybrid com-
puters with features of both.

1.4.1. Analog Computer

Analog is a Greek word which means establishing similarities between two quantities.
The analog computers work on the principle of measurement. In analog computers the
physical processes such as pressure, acceleration, power, force, viscosity, etc., are repre-
sented by electrical current or voltage signals. When physical parameter is continuously
varying, its analogous electrical parameter also will be continuously varying. Such a con-
tinuously varying electrical voltage is fed as input to the analog computer which are then
manipulated using various electronic modules such as inverters, comparators, summers, mul-
tipliers and integrators, etc., and the results are obtained. These results are measured and
displayed by meters, oscilloscopes. The computing units of analog computers are able to
respond immediately to changes which they detect in the input variables and can perform
very complex arithmetical functions at high speed while the actual process in the operation.
This ability to operate in real-time means that these computers have many applications in
the scientific and industrial fields in stimulating various physical systems or automatically
controlling industrial processes. The sequence of steps that the machine has to execute in
solving the problem is permanently wired into the circuitry of the machine.

1.4.2. Digital Computer

Digital computers work on the principle of counting. These computer operate on discrete
numbers represented by a finite sequence of digits. In other words, a digital computer
accepts discrete numbers as input and after performing the desired processing (opera-
tions) on these numbers, produces discrete numbers as output.

Since digital computers work directly on the variables of the problem, rather than
on some equivalent continuous variables, they are more accurate than analog computers.

Computer Basics

In analog computers, the degree of accuracy depends upon the instrument and the op-
erator.

Depending on the flexibility in operation, digital computers are either special pur-
pose or general purpose.

COMPUTER

ANALOG I	 I DIGITAL I	 I IIYH RID

SPECIAL I	 I GENERAL
PURPOSE	 I PURPOSE

Fig. 1.2 Types of computers
Special purpose computers (dedicated computers): They are designed to solve a

restricted class of problems. They are designed and built to cater to the requirements
of a particular task or application. It incorporates the instru ' i ons needed into the
design of internal circuitry so that it can perform the task a simple command
quickly and efficiently. These dedicated systems may reduce the processing load on
large computer.

Examples are: computers meant for process control in industry, computers meant
for air traffic control, Robots, etc.

General purpose computers : They are designed to solve wide variety of problems
to meet the needs of many different applications. The instructions needed to perform a
particular task are not wired permanently into the internal storage. They are read from
an input device and placed into the internal memory until they are needed. Examples
are: payroll, sales analysis, etc.

1.4.3. Hybrid Computer
Hybrid computer is another type of computer which combines the features of both analog
and digital computers. In many cases, a hybrid computer is an analog computer controlled
by a digital computer instead of human beings. For example, in an intensive care unit,
analog devices measure a patient's heart function, temperature and other vital signs.
These measurements are then converted into numbers and supplied to digital components
that monitor the patients vital signs and signals a nurse's station if abnormal readings
are detected. Hybrid computers are used only for special applications. Main areas of their
applications are aerospace and process control.

Normally, when we speak of a computer, it is understood as a digital computer.
Nowadays, these are the most widely used machines. Essentially, a computer performs
three functions:

(i) It accepts data (Input);
(ii) It processes data by performing desired arithmetic and logical operations (Pro-

cessing); and
(iii) It generates data in the desired form (Output).
Five basic units are required for performing the above three functions.

Elements of Computer Science

1.5. DIFFERENCES BETWEEN ANALOG AND DIGITAL COMPUTERS
The digital computer is basically a counting device. Hence, presence, absence, and repe-
tition rate of the signal are the important factors, and not the amplitudes of the signal.

The analog computer is fundamentally a measuring device. It operates simultane-
ously on the input data, interprets their changes, and indicates the resulting variations
in the response of the system. Hence, the amplitude of the signal is an important factor.

In the case of digital computer, a problem changes results in the writing of a new
program; the internal structure of the machine does not get altered. In the analog com-
puter, inter-connections between the functional units represent the details of the problem.
Hence, a new problem results in a new type of inter-connections within the machine.

The precision of a digital computer can be adjusted to Suit the problem to any sig-
nificant figure, whereas in analog computer, it depends on the accuracy of the components
and the measuring device, and is usually of the order of 0.1 per cent.

Problems, involving large amount of data in discrete form, are most readily solved
on digital computer. Differential equations and problems involving integration of con-
tinuous data are more readily solved on analog computer.

1.6. BASIC COMPONENTS (ORGANIZATION) OF A COMPUTER SYSTEM
Computer system consists of five basic units:

1. Input Unit	 Input data are fed into con puter.
2. Memory Unit	 : Both program and data are stored for

processing.
3. Arithmetic Logic Unit: 	 Data are actually processed.

(ALU)
4. Output Unit	 :	 Output data are presented to the user.
5. Control Unit	 :	 Controls all the operations of the computer.
The control unit, together with the ALU and memory units, constitutes the Central

Processing Unit (CPU).

-.CONTROL UNIT ------------

INPUT UNIT	 MEMORY UNIT__i—	 OUTPUT UNIT

4'
ARIThMETIC	 ----------------------4-----------------
LOGIC UNIT

CENTRAL	 I
PROCESSING	 I-- Control Signals

UNIT	 I Data flow(CPU)	 I
Fig. 1.3: Block diagram of a digital computer

Computer Basics.

Input unit: An input unit is a device which accepts instructions and data in a form
understandable to human beings, converts it into a machine readable form and transmits
to the memory unit of the computer.

Some input devices require data to be stored in a medium like punched card, paper
tape, magnetic tape, floppy disk, magnetic disk, etc., and data is read and transmitted
by input devices like card reader, paper-tape reader, magnetic-tape reader, disk drives,
etc., into a form understandable by the computer. The input can also be transmitted
directly to the computer using a keyboard terminal. Currently available input devices are
optical mark reader (OMR) and optical character reader (OCR), in which input is scanned
by an array of photocells, converted into machine code and transmitted to the memory
of the computer for processing. On identical principles bar-code readers read the infor-
mation prepared in bar-code for application of computers in libraries, general stores, etc.
Also, with the help of available magnetic ink character reader (MICR), information writ-
ten/printed in magnetic ink is read and transmitted directly to the memory for processing.
Electronic mouse, touch screens, light pens are also used as input device.

Memory unit: A computer system also has storage areas, often referred to as memory.
The memory unit stores the information to be processed by the CPU. This information
consists of the program as well as data. The memory can receive data, hold them and
deliver them when instructed to do so. In modern computers, the internal memory
consists of microelectronic semiconductor storage circuitry. The storage available in
the memory is also known as main storage or primary storage. The data can be proc-
essed only when it is available in the main memory. Main memory is finite. It may
be augmented by adding auxiliary or secondary storage, such as magnetic tapes, mag-
netic-disks and drums which can store thousands of millions of characters. The -informa-
tion stored in the auxiliary storage can be transferred to the main memory for processing
at a high speed.

Arithmetic logic unit (ALU): The ALU performs the actual processing of data in-
cluding addition, subtraction, multiplication and also division. This unit also performs
certain logical operations such as comparing two numbers to see one is larger than the
other or if they are equal. Arithmetic or logic operation is performed by bringing the
required operands into ALU. Suppose two numbers located in the main memory are to
be added. They are brought into the arithmetic unit and temporarily stored in registers
or in accumulators associated with this unit where the actual addition is carried out The
result is placed in one of the registers and subsequently transferred to the memory.

Control unit: The control unit directs and coordinates all activities of the computer
system including the following:

1. Control of input/output devices.
2. Entry and retrieval of information from storage.
3. Routing of information between storage and the arithmetic logic unit.
4. Direction of arithmetic and logical operations.
Although control section does not process data, it acts as a central nervous system

for the other data manipulating components of the computer. At the beginning of the
processing the first program instruction is selected and fed into the control section from
the program storage area. There it is interpreted, and from there signals are sent to other
components to execute the pecessary action.

Output unit After a program is executed and the results computed, the results must
be made available in a readable form. The computer system needs an output device to
communicate the processed information to the user. The output device translates pro-
cessed data from a machine coded form to a form that can be read and used by people.
The most common types of output devices are the monitor, which resembles a television

System
Software Application

Software

Elements of Computer Science

screen and the printer. Another common output device is the graphics plotter, which
produces graphs, charts, or technical drawings on paper. An illustration is shown in Fig.
1.4.

rdDevices.

Pointing Devices
• Mouse
• Light Pen
• TrkbeII
• Remote Control

Unit
• Touch Screen

Input
UtJ	 Source Data

I Automation Devices
I OCR

• MICR

Speech Recognition
J Input Device
1 Voice Recognition

Central Processing Unit (CPU)

ALU	 Control Unit

Primary Memory

+	 4	 +	 +
ROM RAM Cache Reni

LSccuniiary Shortage]

Magnetic	 Magnetic CD-ROM
Tape	 Disk

Hard	 Floppy
Disk	 Disk

• Video Display
Terminal (VDT)

Printed Output Devices
• Line printers
• Character Printers
• Page Printers

Speech Output Device]
• Sound Iiii.irils	 J

Microlorm
• Microfilm
• Microfiche

Graphical (t

Fig. 1.4: Basic components of a computer system

1.7. COMPUTER SYSTEM
A system is composed of a set of interacting parts which operate together to achieve
some objective. Since a computer is composed of a set of parts like CPU, input/output
devices, storage devices integrated together to process the data under program control.
The term computer system rather than the term computer is used.

,L7.1. Computer Hardware and Software
The data are processed by a collection of electronic circuits and other devices that make
up the computer system. The physical equipment and con mpnents which one can see,
touch and feel in the computer system are called hardware,k4echanical, magnetic, elec;
trical or optical devices used in the computer system are examples of computer hardwar

Computer hardware as a machine cannot solve a given problem on its own. The
physical components are to j be properly instructed to . work in the desired way. Sets off Computer

Software

System	 System	 I	 System	 General 1	 [piicai1Management	 Support	 I Development	 I	 Purpose	 I	 I	 speci1Programs	 -	 Programs	 ograms	 Appitcatton	 grams
LJ

Fig..15: An overview of computer software

Computer Basics

programmed. instructions which eflable the hardware units to perform tasks constitute a
computer's software which is, ula. sense, the interfa'e between a computer hardware and
its use s.(oftware is thainly divided into two categories: (1) Application software, and
(ii) Sytem software.

,pplication software: It refers to the programs that the programmer's write to ac-
complish (I) General purpose application programs such as word processing, electronic
spreadsheet, graphics, etc., and (ii) Application specific programs such as inventory con-
trol, p

$'
9yroll, railway reservation, etc.
ystem software: The system software refers to the programs Written for a specific

computer to aid programmers/ users of that computer. It controls all processing activities
and make sure that the resources and the power of the computer are used in a most
efficient way. It includes (z) System management programs such as operating systems,
database management systems, etc., (ii) System support programs such as system utilities,
system security monitors, and (iii) System development programs like language proces-
sors, Computer Aided Software Engineering (CASE) packages, etc.

Distinction between a Computer and an Electronic Calculator (AMIE, W '97)
A calculator only computes, whereas a computer can perform other functions which a
calculator cannot. These differences are slowly decreasing with the advent of advanced
programmable calculators.

The following areas distinguish a computer from a calculator:
Electronic Calculator

1. Generally non-programmable.
2. Contains no secondary storage.

3. No operating system/command interpreter
needed.

4. A small built-in display window.

5. Does not have the capability of text proc-
essing.

1. Always programmable,
2. Generally have some secondary storage.

External storage capacity is almost
limitless.

3. Existence of operating system alongwith
command interpreter is essential.

4. A separate device, like a TV, enables it to
display data and other information.

5. Text processing is exclusively done.

REVIEW QUESTIONS SET
1. What are data? Wh, t is information? Explain the difference betwrn these two terms.
2. Define a computer.(What do you understand by data processing
3. What is a computer. Explain briefly the working principle of various types of computers?
4. Define the term 'hardware' and 'software'.
5. What is meant by the following:

(a) Computer system	 (b) Peripheral devices	 (c) Computer configuration.
6. List the basic components of a computer system and explain them.
7. Draw the block diagram of a computer and explain briefly the functions of each unit.

8. Differentiate the following:	
(AMIE, S '96, W '97)

(a) General purpose vs Special purpose computer (b) Digital vs Analog computer.9. What are the major characteristics of a computer? Explain briefly each of them.
10. Write short notes on:

(a) Application software, and (b) System software.
11. Name the major elements and state their functions in a general purpose digital thmputer.

With a neat sketch, indicate how these elements are connected. 	 (AMIE, W'93)
12. How do you classify the digital computers according to their applications?
13. How the programming languages are classified according to applications? Give salient features

of each application.	 (AMIE, W'97)

OA

HISTORY, GENERATIONS AND
CLASSIFICATION OF COMPUTERS

2.0. INTRODUCTION
This chapter deals with historical development of computers, computer generations which
are characterised by hardware and software technology and the classification of comput-
ers as micro, mini, mainframe and supercomputer.
2.1. HISTORY OF COMPUTING
Although the abacus is not a com-
puter, the history of computing really
began with this device. It was used in
China and Japan for
years before Christ. The a acus is a
nfáiival device combining two funda-
mental concepts. First, numerical in-
formation can be represented in a
physical form. Second, this informa-
tion can be manipula, ed in the physi-
cal form to produce the required re-
sult.

irI:1%%-L8 I
I

MELJJJdIzr
Fig. 2.1: Abacus

The abacus is essentially a collection of beads strung on parallel rods filed in a
frame.here are two portions. The beads in the upper portion count five each and those
in the lower portion count one each. Arithmetic calculations are performed by manipu-
lating those beads.

2.11. Mechanical Calculators
The first machine to add numbers me-
chanically was invented by Pascal, (e
EFrench math philosopher

1.6.43. His machine consisted mainly of
crow of toothed wheels. Thetth

werejumbered from 0 to 9. The machine
could add eight columns of numbers. It	 Fig. 2.2: Mechanical calculatorsets a milestone in the development of
computers. Later in the same century German mathematician Leibnitz added the facility
of multiplication and division as well.

21.2. arles Babbage_His Engines
Charles Babbage, a Professor of Mathematics at Cambridge University England, attempted
in 1812 to build a difference engine, a machine that could add, subtract, multiply, divide and
perform a sequence of steps automatically. Babbage called his machine a difference engine
because he attempted to use it to compute mathematical tables by adding differences.

History, Generations and Classification of Computers

Babbage failed to get the necessary fund for his machine and in 1833 the project
was dropped. Babbage was also thinking of making a analytical engine with store (mem-
ory), mill (arithmetic) and sequence of machanism (control). He did not gain necessary
fund for this project even though his concepts were sound in every respect. It is generally
stated that the technology in Babbage time just did not permit the development of in-
struments with the precision required by his analytical engine.

2.13. Punched Card Machine
In weaving, the chief problem
weavers face was the control
of a number of shuttles for
creating designs. The whole
operation was cumbersome
and expensive. Jacquard de-
vised a method. He took a
card and punched holes in it
wherever the shuttles had to
go through. He punched dif-
ferent sets of holes on differ-
ent cards which resulted in
producing different patterns.

A major development oc-
curred in 1886 when Herman
Hollerith devised a system
based on the principle of
punching holes into cards,
similar to Jacquard's idea.
Hollerith had the idea that
these holes could be sensed by
a machine, a new way to han-
dle large volume of data. Jac-	

Fig. 2.3: Babbage s difference enginequard and Charles Babbage
had used punched cards and operated them by mechanical devices. The first card machine
which was electrically activated was used by Hollerith to compute the statsticrthe
1890 United States census. Till 1966 the punched card system was the chief mode of
pgda.

2.1.4. First Digital Computer
In 1937, Howard A. Aiken of Harvard University began work on the design of fully automatic
calculating machine using the concepts of Babbage and punch cards in collaboration with
the IBM (International Business Machine). Seven years later in January 1944 the design be-
came a reality and was named MARK L This was considered to be the first digital computer.
MARK I could accept data from punch cards, store them in memory, make calculations by
means of automatically controlled electromagnetic relays and arithmetic counters which were
mechanical. It could be programmed, i.e., given a set of commands to carry out certain op-
erations. It performed arithmetic and logical operations and solved scientific problems.

2.1.5. First Electronic Computer -

ENIAC (Electronic Numerical Integrator and Calculator): The innovation of very high
speed vacuum tube, a built in device, led to the first all electronic computer in the year
1947. It contains vacuum tubes, registers, capacitors and switches and it was much faster
than the MARK I.

10	 Elements of Computer Science

2.1.6. First Computer to use Stored Program
EDSAC (Electronic Delayed Storage Automatic Computer): Earlier machines could be
programmed but the idea of storing instructions in the computer memory was not there.
Von Neumann, referred to as the father of modem computers, was the first to introduce
the concept of stored program around the same time. EDSAC is the first computer to
use the stored program concept and was designed and completed in 1949 at the Cam-
bridge University, England. The program was set into the storage unit by means of paper
tape. EDSAC also used vacuum tubes and was a little faster than the ENIAC.

2.1.7. First Commercially Produced Computer
UNIVAC I (Universal Automatic Computer): The first computer to use magnetic tape
for data input and output was UNIVAC I. It was built in 1946. The first UNIVAC com-
puter was installed at the United States Bureau of the Censor in 1951. It was the first
computer to be produced commercially. It could process numeric as well as alphabetic
data. Vacuum tubes were used in this system also.

After the discovery of the transistor, vacuum tubes were replaced by smaller size
transistors. Many drawbacks of the vacuum tubes were eliminated with the use of tran-
sistors. With further advancement in electronics technology, transistors have been replaced
by extremely superior solid state devices. The fabrication of large number of circuits on
very small silicon chips has led to the reduction in the size, cost of computers and en-
hancement of speed.

2.2. COMPUTER GENERATIONS
Electronic Numerical Integrator and Calculator (ENIAC) was the first general purpose
electronic digital computer and was developed in 1946. Today it has become antique as
science has developed to such an extent that we have a pocket computer which is more
powerful in comparison. As efficiency in terms of speed, storage capacity and reliability
of computers increased with time; the size, computing time and cost decreased. This
growth is divided into different generations which are characterised by hardware and
software technology.

2.2.1. First Generation (1942-55) (The era of the vacuum tube)
The first generation of computers was marked by the use of vacuum tubes and by the
use of either electrostatic tubes (CRT) or mercury delay lines for storage. Punched card
and punched paper tape were used for input and output of data. These include UNIVAC
I, ENIAC, EDSAC, IBM 650 and 701. On the first generation machines, programs were
written in machine language, and read into the computers memory as a stored program.
Disadvantages with the use of vacuum tubes are: (i) size of the computer becomes large,
thereby lot of space is required for their storage and is non-pdrta e, ii) constan main-
tenance is required as lifetime of tube generates maximum amount of heat thus air con-
ditioning is required, (iii) switching time of the tubes is very high and the speed of the
computer is slow.

2.2.2. Second Generation (1956-65)
The second generation machines were initially marked by either magnetic drum or mag-
netic (ferrite) core storage and later by the use of the transistor (a small piece of germa-
nium metal suitably duped with impurities) in place of vacuum tubes. The transistor
performs the same function as the vacuum tube but smaller, less expensive, generates
almost no heat and requires little power. Second generation computers were substantially
reduced in size, required less power and were more reliable. Examples are IBM 1401,
Borroughs B 5000, CDC 1604.

History. Generations and Classification of Computers	 ii

People began to realise that the software was going to play a major role in comput-
ing. Standardized high level languages such as COBOL, FORTRAN and AlGOL were
developed to take care of the rapid growth in the number of applications that were being
computerised. With higher speed CPUs and the advent of magnetic tape and disk storage,
operating systems were developed. Computing in real time (applications that require a
response within a short period of time) was starting to become popular.

2.2.3. Third Generation (1966-75)
The third generation computers are characterized by miniaturised circuits, the integration
of hardware with software and an orientation of data communication and the handling
of more than one operation simultaneously. The speed is faster, prices are lower. e.g., ICL
1900 series, system 4, IBM 360, Honeywell 6000. The transistors were replaced by small
integrated circuits (ICs). Instead of having one transistor of its own, several transistors
along with other components integrated on a single silicon chip are known as integrated
circuits (ICs). These IC-based systems were more economical and powerful in all respect.
The effect of increasing switching speed of transistors, the reliability, the reduction of
power dissipation and size were the emergence of extremely powerful CPUs with the
capacity of carrying Out one million instructions per second. Time sharing became the
buzzword of the third generation. The combination of hardware and software allows i
central computer to serve many users at what appears to be at the same time.

In, high level languages, improved FORTRAN IV was developed, (.OBOL 68 was
standardized by the American National Standard Institute and PL/l of IBM was emerged
as a powerful language.

2.2.4. Fourth Generation (1975 onwards)
After development of ICs, they were further integrated to form Large-scale Integration
(LSI) and Very Large-Scale Integration (VLSI) and resulted in the development of micro-
processors. The latest microprocessor of Intel's 8086 family, 1586 contains more than three
million transistors. Microprocessor-based computers are characterized by their smaller
size, lower cost, larger memory and faster speed. Tl tersof today are members
of the fourth generation. Some of the computers which belong to this generation are
PARAM, PC-AT 486, MIGBTY-FRAME 1, MACINTOSH, CRAY XMP 14, etc.

Packaged software-programs like electronic spread-sheets and data management
packages that are already written, tested and able to be purchased from the shelf in
retail computer stores is creating an independent software industry. Another important
development is interactive graphic devices and language interfaces to graphic systems.
The emergence of graphics has given a great impetus to computer-aided engineering
design.

Vacuum tube	 Transistor	 Integrated circuitry (IC) 	 Large Scale Integration (LSI)
(First generation) 	 (Second generation)	 (Third generation) 	 (Fourth generation)

Fig. 2.4: Electronic devices of different generations

IN	 Elements of Computer Science

Table 2.1: Comparison of Computer Generations
S. Generation,	 I

No.	 (1942-55)
	1	 Technologies Vacuum tubes:

acoustic
memories, CRT
memories -

2. Software Machine
Language
(low-level),
Assembly
Language

3. Nutber of	 I
users

4. Nature of	 Torn tapes
Inputs

5. Nature of	 Serial
Processing

6. Execution	 Milliseconds
Speed	 (thousandth of
measure	 a second)

7. Represen-	 UNIVAC 1. IBM
tative	 650, ENIAC
Computers

II
(1 956-65)

Transistors, ferrite
cores magnetic
disks

COBOL, ALGOL
FORTRAN (high-
level language),
Batch operating
system

Punched cards,
Magnetic tape,
Disks, etc.
Serial

Microseconds
(Millionth of a
second)
IBM 7094
CDC 1604

Ill
(1966-75)
Integrated
circuits (ICs)

FORTRAN-TV
COBOL-68,
Pt/I Time
shared
operating system
Multiple user
community

Cards, Magnetic
tapes, Disks

Serial

Nanoseconds
(billionth of a
second)
IBM 360
DECPOP-8/ 11
Burroughs
6700/7700
CDC 6000/7000

Iv
(1975 Onwards)

LSI circuits and
VLSI circuits,
semiconductor
memories

PASCAL
FORTRAN 77
ADA, COBOL 74

Remote users

VDUs, Floppies,
Optical Disks

Serial/Parallel

Picoseconds
(trillionth of a
second)
IBM 370
CRAY XMP 14
PC-AT 486
ETA-b

8.	 Applications Mostly scientific, Extensive business Database 	 Personal
simple business application, 	 management	 computer,
application	 Scientific research	 systems, on line Integrated

system CAD/CAM,
Distributed
system

2.2.5. Fifth Generation

The fifth generation computers are under development. Japan and USA have undertaken
to design and develop such computers. It appears that the fifth generation computers
will have at least three important characteristics: (i) mega-chip memories, (ii) the ability
to extensive use of parallel processing, and (iii) artificial intelligence. The design approach
of the CPU of these computers will be conceptually different from that of the earlier four
generations of computers of Von Neuman architecture in which processor executes simple
instructions in sequence. In new design, processing units may not be centralized but
distributed in the computer system. All data may not be stored in the main memory. The
data may flow through the processing units activating each of them as needed. These
computers will be knowledge-based and will be used for Information Management, Natu-
ral Language Processing, Speech, Character and Image Recognition and such other arti-
ficial intelligence applications.

23. CLASSIFICATION OF COMPUTERS
Based on the size of primary storage, the capabilities in terms of processing speed, the

History, Generwion.tand Class jficazion of Computers

range of applications and the number and type of peripheral devices, the computers may
be divided into following different classes:

1. Micro Computers
2. Mini Computers
3. Mainframe Computers
4. Supercomputers

2.3.1. Micro Computers
It is the smallest and cheapest category of digital computers. It is called micro be.ause
of its miniature size and using of a microprocessor. A micro computer consists of a
main microprocessor (a CPU on a chip), several support microprocessors and associ-
ated control, primary storage and a variety of input/output and secondary storage
devices.

Computers of this category are supported by single user operating system. This
category is further sub-divided into (a) Home computers, and (b) Personal computers.

(a)Homi computers are used for entertainment, education, training and for home
management. The word length of these computers is 8 bit. They have a keyboard
integrated with the CPU in one box which is interfaced with an ordinary colour tele-
vision to act as the VDU and an audio cassette recorder to act as the secondary storage
device. Examples are TRS-80, UNICORN.

(b)Personal computers (PCs) are meant for professionals, small business units and
for office automation systems. The following are three categories of I'C:

(i) PC—This uses 8086 or 8088 microprocessor.
(ii) PC-XT—This is a PC with an extended technology. It uses 8088 microprocessor

and a fixed inbuilt disk known as hard disk. PC and PC-XT are single user
system.

(iii) PC-AT—This is a PC with an advanced technology and it uses 80286, 80386,
80486 or 1586 microprocessor and hard disk drive, Its CPU is powerful than
PC-XT. Four terminals can be connected to make it multiuser. The following
are the major features of these computers:

CPU speed	 : 500 KIPS
Word length	 : 8 to 16/32 bits
Storage capacity'	 : .256 KB to 16 MB
Secondary storage	 : Floppy disk, hard disk, magnetic tape, optical disk
Input/Output devices : Keyboard, electronic mouse, light pen, optical

and voice input devices, video display monitors
and printers are the most widely used output
devices

Major areas of	 : Word processing, database management,
applications	 accounting and financial analysis, engineering

and scientific applications
Commonly used	 : IBM-PC, Apple, BBC Micro, Radio Shak TRS-80,
machines	 etc.

2.31. Mini Computers
The mini computers are slightly bigger in size, memory and speed compared to micro-
computers. Mini computers are multi-user systems. This means that more than one user
can use the computer system at the same time.

The major features of these computer are given below:
CPU speed	 : 10 to 30 MIPS

Elements of Computer Science

16 to 32 bits
8 MB to 96 MB
Winchester hard disk, magnetic tapes, high speed
line printers, plotters. etc.
Process control in industries, high-performance
workstations with graphics input/output display,
engineering and scientific research
PDP 11, HP 2000, IBM SYS/3, etc.

'4

Word length
Storage capacity
Input/Output devices

Major areas of applications

Commonly used machines

2.3.3. Mainframe Computers

Mainframe computers are larger than micros and minis, and usually have one or more central
processors. Normally, mainframe manufacturers produce families of computers with models
ranging in size from small to very large. Most models in family are compatible, i.e., programs
written for one model can be run on other. The major features of these computers are given
below:

CPU speed	 : 30 to 100 MIPS
Word length	 : 32 to 64 bits
Storage capacity	 : 8 MB to 256 MB
Input/Output devices	 :	 1000 MB to 10 GB hard dick ih,,I-.- - - - -	 -.	

0 • 'F"-" (11051 (VIAL

tapes, fast line printer, laser printer, mini computers
as front end processors
Research organistions, large industries and govern-
ment organisations, large-scale on line reservation
systems
IBM 4300 series, HP 9000 model, CYBER-170,
BORROUGI-IS 7800

Major areas of applications

Commonly used machines

2.3.4. Super Computers

Supercomputers are very big in memory size, perform billion of operations per second.
The high speed in these computers is due to use of a number of processors working
in parallel and high storage densities are obtained by using magnetic bubble memories.

The main features of these computers are given below:
CPU speed	 : 400 MIPS to 10,000 MIPS
Word length	 : 64 bits to 96 bits
Storage capacity	 : 256 MB and more
Input/Output devices	 : Very high speed 1000 MB hard disks, very high

speed tapes, large size computers as front end
processors, high speed laser printers

Major areas of applications: Defence research, weather forecasting, space
.0	 research, etc.

Commonly used machines: CRAY XMP-14, CDC Cyber 205 family,
CRAY YMP series, ETA 10, etc.

REVIEW QUESTIONS SET
1. What do the following names stand for: ENIAC, EDSAC, UNIVAC.
2. What is meant by the term generation in computer technology? How many computer gen-

erations are there till now? Explain each generation briefly.
3. Explain the disadvantages of using vacuum tubes. How have they been overcorne'
4. How are third generation computers superior to second generation computers?

History. Generations and Classification of Computers	 15

How do you differentiate between:
(a) Micro
(I') Mini
(c) Mainframe computer?
Write their field of applications.
What are the characteristics ot a microcomputer?
Write short notes on
(a) Mini Computers
(b) Mainframe Computers
(c) Supercomputers
Write a short note on Personal Computer

NUMBER SYSTEMS
3.0. INTRODUCTION

The knowledge of number systems is essential because the design and organisation of a
computer is dependent upon the number systems. The binary system has proven the
most natural and efficient system for computer use. This chapter describes number sys-
tems used in computer technology.

3.1. NUMBER SYSTEMS

A number system consists of a set of symbols and rules for representing any number.
There are mainly two types of number systems: (1) Non-positional systems, and (il) Po-sitional systems.

3.1.1. Non-positional Systems

In the non-positional systems, the characters used are I for 1, Il for 2, etc., and are of
positional invariant, i.e., each symbol represents the same value regardless of its position
in the number. Since it is very difficult to perform arithmetic calculations with such a
number system, positional number systems were developed.

3.1.2. Positional Systems

A number system with a specified number as the base is called a positional number
system. Any positional number system requires only a finite number of symbols, called
the digits, of the system to represent arbitrarily large number. The total number of digits
in the system is called its base or radix. The value of each digit in such a number is
deterrnmed by

(a) the digit itself,
(b) the position of the digit in the number, and
(c) the base of the number system.

In general, the positional and polynomial form of a number in fixed point form is

MSD-1	Radix Point	 1—LSD

N, = (a,,_1 a3a2 a 1 A. • a_1 a_2 a..3 a_,,,),

Integer	 I	 L_Frathon

where the radix (or base) r is the total number of digits in the number system and a is
a digit in the set defined for radix r. Here the radix point separates n integer digits onthe left from m fraction digits on the right. Notice that a,,. 1 is the most significant (highest
order) digit, called MSD and that a..,,, is the least significant (lowest order) digit, denoted
by LSD.

The value of the number in Eq. (1) is given in polynomial form by

16

Number Systems
	 17

N,=	 a r'

	

= a_ 1 r"	 +	 . + a 2,2 + a i r' + a	 + a.,Y', + a_2r2 +	 . + a,,, r"'
where ai is the digit in the ith position with a weight r.

Application of Eqs. (1) and (2) follows directly. For the decimal system r = 10 indi-
cates that there are 10 distinguishable characters. Consider a number 4625.735 in decimal
system. The number can be expressed as

(4625.735),, 4 x 103 + 6 x 102 + 2 x 10' +5x10°+7x10' +3x102+5x103

Where iO, 102, 101, 100, 10-1 , 10-2 and iO are the place values of the digits from left. -
MSD and LSD for this number are 4 and 5, respectively. In order to identify the system,

- in which the numbers, is written, we write the base or radix along with the number. -
Thus, (4625.735) 10 is written in decimal system as its base is 10.

The same number in octal system (base 8) can be expressed in decimal equivalent as
(4625.735)8 = 4x83+6x82+2x8' +5X80+7x8-1+3X8+5X84

Here 8, 82, 81 , 8°, 8, F2 and 8 are the place values of the various position of the digits.
The four number systems that are commonly used are shown in Table 3.1.

Table 3i
Number system	 Base/Radix	 Digit for the number system

Binary	 2	 0,1
Octal	 8	 0, 1, 2, 3, 4, 5, 6, 7

(acimal	 10	 0,1,2,3,4,5,6,7,8,9

Haxadecimal	 16	 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
A, B, C, D, E, F

3i2.1. Binary System
The binary number system, as the name suggests, consists of only two digits, namely 0
and 1. Since tie system uses only two digits, its base is 2 and all the numbers in the
system are writ-en as a string of 0's and l's. The binary digits I) and 1 are generally
referred to the cor mon abbreviation bit. For example, a binary number is shown below:

	

1	 1	 11 ,1	 0	 1

	

1'	 1'
Most	 Least

significant	 significant

	

bit	 bit
The right most bit is called the least significant bit and the left most bit, the most

significant bit. The binary numbers are usually written with the base as a subscript
in the form 1101 2 or (1101)2.

The weights in the binary system are the powers of the base 2 ju as the weights
in the deri'aI system are the power of the base 10. The weights of the digits of the
Integral p	 .are 20, 2', 22, . . . from right to left and the weights of the digits of the

2, 2-3 . . . from right of the decimal. Thus, the binary number
1910	 ex n sed in decimal equivalent as

()2=1X24j ,	 +0x23+1X22+0x21+1X20

=16+0+4+0+1

	

= (2l),o	 -

18	 Elements of Computer Science

3.1.2.2. Octal Number System
The octal number system consist of 8 digits : 0, 1, 2, 3, 4, 5, 6, 7. Since the system uses 8
digits, the base of the system is 8 and each position in an octal number represents a power
of the base (8). Thus, the octal number 7312 can be expressed in decimal equivalent as

(7312)8=7x83+3x82+1x81+2x80
= 7 x 512 + 3 x 64 + 1 x 8 + 2 x 1
= 3584 + 192 + 8 + 2
= (3786)

3.123. Hexadecimal Number System
The hexadecimal number system consists of 16 single character digits or symbols, where
A, B, C, D, E, F represents the decimal value 10, 11, 12, 13, 14, 15, respectively. Thus, the
hexadecimal number D3E0 can be expressed in decimal equivalent as

(D3EO)16 = Dx163+3x162+Ex16'+0x16°
= 13x4096+3x256+14x16+0x1
= 53248 + 768 + 224
= (54240)

Table 3.2 shows the first 20 digits of some number systems.

3.2. CONVERSION FROM ONE NUMBER SYSTEM TO OTHER
It is just not sufficient to represent numbers in variou number systems but also there
should be flexibility to convert numbers from one system to another. There are different
methods to serve this purpose. Various methods of conversions are described here.

3.2.1. Conversion of Any Number System to Decimal System
A number represented in any number system can be converted in any other system. In
the field of computer the input and output values are in decimal. Computer professionals
are often required to convert number in other systems to decimal and vice-versa. A number
represented in any number system can be converted to equivalent decimal number system
by a method known as Polynomial Evaluation method.

Table 3.2: First Twenty Digits of Some Number System
Radix 10	 Radix 2	 Radix 3	 Radix 4	 Radix 5	 Radix 8	 Radix 16
(Decimal)	 (Binary)	 (Ternary)	 (Quarternary) 	 Quintal)	 (Octal) (Hexadecimal)

0	 0	 0	 0	 0	 0	 0
I	 I	 I	 I	 I	 I	 I
2	 10	 2	 2	 2	 2	 2
3	 11	 10	 3	 3	 3	 3
4	 100	 II	 10	 4	 4	 4
5	 101	 12	 II	 10	 5	 5
6	 110	 20	 12	 II	 6	 6
7	 111	 21	 13	 12	 7	 7
8	 1000	 22	 20	 13	 10	 8
9	 1001	 100	 21	 14	 Ii	 9

10	 1010	 101	 22	 20	 12	 A	 -
11	 1011	 102	 23	 21	 13	 8
12	 1100	 110	 30	 22	 14	 C

(Conid.)

Number Systems	
19

13	 1101	 111	 31	 23	 15	 D
14	 1110	 112	 32	 24	 16	 E
15	 1111	 120	 33	 30	 17	 F
16	 10000	 121	 100	 31	 20	 10
17	 10001	 122	 101	 32	 21	 - 11]18	 10010	 200	 102	 33	 22	 12J
19	 1	 10011	 1	 201	 1	 103	 34	 23	 13J
In this method, each digit within a number is multiplied by the weight of its position

and then all these values are added. The following examples will illustrate the method.
Example 3.1. Convert the following binary numbers into equivalent decimal:
(i)	 (10101701)2	(ii) (11010.111)2
Solution. (i) (10101101)2 = 1 x27 + 0x2° + 1 x25 + 0 x24 +.1 x 2 + 1 x22

+ Ox 2' + I x 21
= 128 +0 + 32 +0+ 8+4+ 0+1- (173)

	

(ii) (11010.11l)2	 x2' +0x2°+l x2'
lb 	 +1x22+lx2-

= 16+8+0+2+0+05+025+0125. (26.875),0
Example 3.2. Convert decimal equivalent of (736.5) 8 and (3FA.8) 76 .	 IAMIE, S'941Solution.	 (736.5)8 7 x 82 + 3 x 8' + 6 x 80 + 5 x 8'

= 448 + 24 + 6 + 0.625 = (478.625)10
(3 FA.8)16 = 3 x 16 + F x 16' + Ax 160 + 8 x 16'

=768+15x16+10x1+05
= 768 + 240 + 10 + 0.5 = (1018.5)1

3.2.2. Conversion of Decimal System to Any Other Number System
The conversion from decimal to other number system may be done by a method known
as Dibble-Dabble method. in this method, the integer and fraction parts of the numberare converted separately.

3.2.2.1. Conversion of Integer Part
In order to convert integer part of a decimal number to an equivalent number of othersystem of base b, divide the number (integer part) and each succeeding quotient by b
until a zero quotient is obtained. The sequence of remainders, in reverse order, yields the
base b representation of the number, i.e., the least significant digit is the first remainder
obtained and its most significant digit is the last remainder.
3.222. Conversion of Fractional Part

In order to convert fractional part of a decimal number to an equivalent number of other
system of base b, multiply the number (fractional part) successively by base b. In each
step the integer part obtained after multiplication is noted separately and the new frac-
tional part is again used for new multiplication. The process continues until a zero frac-
tional part or a duplicate fractional part or sufficient number of digits have been obtained.
Then the sequence of integer parts of the products gives the base b represntation of the
fractional part. Then the first integer is the MSD and the last integer is the LSD of the
fractional part of the convert number. The following examples will illustrate the method:

Example 3.3. Convert (a) the decimal number 41.6875 into a binary number, (b) the decimal
number 153.513 into a octal number. 	 [AMIE, S '961Solution. (a) The given number is (41.6875)10.

20
	 Elements of Computer Science

Here integer part is 41 and fractional part .6875
Pr integer part,

Base	 Number
2 L 41	 Remainder

2 L 20	 —	 1
•2 L 10	 —	 0

2 L	 -	 0
2	 2—	 1

2	 I	 1—	 0

0	 -	 1

(41),o 	 (101001)2
For fractional part,

Number	 Base	 Product	 Fractional
Part

0.6875	 x	 2	 =	 1.3750	 .3750

0.3750	 x	 2	 =	 0.7500	 .7500

0.7500	 x	 2	 =	 1.5000	 .5000

X	 2	 =	 1.0000	 .0000

(.6875) = (.1011)2
Hence, (41.6875)0 = (101001.1011)2

(b) The given number is (153.513)0
Here integer part is 153 and fractional part is .513

For integer part,

Base	 Number
8 Lf3 	 Remainder

8	 91	 LSD

8	 2—	 3

0	 -	 2	 MSD

(153) = (231)8
For fractional part,

Number	 Base	 Product	 Fractional
Part

0313	 x	 8	 =	 4.104	 .104

0.104	 x	 8	 =	 0.832	 .832
0.832	 x	 8	 =	 6.656	 .656
0.656	 x	 8	 =	 5.248	 .248

Integer
Part

4
	

MSD
0
6
5

LSD

MSD

Integer
Part

I	 MSD
0
I

LSD

(.531)io	 =	 (.4065 . . .

Hence, (153.531)0 = (2314065. . .
Example 3.4. Convert (0.2)o to its octal form.

NumberSystems	 21

Solution.

Number	 Base	 Product	 Fractional	 Integer

	

Part	 Part

0.2	 x	 8	 =	 1.6	 .6	 1	 MSD
0.6	 x	 8	 =	 4.8	 .8	 4
0.8	 x	 8	 =	 6.4	 .4	 6
0.4	 x	 8	 =	 3.2	 .2	 3

0.2	 x	 8	 =	 1.6	 .6	 1

At the fourth step we again obtain .2 as the fractional part, hence the digits 1463
will repeat, giving (0.2) = (0.1463 1463

Example 3.5. Convert (429.32) 10 into haxadeci mal.
Solution. The given number is (429.32)0.
Here integer part is 429 and fractional part .32
For integer part,

Base . Number
16	 429	 Remainder
16	 26	 -	 D	 [SD
16	 1	 -	 A

0	 -	 1	 MSD

For fractional part,

Number	 Base	 Product
	

Fractioiial	 Integer

	

Part	 Part

.32	 x	 16	 =	 5.12	 .12	 5

.12	 x	 =	 1.92	 .92	 1

.92	 ><	 16	 =	 14.52	 .52	 E
Up to third

Hence, (429.32) 0 = (1 A D. 5 1 E) 16 up to third place.

3.3. DIRECT METHOD OF CONVERTING THE NUMBER FROM
ONE SYSTEM TO OTHER

Whenever the radix of one system can be expressed in powers of the radix of other
system, the system can be converted directly by forming pair of numbers 2, 3 or 4 noting
the power of the radix.

3.3.1. Conversion from Octal to Binary
The octal system is a system having base 8. Since 8 = 2, each octal digit is a union of 3 bit
representation. An octal number can be converted to binary number by converting each octal
digit to its binary equivalent with 3 bits. The example below illustrate the method.

Example 3.6. Convert to binary form (a) (617025) 8 ,(b) (43.0276)8

	

Solution. (a) (617025)	 = (HO 001 111 000 010 101)
(b) (43.0276)	 = (100 011 . 000 010 111 110)

33.2. Conversion from Binary to Octal
A binary number can be converted to octal number by partitioning the number into 3
bit groups formed from left to right for the fractional part of the number and from right

22

START

Set (I) to be
initial quotient

Set J= I

Divide quotient by
(q) to obtain new
quotient end
remainder.

Convert remainder
from,, system to q
system and use at
Jth digit to left
of point.

No
Is quotient = 0?	 Increase J by I

Yes

STOP

Elements of Computer Science

START

Set (F), to be initial
fractional part.

Set J = I and set
K = maximum number
of digits desired

Multiply fractional part
by (q toobtain new
fractional part and
integer part

I Convert integer part	 I
to q system and use an .
Jih digit to right of
point.

Is

	 I.

fractional

	

Yes	 No

Yes

	

STOP	 Is j = K?*Increase

(a) Integers	 (b) Fraction

Fig. 3.1: Flow chart of radix conversion
to left for the integer part. If the number of bits in the integer part is not a multiple of
3, we insert leading Os, as leading Os have no significance for the integer part. If the
number of bits in the fractional part is not a multiple of 3, then we introduce trailing Os,
as trailing Os have no significance in the fractional part.

The following examples will illustrate the procedure.
Example 3.6. Convert (1101010)2 into octal
Solution.	 (1101010) 2 = 021 121 210

(Group three digits from right)
= (152)

(Convert each group to an octal digit)
Example 3.7. Convert (21 11 0101	 111 . 20001)2 into octal.
Solution. (1111O1011l1.10001) 2 = 011 110 201 111 . 100 010

(Group three digits	 (Group three digits from
from left of the	 right of the binary point)
binary point)

Number Systems	 23

= (3657.42)8
(Convert each group to an octal digit)

3.3.3. Conversion from Hexadecimal to Binary
The hexadecimal system is a system having base 16. Since 16 = 2, each digit is an unique
4 bit representation. For conversion from hexadecimal to binary, each digit of hexadecimal
number is to be replaced by its binary equivalent with 4 bits.

Example 3.8. Convert (2 AB) 16 into binary.
Solution. (2AB) 16 = 0010	 1010	 1011	 = (0010101011)2

2	 A	 B

3.3.4. Conversion from Binary to Hexadecimal
A binary number can be converted to hexadecimal number by partitioning the number
into 4 bit groups starting from left to right for the fractional part of the number and from
right to left for the integer part. If the number of bits in the integer part is not a multiple
of 4, we insert leading Os and if the number of bits in the fractional part is not a multiple
of 4, then we introduce trailing Os.

The following examples illustrate the method.
Example 3.9. Convert (11O1111l) into hexadecimal system.
Solution. (11O11111) = 1101	 1111

(Group four digits from right)
= DF

(Convert each group to hexadecimal digits)
//Hence.	 (flO11111)2 = (DF)16

Conversion from Hexadecimal to Octal and vice-versa
For the conversion of number from hexadecimal system to octal s ystem, hexadecimal
number is first converted to binary and then binary number to octal and for the conver-
sion from octal to hexadecimal, convert the given octal number to binary and then binary
to hexadecimal.

The following examples will illustrate the procedure.
Example 3.10. Convert (IE.C) 16 to equivalent octal system.
Solution. (IE.C) 16 = 0001	 1110 . 1100

= (00011110.1100)2
= 211 	 112	 flQ (grouping into three)
= (36.6)

The octal equivalent of (IE.C) 16 is (36.6)8.
Exapj.,Je 3.11. Convert (46.57)8 to its equivalent hexadecimal number.
Solution. (46.57)8 = 100 112. 101 	 111

= (100110.101111)2
= 0010 0110 . 1011 1100 (grouping into four)
= (26.BC)16

3.4. BINARY ARITHMETIC
Processors of computers perform arithmetic operations only on binary i46inbers. We
should thus know how four basic operations are performed using binary rlumbers.

3.4.1. Addition
The rules of binary addition are

24	 Elements of Computer Science

0+0=0
0+1=1
1+0=1

	

1 + I = 0	 with a carry of 1
	I + I + 1 = 1	 with a carry of I

Carryovers are performed in the same manner as in decimal arithmetic. Since 1 is
the largest digit in the binary system, any sum greater than I requires that a digit be
carried over. The exact procedure is illustrated with examples.

Example 3.12. Perform (101) + (001)2
Solution.	 Carry	 1

101
+001

110
Example 3.13. Perform (11011)2 + (101011)2
Solution.	 Carry 1 1	 1 1

11011
+101011
1000110

3.4.2. Subtraction
The rules for binary subtraction are

0-0=0
1•-0=1
1-1=0
0 - 1 = 1 with a borrow of I from the next column to the left

(value borrowed is equal to 10).
Note that if the lower digit is larger than the upper digit, it is necessary to borrow from
the column to the left, the value borrowed depends upon the base of the number and is
always the decimal equivalent of the base, i.e., for binary system it is 2(102).

The exact procedure is illustrated with examples.
Example 3.14. Perform (10110)2 - (01001)2. 	 LAMIE, W'931
Solution.	 0	 0

10110
0 1 001
01101

Explanation To explain the case when we cannot borrow 1 from the next column
because the column contains 0, let us look the decimal difference.

6999
700043

-484351
215692

We have borrowed from the sixth column for the second column since the third,
fourth and fifth columns contained zeros. After borrowing, the third, fourth and fifth
columns contain 10 - 1 = 9. The same thing happens in binary subtraction except that
after borrowing the zero columns contain 10 - I = 1.

Number Systems	 25

Example 3.15. Perform (110.001)2 - (11.111)2
Solution.	 0 0 1 1

1 1 0.0 0 1
-	 11.111

0 1 0.0 1 0

3.4.3. Multiplication
Multiplication is nothing but successive addition. Most of the cQmputers perform multi-
plication operations in binary using additive approach. Multiplication in the binary sys-
tem also follows the same general rules as for decimal multiplication.

The rules for binary multiplication are
OxO=0
1 x0=0
Ox 1=0
lxl=1

The following examples illustrate binary multiplication.
Example 3.16. Perform (10110)2 x (1101)2.
Solution.	 1 011 1 0

.x 1 1 0 1
10110

00000
10110

10110
100011110

Hence, 101102 x 1101 2 = 1000111102

3.4.4. Division
Division can be carried Out by repetitive subtractions.
Rules for binary division are

= No meaning

= No meaning

1

Following examples illustrate binary division.
Example 3.17. Divide (i) (1100010)2 by (111)2

(ii) (100001)2 by (110)2
Solution. (i) 111) 1100010 (1110	 (ii) 110) 100001 (101.1

111	 110
01010	 001001

111	 .	 110
00111	 00110

111	 110
000	 000

Ans. (1110)2	 Ans. (101.1)2

26	 Elements of Computer Science

Example 3.18. Divide (111011) 2 by (0111)2.
Solution.	 0111) 111011 (1000.011011

0111
01100

111
1010

111
01100
• 111
1010

Ans. 1000.011

3.5. COMPLEMENTS
Subtraction of two numbers in a computer is complicated and expensive in terms of
circuit specially for repeated borrowing from one column to another. Complements can
be used to reduce from subtraction to addition. It avoids the possibility of repeated
borrowing from one column to another and, hence, borrow circuits are eliminated, and
cost is reduced.

There are two types of complements, the radixminus-one complement ard i 'dix
complement. In decimal system, they are called nines complement and tens complement.
The nines complement of a number is obtained by subtracting each digit of the number
from 9 and lOs complement of the number is its nines complement plus one. In binary
system, they are called l's complement and 2's complement.

3.5.1. l's Complement
The l's complement of a binary number can be obtained by subtracting each digit of the
number from 1 which is same as replacing I by 0 and 0 by 1. For example, l's complement
of 110101 is 001010.

3.5.2. 2's Complement
The 2's complement of a binary number can be obtained from either of the following procedure:

(I) First complement each bit of the number (i.e., replace 1 by 0 and 0 by 1) to get
l's complement. Add I to dids number to get 2's complement. For example,
consider the number 13 whose binary representation is 1101. l's complement is
0010. Now, adding 1 to this number gives 0011 which is 2's complement rep-
resentation for —13.

(ii) Scan the binary numbers from right to left and complement all bits appearing
after the first appearance of 1. For example, 2's complement of 1 0 1 0 is 0 11 0.

First appearance of 1 from right to left.

3.5.3. Subtraction using Complements
If the number of digits of integer part in subtrahend is less than the number of digits in
minuend, add 0 on the left hand of subtrahend to make equal number of digits and for
fractional part add 0 on the right of subtrahend.

3.5.3.1. Using l's complement
Procedure: (a) Complement the subtrahend (the number to be subtracted)

(b) Add the complement with minuend (from the number to be subtracted)

Number Systems
	 27

(c) Delete the higher order carry, if any, and add to the sum obtained in
(b). If there is no carry (when a larger number is subtracted from a
smaller number), recomplement the sum and attach a negative sign
to obtain the result.

Example 3.19. Perform (1101) 2 - (110)2 using one's complement.
Solution.	 1 1 0 1	 Minuend

+ I 0 0 1 One's complement of subtrahend
(1)0110

0111
Ans. (0111)2
Example 3.20. Subtract (100011)2 from (0100I0)2 using one's complement.
Solution.	 0 1 0 0 1 0 Minuend

+ 0 1 1 1 0 0 One's complement of subtrahend
101110

As there is no carry, the minuend is smaller than the subtrahend. Thus, it is required
to complement the sum and attach a negative sign to obtain the result.

Ans. - (010001)2

13.2. Using 2's Complement
The procedure for subtraction using 2's complement is almost identical with l's comple-
ment except that the higher order cariy is ignored.

The following examples wih ,ilustrate the procedure.
Example 3.21. Perform (11010101)2 - (10021010) 2 using 2's complement.
Solution. l's complement of subtrahend 01 1 0 0 1 0 1

+1
2's complement of subtrahend 0 1 1 0 0 11 0

1 1 0 1 0 1 0 1 Minuend
+ 0 1 1 0 0 1 1 0 2's complement of subtrahend

(1) 0 0 1 1 1 0 1 1

Neglect carry
Ans. (00111011)
Example 3.22. Subtract (01000) 2 from (01112)2

(i) using l's complement
(ii) using 2's complement	 JAMIE, W'931

Solution. (1) Complement of subtrahend 10111
01111 Minuend

+ 1 0 1 1 1	 l's complement of subtrahend
(1) 0 0 1 1 0

00111
Ans. (00111)2
(ii) 2's complement of si,ibtrahend is 10111 (l's complement) + 1 = 11000

01111 Minuend
+ ii 0 0 0 2's complement of subtrahend

28	 Elements of Computer Science

(1)0 0 1 1 1

Neglect carry
Ans. (00111)2
Example 3.23. Perform (101)2 - (11011)2.

	Solution.	 1 0 1	 Minuend
+ 0 0 1 0 1	 2's complement of subtrahend

01010
As there is no final carry (the minuend is smaller than the subtrahend), taking 2's

complement of 01010 and assigning a —y e sign provides the answer.
Ans. - (10110)2

3.6. COMPARISON BETWEEN 1'S AND 2'S COMPLEMENTS
A comparison between l's and 2's complements reveals the advantages and disadvan-
tages of each. The l's complement has the advantage of being easier to implement by
digital components since the only thing that must be done is to change U's into l's and
I's into 0's. The implementation of the 2's complement may be obtained in two ways:
(a) by addling 1 to the least significant digit of the l's complement, and (b) by scanning
the number from right to left and complementing all bits appeared after the first appear-
ance of 1. During subtraction of two numbers by complements, the 2's complement is
advantageous in that only one arithmetic addition operation is required. The l's comple-
ment requires two arithmetic addition when an end around carry occurs. The l's com-
plement has the additional disadvantage of possessing two arithmetic zeros, one with all
0's and one with all l's which may complicate matters while 2's complement has only
one zero representation.

37. REASONS FOR USE OF BINARY SYSTEM IN THE DESIGN OF COMPUTER
The reasons of using binary system by the computer are:

(i) Electronic components naturally operate in a binary mode. A core is magnetized
in anticlockwise (0 state) or clockwise (1 state); a switch is either open (0) or
closed (1); electrical pulses are either absent (0) or present (1).

(ii) With the use of only two states, the circuit design is simplified, cost is reduced
and reliability is improved.

(iii) Finally, the binary system is used because everything that can be done with a
base 10 can also be done in binary.

0 state	 I state

Magnetic

	

Storage	 e4

	

Relay of	 o.---Switch

Electrical
Pulses

Fig. 3.2: Computer components operating in binary
3.8. ARITHMETIC IN BASE SYSTEM
Arithmetic in base system (other than decimal) is similar to decimal arithmetic. Four arith-
metic operations with commonly used base system, other than two are discussed.

Number Systems	 .	 29

3.8.1. Addition
The sum of two numbers in r base/radix system can be obtained by (i) finding their
decimal sum digit by digit, (ii) modifying the decimal sum if it exceeds or equal to radix
by subtracting radix and carrying 1 to the next column.

Example 3.24. Perform (67453)8 + (35162)8
Solution. Carry	 1 1	 1

67453

	

35	 1	 62

	

10 12 6 111 5	 Decimal sum
8 - 8 - 0 - 8 - 0 Modification

	

12 4 6 3 5	 Octal sum
Ans. (124635)8
Example 3.25. Perform (8 2 C 5) + (9 D 8 016
Solution. Carry	 1	 1	 1

82 C 5
9 D 86

	

18 16 20 11	 Decimal sum

	

-16-16-16 - 0	 Modification

	

1 2 0 4 B	 Hexadecimal sum
Ans. (1204B)16

3.8.2. Subtraction
Subtraction in base system can be performed by (1) using the borrowing method and the
borrowing is in terms of r's not in tens, (ii) using complements.

Example 3.26. Perform (6214)8 - (3527) 8 using borrowing method.
Solution.	 6	 2	 1	 4

-3 5 2 7
2 4 6 5

Explanation
Column i: 4 + 8 (borrow) - 7 	 =12-7=5
Column 2:	 1 + 8 (borrow) - (2 + 1) =9-3=6
Column 3:	 2 + 8 (borrow) - (5 + 1) 	 =10-6=4
Column 4:	 6-(3+1) =2
Example 3.27. Perform (5113D) 16 - (3A57) 16 using borrowing method.
Solution.	 5	 1	 1	 3	 D

	

-	 3 A 57
4 D 16 E 6

Explanation:
Column l:13-7	 = 6
Column 2:3-,-16(borrdw)-5	 =19-5 =E
Column 3: 1 + 16 (borrow) - (A + 1) =17-1k =6
Column 4: 1 + 16(bormw)-(3+1) =17-4 =D
Column 5:	 (5-1) = 4
Example 3.28. Perform (72A4) 16 - (4E86)16 using 16's complement.
Solution. 15's complement of subtrahend can be found by subtracting each digit

of subtrahend from 15.
15's complement of subtrahend = B179

30

	

	
Elements of Computer Science

16's complement subtrahend = B179 + 1 = BI7A
7 2 A 4 Minuend

	

+ B 1	 7 A	 6's complement of subtrahend
18 4 17 14 Decimal sum
16-0-16-0 Modification

	

2 4 1	 E
Ans. (241E)16
Example 3.29. Perform (6210 8 - (3527)8 using 8's complement.
Solution. 7's complement of subtrahend can be found by subtracting .each digit of

subtrahend from 7.
7's complement of subtrahend = 4250
8's complement of subtrahend = 4250 + I = 4251

6 2 1 4 Minuend

	

+ 4	 2	 5	 1	 8's complement of subtrahend
10 4 6 5 Decimal sum
8 - 0 - 0 - 0 Modification

	

(1)2	 4	 6	 5
1'

Ignore the final carry.
Ans. (2465)

3.8.3. Multiplication
Multiplication in base system is performed in the same way as in the decimal arithmetic
but care should be taken while taking carryovers. This can be understood clearly as shown
in the following examples.

Example 3.30. Perform (47) x (13)8
Solution.	 4 7

x13
	1 6 5	 1st partial product

47	 2nd partial product

	

6 5 5	 Product
Explanation : 7 x 3 = (21)1 = (25), octal digit 5 is written in the first partial product

and 2 is carried. Now, 4 x 3 + 2 (carry) = (14) = (16) 1 16 is written. 7 x 1 = (7) = (76
7 is written for second partial product and no carry. 4 x 1 = (4) = (4).

Hence, (47)8 x (13) = (655)8
Example 3.31. Perform (AE2) 16 x (86)16
Solution.	 A F 2

x8 6
4 1 4 C 1st partial product

57A 0	 2nd partial product
5 B B 4 C Product

The same procedure explained in octal multiplication is followed, but nultip1es of
16 are considered to take carry and the partial products are added hexadecimally.

3.8.4. Division
Division in base system is performed in the same way as in the decimal division, i.e., by
the method of trial subtraction.

Number Systems	 31

Example 3.32. Divide (3465) 8 by (32)8.
Solution.	 32) 3465 (106.75

32
265

-234
310

- 266
220

- 202
16

Ans. (106.75...)
Example 3.33. Divide (FF31) 16 by (ED)16.
Solution.	 ED)F F 3 1 (113

- ED
123

- ED
361

- Z B7
AA

- Hence, (FF31)16 - (ED) 15 gives 113 as quotient and AA as remainder, respectivclv

REVIEW QUESTIONS SET
1. What is meant by radix 7. How is a number system using radix r interpreted.
2. Describe binary, octal and hexadecimal number systems and symbols used for them.
3. Why do you suppose people adopted the decimal number s ystem for everyday use? If you

had to propose another number system so as to facilitate arithmetic computations. What radix
would you choose? Justify your answer. What radix would you recommend for a computer?

(AMIE, S '94)
4. 'Computers always need Radix conversion', why? 	 (AMIE, S '93)
5. Assuming an arbitrary number system of radix 3, write down the first ten numbers in this

system.
6. What is meant by complement r's and (r -. 1)'s in a radix r system?
7. With examples, explain the meaning of 'radix' of a number system. Is it possible to have a

number system without radix? If yes, give an example of such a number system.
(AMIE, W'93)

8. State the reasons for use of binary system in the design of computer. 	 (AMIE, W'97)
9. What are one's and two's complement schemes?

10. Why are subtractions using 2's complement used in modem computers? What are the diffi-
culties with simple binary subtractions?

11. Convert the following binary numbers to decimal equivalent:
(a) 1010	 (1) 11011	 (c) 11001	 (d) 10011010
(e) 111000101 (J) .0101	 (g) 0.001101	 (11) 11001.0101
() 1011.0011	 0) 111011.101 (k) 11011.101	 (1) 1010110.0101	 (AMIE, W'93)

12. Convert the following octal numbers to equivalent decimal numbers:
(a) 72	 (8) 283	 (c) 339.55	 (d) 7715

13. Convert the following hexadecimal numbers to equivalent decimal numbers:
(a) 64AC	 (8) A492	 (c) A3FC	 (d) 3A9
(e) IA5E	 (ñ 2AF.A	 (g) 2CE.25

1. Convert the following decimal numbers to equivalent binary numbers:
(a) 64	 (b) 154	 (c) 475 (AMIE, '94) (d) 15.4 (AMIE, ' 94)
(e) 50.7	 (.1) 375	 (g) 100.5

15. Convert the following decimal numbers to equivalent octal numbers

32	 Elements of Computer Science

(a) 63	 (b) 332	 (c) 146.25	 (d) 0.25
(e) 632.97	 0 0.0625	 (g) 225.225	 (AMIE, S '94)

16. Convert the following decimal numbers in equivalent hexadec i
mal numbers

(a) 428	 (b) 745	 (c) 967	 (d) 465.5
(e) 225.225	 (AMIE, S'94)

17. Perform the following binary addition and check by converting the binary numbers to deci-
mal:
(a) 101001 + 11010	 (b) 1100 + 1001
(c) 1011.1010 + 1010 + 1000.011	 (d) 110101 + 100101
(e) 1111 + 1111	 (/) 110101 + 101111
(g) 101.11 + 110.10	 (h) 1101.1011 + 10001.01
(1) 11011 + 10111	 (j) 11001 + 1011 + 110011
(k) 11.101 + 110.01 + 111.101 + 1101.1	 (1) 11011 + 111001 + 1001 + 11001.

18. Find the binary differences and check by converting the binary numbers to decimal:
(a) 10001 - 1111	 (b) 111000 - 11001
(c) 110.001 - 11.111	 (c 1101 - 1010
(e) 100-011	 (101 - 011
(g) 0.11 -0.101	 (h) 1011.1 - 0100.11

19. Find the binary product of the following:
(a) 11010 x 1001	 (b) 10101 x 1011
(c) 111 x 101	 (d) 101.1 x 11.01
(e) 11.101 x 11.01	 (1111 x 111

20. Perform the binary divisions of the following:
(a) 1011 -.- 11	 (Li) 100011 * 101
(c) 11011	 11	 (d) 101010 - ill
(e) 11001 * 101	 (f) 100.0001 * 10.1
(g) 100001 .110	 (h) 11110+ 110

21. Convert the following binary numbers to equivalent octal numbers:
(a) 101101	 (Li) 110110.011
(c) 1011.1011	 (d) 1100101
(e) 11010011.011011

22. Convert the following binary numbers to equivalent hexadecimal numbers:
(a) 101101	 (b) 1111110
(c) 1001111	 (d) 0.01111110
(e) 1010110.01011001

23. Convert the following octal numbers to equivalent binary numbers:
(a) 376	 (b) 56.34
(c) 562	 (d) 3.75

24. Convert the following hexadecimal numbers to equivalent binary numbers:
(a) 5D	 .	 (b) F2E
(c) 2BCD	 (d) 2AB

25. Convert the following octal numbers to equivalent hexadecimal numbers:
(a) 536	 (b) 4753
(c) 714.06

26. Convert the following hexadecimal numbers to equivalent octal numbers:
(a) D9	 (b) 58.3A	 (c) 31C.E8

27. Convert the following numbers as per instructions given against each:
(a) (375.25)io = (?)2 = (?) 8 	 (b) (A09.26)16 = (?)2 = (?)io
(c) (101101.01)2 = (?)16 = (?)o	 (d) (32.14)6 = (?) jo = (?)2
(e) (476.275)8 = (?) io = (?)16

28. Convert the following decimal numbers into octal and hexadecimals:
(a) 97.001	 (Li) 26.25

29. Convert the decimal equivalent of
(11010.111)2,	 (736.5)	 and	 (3FA.8)16

ju. Find is and 2s complements of the following binary numbers:
(a) 111	 (b) 100.11	 (c) 110110	 (d) 110011	 (e) -538.25io = 2's complement binary

(AMIE, W'97)

(AMIE, W 195)
(AMIE, W'97)

(AMIE, W'94)

(AMIE, S '94)

Number Systems	 33

31. Perform the following subtractions of binary numbers by the 2's complement method:
(a) 0.1110 - 0.0110	 (b) 10101 - 11010	 (c) 101 - 111
(ci) 0.11 - 0.101	 (e) 10101.001 - 10001.01	 (j) 11000011 - 00010111

32. Write the first 12 numbers in the base 4 number system.
33. Perform

(a) (BAD)jó + (432)16	 (b) (CAB)16 + (427)16	 (c) (7346) + (5263)8
(ci) (72)8 - (25)8	 (e) (7526)8 - (3142)8	 (/) (67.E9)16 + (A.BCDE)16
(g) 7613516 - 432C16 	 (h) (45376)8 + (36274)8 	 ((6157) - (4325)8

34. Find 9's and 10's complements of the following decimal numbers:
(a) 75	 (b) 183

35. Find radix-minus one complement and the radix complements of
(a) 74B916	 (b) 5030916

36. Perform
(a) 31.378 x 6.28, 	 (b) IA.2316 x 8116 and	 (c) A3E16 x 13416.

37. Convert the following:
(a) (3.75)8 to binary form,	 (b) (689B) 16 to decimal form,
(c) (1101.1111)2 hexadecimal form, 	 (ci) (634.64)io to octal form.	 (AMIE. W'97)

ANSWERS TO REVIEW QUESTIONS SET
11. (a) 10	 (b) 27	 '	 (c) 25	 (ci) 154 (e) 2742

	

(h) 25.3125 (i) 11.1875 	 (j) 59.625 (k) 27.625
12, (a) 58	 (b) 195	 (d) 409.703	 (d) 4045
13. (a) 25772	 (b) 42130	 (c) 41980	 (d) 937

(g) 718.207

00.3125 (g) 0.203125
(1) 86.3125

(e) 6750	 0687.625

14. (a) 1000000	 (b) 10011010	 (c) 111011011	 (d) 1111.011001
(e) 110010.1011001	 (f) 0.011	 (g) 1100100.10

15. (a) 77	 (b) 514	 (c) 224.4	 (d) 0.2	 (e) 1170.76051
(f) 0.04	 (5) 341.341

16. (a) IAC (b) 2E9	 (c) 3C7	 (ci) II) 1.8	 (e) E1.E1
17. (a) 1100011	 (b) 10101	 (c) 10100.00 (ci) 1011010

(e) 11110	 (fl 1100100	 (5)1100.01	 (h) 11110.1111
(1) 110010	 (j) 1110011	 (k) 11111.000	 (1) 1110110

18. (a) 10	 (b) 11111	 (c) 10.010	 d) 0011
(e) 011	 (f) 100.01	 (5) 0.001	 (h) 110.11

19. (a) 1110101) 	 (b) 11100111	 (c) 100011	 (d) 10001.111
(e) I011.11O1	 (6 1101001

20. (a) 11.1010	 (b) 111	 (c) 1001	 (ci) 110
(e) 101	 (/) 1.101	 . (g) 0101	 (h) 101

21. (a) 55	 (b) 66.3	 (c) 13.54	 (d) 145	 (e) 323.33
22. (a) 2D	 (b) 7E	 (c) 4F	 (d) 0.7E	 (e) 59.59
23. (a) 11111110	 (b) 101110.0111	 (c) 101110010	 (d) 11.111101
24. (a) 1011101	 (b) 111100101110	 (c) 0010101111001101 (d) 001010101011
25. (a) 153	 (1) 9EB	 (c) ICC.18
26. (a) 331	 (b) 133.164	 (c) 1434.72
27. (a) (101110111.01) 2 = (567.2)	 (b) (1011X10001001.f.XJI011) 2 = (2559.171)

(c) (20.4) 16 = (45.25)	 (ii) (125.29) = (111101.00101) 2 	(e) 320.3691406, 13E.5E8
28. (a) 141.000406	 (b) 32.2
29. (a) 26.875	 (8) 478.625	 (c) 1018.5
30. (a) 000,001	 (b) 011.00, 011.00 	 (c) 001001, 001010	 (ci) 001100, 001101

(e) 11i11001I0.1()
.WC)	 (8) - 101	 (c) - 010

't :c tsi	 (e) 11.111	 (f) - 00100110
3.	 .'	 (8) 12D2	 (c) 14631

	
(ci) 45

fri (364	 (I) 72.A 5DE	 (g) 3389
	

(h) 103672	 (i) 1632
34.(a)24,25	 (F)183
35. (a) 8B46, 81347	 (b) A2CF6, A2CF7
36. (a) 137. 216	 (8) E9.98D 16	(c) 73398
37. (a) (11.111101) 2 	(b) (26779)	 (c) (13.E)16	 (ci) (II72.5075)

ri

DATA REPRESENTATION

4.0. INTRODUCTION
Data are usually represented by using the alphabets A to Z, numbers 0 to 9 and variou
other symbols. This form of representation is used to formulate problem and fed to the
computer. The processed out-put is required in the same form. This form of representation
is called external data representation. However, the computer can understand data only
in the form of 0 nd 1. The method of data representation in a form suitable for storing
in the memory and for processing by the CPU is called the internal data representation
on digital computer.	 . '.

Data, in general, are of two types: numeric and non-numeric (character data). The
numeric data deals only with numbers and arithmetic operations and non-numeric da(
deals with characters, names, addresses, etc., and non-arithmetic operations.

4.1. REPRESENTATION OF SIGNED AND UNSIGNED NUMBERS
Numeric data represented in either of the two forms, integer and real. Integers are the
numbers which do not have decimal point. These integers may be positive or negative.
For example, 8, -IL 0, 157 are termed as integers. A real number consists of an integer.
part and a fractional part. A real number may be positive or negative. For example, 10.56,
- 23.07, etc., are real numbers.

4.1.1. Representation of Pcsitive Integers
In the binary system, we represent the sign of a number using an extra bit, known as
sign bit, at the extreme left of the number. By convention, the bit 0 is used to represent
the (+) sign. For instance, +7 is represented by 0, 111. The comma separates the sign bit
from the number. This method of 15 14	 1 0
representation is known as a signed
magnitude representation.

The storage format of a typi-
cal 16 bit word size computer is 	 Sign bit
shown in Fig. 4.1. In a 16 bit word
length computer, a positive integer	 Fig. 4.1: A typical 16 bit binary integer storage
could be stored with values from 0, 000000000000000 -to 0, 111111111111111, i.e., from 0 to
2' - I. In general, for a n bit word length computer, the largest positive integer that can
be stored is 2_1 - 1.

4.1.2. Representation of Negative Integers
There are usually three commonly used methods for representing negative integers in
binary terms. These are:

1. Signed Magnitude Representation.
2. Signed l's Complement Representation.
3. Signed 2's Complement Representation.
Signed magnitude representation: In this representation, the negative number bit

34

Data Representation	 35

pattern differs from the corresponding positive number bit pattern by only digit '1' in
the sign bit location. In n-bit computer words, the range of numbers representable is
between - (211 - 1 - 1) to (2" - 1). For example, in an 8 bit computer word, the number
(+15) ltl whose binary equivalent is 1111, is represented as 0, 0001111 and (-15) l o as
1, 0001111. All other numbers between - (28-1 - 1) = -127 and + (28-1 - 1) = +127 have
unique representation. Zero has forms 0,0000000 (+ 0) and 1, 0000000 (- 0).

Signed l's complement representation : In binary number system, the l's cômple-
ment of 1 is 0 and 0 is of 1. Hence, (+15) 10 in l's complement into 8 bit representation
is represented as 0,0001111 and (-15)0 as 1, 1110000. The range of numbers represented
is - (2" - 1) to (211 - 1), same as signed magnitude representation. Here also 0 has two
representations 0,0000000 (+ 0) and 1, 1111111 (- 0).

Signed 2's complement representation : It is l's complement plus 1. Hence, (+ 15)
in 2's complement in 8 bit word is represented as 0,0001111 and (- 15) 10 as 1, 1110001
(which is two's complement of + 15). All numbers between - 2" and (21 - 1) have
unique representation. This form do not represent 0 in dual form and hence can represent
- 128 to + 127 in a 8 bit computer word.

The signed magnitude system is easier to interpret but computer arithmetic with
this is not efficient. The circuits for handling numbers are simplified if l's or 2's comple-
ment systems are used and as a result one of these is almost alwa ys adopted.

The representations and range of integer numbers in an 8 hit computer word are
shown below

Decimal	 Signed magnitude

-128	 -

-127	 1111	 1111
-126	 1111	 1110
-125	 1111	 1101

I's coniplemi'nt

1000	 0000
1000	 0001
1000	 0010

2 's coniplc'niciit

1000	 00(X)
1000	 0001
1000	 0010
1000	 0011

	

-2	 1000	 0010	 1111

	

-1	 1000	 0001	 1111

	

-0	 1000	 0000	 1111

	

0	 0000	 0000	 0000

	

1	 0000	 0001	 0000

	

2	 0000	 0010	 0000

	

+127	 0111	 1111	 0111

1101	 1111
1110	 1111
1111	 —
0000	 0000
0001	 0000
0010	 0000

1111	 0111

1110
1111

0000
0001
0010

11•11

Fig. 4.2: Representations and range of numbers for one byte

Note 1: In l's and 2's complements, all positive integers are represented as in sign
magnitude system.

Note 2: When all the bits of the computer word are used to represent the number and
no bit is used for-signed representation, it is called unsigned representation of the number.

4.1.3. Addition in Signed 2's Complement
2's complement signed binary coding does not call any special logic when performing
arithmetic operation provided an arithmetic operation does not generate an answer that
is too large to accommodate in the available space (overflow). The sign bitis treated as

36	 Elements of Computer Science

though it is a part of the number, the answer indicates whether it is positive or negative.
If the sign bit is 1, then the answer is negative and by taking 2's complement of the
answer, the pure binary representation of the answer is found. The following examples
will illustrate the addition of signed binary numbers.

Example 4.1. Add (+ 3) and (+ 7).
Solution.	 + 3	 0,0 0 1 1

+7	 0,0111
iö	 0,1010

Sign bit is 0, so the sum is positive..
Example 4.2. Add (+14) and (-9) using bit for storage representation.

	

Solution. + 1 4	 0,0 0 0 1 1 1 0
1,1 110111 (2's complement of -9)

	

+ 5	 10,0000101
Sign bit 0, so the sum is positive (carry is neglected)

Example 4.3. Add (- 12) and (+ 8).

	

Solution. - 1 2	 1, 1 1 1 0 1 0 0 (2's complement of -12)

	

+ 8	 0,0001000
1,1111100
Sign bit 1, so the sum is negative and 2's complement form

2's complement of 1111100 = 0000100 = 4
Ans. - 4

Example 4.4. Add (-13) and (-11).
Solution.	 13 0,000 1 1 0 1

11 0,0007 01 1

	

-13 1, 1 1 1 0 0 1 1	 (2's Complement of -13 with sign bit)

	

-11 1. 1 1 1 0 1 0 1	 (2's Complement of -11 with sign bit)
11, 1 1 0 1 0 0 0

Sign bit indicates the negative result (carry ignored) in 2's
complement form.

2's Complement f 1101000 = 0011000
Ans. -24

4.2. BINARY CODED DECIMAL (BCD)
When a decimal number is represented by its equivalent binary number, we call it
straight binary coding. If each digit of a decimal number is represented by its binary
equivalent, the result is a code called binary-coded decimal. As there are ten digits to be
encoded in decimal system, we require 4 bits for encoding each of the digit. For example,
the decimal number 23 is represented as

	

2	 3	 Decimal
0010	 0011	 BCD

BCD code is a weighted code, each bit is assigned a weight and from left to right,
the weights are 8, 4, 2 and 1. This is known as weighted 8 - 4 - 27 - 1 BCD. There are
other weighted BCD codes but the 8 - 4 - 2 - 1 code is usually referred to as BCD code.
The other weighted BCD codes always mention the weightage to distinguish them from
the 8421 BCD code. The bit 0110, for example, can be interpreted by the weights to rep-
resent the decimaldigit6as0x8+1 x4 +1x2+Ox 1=6.

To convert a given BCD number to decimal number, all bits are to be divided into

Data Representation 	 37

groups of 4 starting from the decimal point (if an y) towards left and right adding 0 at
extremities (if necessary) and each group of 4 bits is replaced by corresponding decimal
number.

For example, (101Oi.lOOl)nco = (0001 01011001)IicD = (15.9)e
and	 (137.409)0 = (0001 0011 0111.0100 0000 100i)c

4.2.1. Advantages and Disadvantages of BCD System
The advantages of using BCD representation for decimal numbers over binar y number
system are in terms of saving the efforts of conversion. This is very important as user
generally provides input in decimal form and expects his results also in decimal form.

There is no round of error in BCP representation, but there may be in straight binary
representation, for example, which will produce some error in computer processing.

The disadvantages of BCD representation of a number (except for single digit deLs-
mal number) that it takes more digits in BCD than in straight binary coding.

Performing arithmetic operations with straight binary coding is easier than the I3CL)
coding.

Circuits required for BCD arithmetic operations are more complex than those of
binary circuits and require more time in executing numeric computation.

4.2.2. BCD Addition
It is known that the adder circuits perform additions in pure binary fasho" 	 is whsrc
a carry is generated when a pair of Is are added, in decimal operation. If we add 7 and
6, a carry is generated when the sum exceeds 9. Slince BCD notation uses 4 binary bits,
a carry into the fifth bit position will occur only when the 4 bits are greater than 1111 or
15. But BCD notation goes only up to 9, which is represented by 1001, and the nrxt
number is 0001 0000, thereby a carry would require an addition of a further decimal
number 6 (0110 in BCD).

BCD addition procedure:
1. Add, using ordinary binary addition, the BCD code groups for each digit position.
2. For those positions where the sum is 9 or less, no correction is needed. The sum

is in proper BCD form.
3. When the sum of two digits is greater than 9, a correction of 0110 should he

added to that sum to get the proper BCD result. This case always produc". a
carry into the next digit position, either from the original addition (step 1) or
from the correction addition.

The following examples will illustrate the procedure.
Example 4.5. Perform 26 + 37 using BCD number system.	 (AMIE, S '93)
Solution.	 0010 0110	 BCD for 26

0011 0111	 BCD for 37
0101 1101	 Perform addition

+ 0110	 Add 6 for BCD Correction
d 3 0011	 BCD for 63

Example 4.6. Add 236 and 194 using BCD code.	 (AMIE, W'93)
Solution.	 0010	 0011 0110	 BCD for 236

0001	 1001 0100	 BCD for 194
0011	 1100 1010	 Perform addition

+ 0110 0110	 Add 6 for BCD correction
0100	 0011 0000	 BCD for 430

Example 4.7. Perform 342 + 739 in BCD systeni.

38	 El<'nu',,t. of Conug er Science

Solution.	 0011	 0100 0010

	

0111	 0011 1001

	

1010	 0111	 1011

	

+ 0110	 0110

	

0001 0000	 1000 0001

BCD for 342
BCD for 739
Perform addition
Add 6 for BCD correction
BCD for 1081

4.3. OTHER BCD WEIGHTED CODES
The other types of BCD weighted codes are given in Thble 4.1. 01 these, 8 -4 - - T code
has two bits, namely, 2 and I which have negative weights. The decimal digit can be
converted to weighted codes by starting from the left-most weight down to the right-
most weight. Express the decimal digit as the sum of weights. Write I against the weights
which appear in the sum and 0 against the weights which do not appear in the sum.

Example 4.8. Convert (458) to 4-2-2-1 BCD code.
Solution.	 Digit	 Weight	 Code

4-2-2-1
4	 4+0+0+0	 1000.
5	 4+0+0+1	 1001
8	 4+2+2+0	 1110

Hence, 4-2-2-1 BCD representation of 458 is 1000 1001 1110. Note that encoding is not
unique in the system, e.g., 2 -4 0010 and 2 -'. 0100.

Table 4.1

	

-_...Weighis	 2421	 4221	 5221	 8421

	

Dtgzt.....	 Code	 Code	 Cole	 Cole

0	 0000	 0000	 0000	 0000
0001	 0001	 0001	 0111

2	 0010	 0010	 0100	 0110
3	 0011	 0011	 0101	 0101
4	 0100	 1000	 0110	 0100
5	 0101	 1001	 1000	 1011
6	 1100	 1010	 1001	 1010
7	 1101	 1011	 1100	 1001
8	 1110	 1110	 1101	 1000
9	 1111	 1	 1111	 1110	 1111

4.4. NON-WEIGHTED CODES
The non-weighted codes are of two types, namely, (i) Non-error detecting codes, and (ii)
error detecting codes. Non-error detecting codes are: (i) excess-3 code, and (ii) gray code.
4.4.1. Excess-3 Code
This is a binary code in which each decimal number is expressed in excess of three. i.e.,
3 is added to the decimal number and then coded into binary digits, e.g., to get the
excess-3 code of 4, 3 is added to it which gives 7. The BCD code of 7, namely, 0111 will
be 4 in the excess-3 code. The excess-3 code is said to be self-complementing code (a
code is said be self-complementing if the code word of the 9's complement of N, i.e., 9-N
can be obtained from the code word of N, by interchanging all the l's and 0's). For
example, representation of 7 in excess-3 is given by 0111 + 0011 = 1010 while decimal
(9-7) is represented by 0010 + 0011 = 0101 which can be obtained by interchanging 0 and
1 in 1010. Note that BCD code is not self-complementing. There exists onl y four positively
weighted self-complementing codes, namely, 2-4-2-1, 3-3-2-1, 4-3-1-1 and 5-2-1-1. In
addition, there exist, 13 self-complementing codes with positive and negative weights.

Data Representation 	 39

Table 4.2
Decimal Number	 Excess-3 Code	 Complement of	 Decimal value of

	

Excess-3 Code	 the Complement
0	 0011	 1100	 9
1	 0100	 1011	 8
2	 0101	 1010	 7
3	 0110	 1001	 6
4	 0111	 1000	 5
5	 1000	 0111	 4
6	 1001	 0110	 3
7	 1010	 0101	 2
8	 1011	 0100	 1
9	 1100	 0011	 0

4.4.2. Gray Code
The gray code is an unweighted code not suited to arithmetic operations, but useful for
input/output devices, analog to digital converters. Each gray code differs from its neigh-
bour by a single bit. (Codes which have such a property is known as cyclic code). For
instance, in going from 7 to 8, the gray code numbers change from 0100 to 1100. The
codes for 0 and I are the same as binary code.

4.4.2.1. Conversion from Binary to Gray
The steps of conversion are:

(a) The most significant digit of gray code is the same as the most significant digit
of binary code;

(h) Add each pair of adjacent bits (starting from most significant digit) of the binary
code to get the next gray digit disregarding the carries.

Example 4.9. Convert the binary number 1100 to gray code number.

Solution.	 1	 1	 0	 0 binary	 add I + I = 0
(ignoring carry)

0	 1	 0 gray	 add 0 + 0 = 0
Hence, the required number is 1010.

Table 4.3: Complete 4 bit Gray Code
Decimal	 Gray	 Binary
number

0	 00000000
1	 00010001
2	 00110010
3	 0,._0..1	 0 0 0	 1	 1
4	 0.1100100
5	 01110101
6	 01010110
7	 01000111
8	 11001000
9	 11011001

10	 1	 1	 1	 1	 1	 0	 1	 0
11	 1	 1	 1	 0	 1	 0	 1	 1
12	 1 0 1 0 1	 1 0 0
13	 1	 0	 1	 1	 1	 1 0 1
14	 1	 0 0 1	 1	 1	 1 0
15	 1	 0 0 0 1	 1	 1	 1

40	 Elements of Computer Science

4.4.2.2. Conversion from Gray to Binary
Gray coded numbers may be converted to binary with the help of the following proce-
dure:

(a) Starting from the MSD of the gray code, go on keeping Us until encounter sitli
the first 1. Keep it 1, and

(b) Go on keeping 1, until encounter with another 1, then
(c) Replace it by 0 and repeat the steps (a) and (h) until LSD of the gray code is

reached.

4.4.3. Error Detecting Code
Computers are very reliable. However, if one bit in a string of 7 or 8 bits is lost during
data input, processing or output operations, an incorrect code will be created. Errors may
be caused by dust particles on storage media, by improper humidity levels or by electrical
disturbances during data transmission between units. Computer designers have devel-
oped a method for detecting errors by adding an extra bit usually preceding the zone
bits to each 7 or 8 bit character presented in storage. This additional bit is known as
parity bit. This checking feature is called a parity check. There are two types of parity
checking codes, namely. (a) Odd parity code, and (b) Even parity code. In the odd parity
method, the value of the parity bit is chosen so that the total number of l's in the code
group (including the parity bit) is an odd number. The even panty method is designed
in exactly the same way except that the parity bit is chosen so that the total number of
I's (including the parity bit) is an even number.

For example, suppose that the group is 1000011. This is ASCII character C. The code
group has three l's. Therefore, we will add a parity bit of I to make the total number of
I as an even number if it is designed for even parity code. The new code group including
the parity bit thus becomes

11000011

added parity hit

If the code group contains even numbers of Is to begin with the parity bit is gl\'cn
a value of 0.

It may be noted that if there is a one failure in more than one bit positions then
the proper parity may be maintained and parity checking system will fail. For detecting
failure in multiple bits, more additional bits are to be provided and this will increase the
hardware cost of the system.

4.5. REAL NUMBERS REPRESENTATION
There are two basic techniques to represent real numbers in a computer. These are called
(a) the fixed-point representation, (b) the floating-point representation.

4.5.1. Fixed-point Representation
Since a real number has two integer parts. i.e., a part preceding a decimal point known
at integer part and a part following a decimal point known as fractional part. The rep-
resentation of real numbers can be done by assuming a fixed position between two parts.
All the arithmetic operations 	 9 hits -----------01--- 6 bits -ø'i
are done treating them as inte-
gers. After the operations are
performed, one may need to
transfer any carry and borrow
generated in the fractional part	 Sign bit	 sstirnect binary peril

to the integer part. Fig. '• 	 Fig. 4.3

Data Representation	 41

shows the format for fixed-point representations of real numbers when a 16 bit word is
employed to store numbers.

Fixed point system has two major disadvantages. First, the range of numbers that
can be represented is restricted by the number of digits or bits used. Second, the need
of keeping track of the binary point particularly in multiplication and division operations
so that it can be correctly positioned in the final result. Thus, in the fixed-point of repre-
sentation the user has to keep the track of radix point which is a tedious job. Hence, a system
of representation which automatically keep track of the position of the radix point is required.
Such a system of representation is called floating point representation of numbers.

4.5.2. Floating Point Representation
A convenient notation for representing real number is the floating point notation. The
notation is based on the relation y = a x r, where y is the number to be represented, a
is the mantissa, r is the base of the number system (r = 10 for decimal and r = 2 for
binary) and p is the power the base is raised, called the exponent. For example, 14.2 x
iO, -7.8 x 10.12 are real numbers in floating point notation and 14.2 and - 7.8 are called
mantissa and 400, -12 are the exponent of base 10, respectively. Such a representation is
not unique, e.g., 567 = 0.0567 x IO = 0.567 x iO = 56.7 x IO = 56700 x 102. Observe
that the only difference between the equivalent forms is in the position of the decimal
point and the exponent of 10.

In computer memory, real numbers are represented in normalised floating point
notation in which any non-zero decimal number D can be uniquely expressed as D = M x
101, where the decimal point appears directly infront of the first non-zero digit in M (.1 M
< 1) for positive D and -1 < NI :^ - .1 for negative D. Decimal number 15.62 and 0053 can
be represented in normalized form as .1562 x 102 and .5300 x 102 , respectively. In binary
normalized floating point form the mantissa M would have a value from .5 (decimal) to I
i.e., the binary point appears before the first 1 hit. The binary niijnbers -11 and - 010 can
be expressed in normalized form as - 0.1100 x 22 and 0.100 x 21. Table 4.4 gives some binary
numbers in normalized floating point form, each mantissa being written with exactly 5 bits.

Table 4.4

\'1ibeT	 Normalized form	 Mantissa	 Exponent

11.33	 0.1133 x 102	 0.1133	 2
0.0044	 0.4400 x 10	 0.400	 -2

	

- 0.000077	 - 0.7700 x 10	 -0.7700	 -4
10.1	 0.1010 x 2 2	 0.1010	 2

	

-1111	 -0.1111 x24	-0.1111	 4
0.001110	 0.1110 x 2	 0.1110	 -2

A word in a floating point representation may be divided into two block of bits: the
first block contains the mantissa of
the number and second, the expo-	 Mantissa	 Exponent
font of the number to be repro- 4	 9bits '	 7 bits
sented. The format of represen-
tation in floating point form in 16
bit word is shown in Fig. 4.4. 	

A	 I
In a normalized floating point

J L	 Assumed binary	 Sign bit of exponentmode the largest magnitude num-	 point
ber which may be stored in a 16 bit
computer word using 9 bits for . 	 Sign bit
ñsantissa and 7 bits for exponent is 	 Fig. 4.4

nt

Fig. 45: Maximum stored number.

0.11111111	 = (1 - 2) x 22'_ 1

= (1 - 2- 8) x 2' = iO°

42
	 Elements of Computer Science

and the minimum value is
0.10000000 x 21111111	 (2_ I) x 2	 I)

(2 1) x 2- ' = 2-'
The number of bits to be used for the mantissa is determined by the number of significant
digits required in computation.

It is possible to use a radix other than 2. For example, .7556 x 86 is represented as
in Fig. 4.6 as the mantissa and xponent are same as in .11110110111 x 26. The difference
is in the assumption of the radix which must be assumed together with fixed point po-
sition of the mantissa and must be used consistently.

Mantissa	 1,14 Exponent

flflJUIMIIII
4.	 1

Sign bit

	

	 Sign bit
Fig. 4.6

To avoid negative sign in exponent, most computers represent exponent (n) by
its excess representation known as bissed exponent n + 2 1.1 when I is the number of
bits in the exponent block. This means that the true exponent is stored after adding
a constant. This constant is determined according to the method that the minimum
number is increased to zero. Table 4.5 shows the relationship between true exponent
and its excess representation.

Table 4.5

True Exponent	 - 64	 -63	 -62 .1	 0	 63

Excess Representation	 0	 1	 2... . 63	 64	 65.... . 127

The decimal fraction -15.0 can be represented in normalized binary exponential
form as -.1111 x 2. The true exponent is 4, its excess representation is 4 + 64 = 68 =
1000100. Hence, decimal number -15.5 can be stored in 16 bit word as shown in Fig. 4.7.

Another way in which the exponent bit may be interpreted is to assume a base other
than 2 for the exponent. If we assume a base of 16 for the exponent, then the largest
magnitude floating point number that may be represented in this format is

0.11111111 x 160111 111 = 0.11111111 x 1663

Data Representation	 43

The range obtained by this representation is considerably large compared to base 2
representation of the exponent. But there is some loss of significance. If the exponent is
increased by 1 the mantissa is to be
shifted left by one hexadecimal	 Mantissa	 Exponent
digit, i.e., 4 bits. When 2 is used as	 9 bits	 4	 7 bits
the exponent base, increasing expo-	

I
nent by 1 will lead to shifting the	 I I I 1 170 TOO I 0 0 0 1 0 (1
mantissa left by one bit position.

4.5.3. Floating Point Arithmetic
Arithmetic operations with floating Sign bit
point number representation are	 Fig. 4.7

more complicated than arithmetic operations with fixed point numbers and their execu-
tion takes longer time and requires more complex hardware circuitry.

4.5.3.1. Addition
(a) If two numbers to be added have the equal exponent, the mantissas are added

the same exponent issued and the sum is renormalized. if necessary.
0.4466 x 102 + 0.777 x iO = 1.2236 x IO = .1224 x lO

(renormalized)
(b) If two numbers have different exponent then the operand with the larger exponent

is kept as it is and the mantissa of the operand with the smaller exponent is shifted
right by a number of places equal to the difference in the two exponents so that
they have equal exponent. With each shift, the exponent must he changed. For
each left shift of mantissa the exponent is decreased by one and for each right shift
the exponent is increased by one, and for each increase of exponent causes the last
digit in the mantissa to be chopped off, as number of digits of mantissa that a
location can accommodate is usually fixed in a particular computer. For example,
if the arithmetic unit can accommodate only a 4 digit mantissa, then

.3344 x 102 + .8777 x iO
= .3344 x 102 + .0008 x 102 = .3352 x 102

In this case, two exponents are not equal. The difference between the exponents is
2 - (-1-= 3. Thus, the mantissa .8777 is shifted right three places. Each shift cause the
last digit in the mantissa to be chopped as the arithmetic unit in this case can accom-
modate only a 4 digit mantissa.

4.5.3.2. Subtraction

The operation of subtraction is nothing but adding a negative number. The principles are
the same as addition. The following examples will illustrate the procedure.

Example 4.10. Subtract .8432 x 10 -4 from .5451 x 102
Solution.	 .5451 x iO - .8432 x 10

= .5451 x 10-3- .0843 x 10-3= (.5451 - .0843) x iO
= .4608 x 10

Example 4.11. Subtract .1101 x 2 from .110111 x 2. 	 JAMIE (AN) Model Paper]
Solution.	 .110111 x 2 - .1101 x 2

= .110111 x 2 - .01101 x 2 = (.110111 - .01101) x 2
= .11101 x 24 (renorinalized)

Example 4.12. Subtract 0.6 B x 16 2 from 0.7A x 16.	 IAMIE (AD), Model Paper]
Solution.	 0.7A x 16 - 0.613 x 162

= 0.7A x 16 3 - 0.06 x 16 = 0.64 x 16

44
	

Elenienr.t of C Inpuler Science

4.5.3.3. Multiplication and Division

	

(a) Multiplication rule :	 (6) Division rule
(i) Multiply the mantissas	 (i) Divide the mantissas
(ii) Add the exponents	 (if) Subtract the exponents
(iii) Normalize and truncate, if necessary. 	 (iii) Normalize

i.e., if the numbers are n 1 = f1 .r 1 , and 02 = f2.r "
n 1 x n. = (f xf2) r* 12 and 01/02 = (11/12) x rCi

Example 4.13. Multiply 0.3355 x 102 by 0.4466 x
Solution.	 (0.3355 x 102) x (0.4466 x 10)

= (0.3355 x 0.4466) x 10
= 0.14983480 x iO = 0.1498 x 10

Example 4.14. Divide 0.2526 x io by 0.8352 x lOg.
Solution.	 (0.2526 x 10) + (0.8352 x 10)

= (0.2526 ± 0.8352) x IO
= 0.3024425 x 10 = 0.3024 x 10

4.6. OVERFLOW AND UNDERFLOW

Normall y, logic system of a computer is so designed that the size of the word is fixed.
If the magnitude of the number after arithmetic operations exceeds the capability of the
storage of the words, an overflow occurs and errors are bound to arise. Ti,erefore, it is
essential to devise a procedure for identifying such erroneous results.

4.6.1. integer Arithmetic
An overflow occurs when the numbers to be added are both positive or both negative and
the results exceeds the storing capacity of the register. An overflow cannot occur after an
addition if one number is positive and the other is negative, since adding a positive number
to a negative number produces a result (positive or negative) which is smaller than the larger
of the two original numbers. The limit on the maximum number of positive and negative
integers that are possible in a word of a given size can be determined by the formula.

Number of positive integers = 2 + 1, and
Number of negative integers = 21

where B is the number of bits.
For example, in a 8-bit word, the number of positive integers = 2 - 1 = 127, i.e., the
number 0 to 127 can be represented in a 8-bit word and similarly negative number —128
to 0 can he represented in a 8-bit word. The following examples will show the addition
of two positive or two negative numbers when there is an overflow.

Example 4.15. Add + 85 and +67 using 8 bit register.
Solution.	 + 85	 0,1010101

	

+ 67	 0,1000011

	

+152	 1,0010000
In this, carry from MSB of the addition of numbers is 1 and carry from the sign

bit is 0 ,i.e., they differ and also the sign bit is 1 which indicates negative result. Thus,
the result is not correct. (Note that 152 is the maximum positive number that can be
represented in a 8-bit register).

Example 4.16. Add —87 and - 65.
Solution.	 - 87	 1,010 1001	 (2's complement of - 87)

	

—65	 1,011 1111	 (2's complement of - 65)

	

—152	 (1) 0,110 1000

Data Representation	
45

In this, carry from MSB of the addition of the number is 0 and carry from the sign
bit is 1, i.e. they differ and also the sign bit is 0 which indicates positive result. Thus, the
result is not correct. The answer is wrong as the decimal number —152 lies outside the
range of 8 bit arithmetic.

From the above two examples, it is clear that the overflow conditions occur when
the carry of MSB of numbers (i.e., carry into the sign bit) is not equal to the carry out
of the sign bit. If the two carries are applied to an exclusive OR gate, an overflow would
be detected when the output of the gate is 1.

It is also important to note that there is an overflow if the addition of two positive
numbers produce a negative sign bit or addition of two negative numbers produce a
positive sign bit. In other words, the overflow produces an erroneous sign reversal.

Example 4.17. Perform the arithmetic operations (+35) + (+ 40) and (-35) + (-40) with

binary numbers in signed 2's complement representation. Use seven hits to accommodate each
number together with its sign. Show that overflow occurs iii both cases that the last two carries

	

are unequal and that there is a sign reversal. 	 (AMIE, S'94)

•	 Solution.	 + 35	 0, 100011
+ 40	 0, 101000
+77_5	 1, 001011

There is a carry (1) from MSD from addition of two numbers and no carry (0) from
the sign bit. Also I in sign bit indicates negative result. Hence, there is an overflow and
the result is not correct.

- 35	 1,011101	 (2's component of - 35)

- 40	 l'._011000	 (2's component of - 40)

- 75	 (1)0, 110101
There is no carry (0) from MSD from addition of two numbers and a carry (1) from the
sign bit. Also, 0 in sign bit indicates positive result. Hence, there is an overflow and the
result is not correct.

From the above cases, it is clear that there is an overflow if two numbers are positive
but the result of addition has a negative sign bit and if two numbers are negative but the
result of addition has a positive sign bit, i.e., overflow produces an erroneous sign reversal.

4.6.2. Floating Point Arithmetic
When two floating-point numbers of the same sign are added, a carry may be gener-
ated out of high-order bit position. For example, if .643 x 10 11 is added to .4854 x iO,
the sum of mantissa exceeds 1. Thus, the mantissa is shifted right and exponent is
increased by 1 resulting a value of 100 for the exponent. If the exponent part of the
word of computer cannot store more than two digits (largest number that can be
stored in a memory location). The condition is called an overflow condition and the
arithmetic unit will intimate an error condition. The overflow can also occur in mul-
tiplication and division as in the following examples:

	

(1111 x 10) x (4444 x 10 0)	 = .4937 x	 overflows

	

(.9887 x 10 1) ± (1000 x 10)	 = .9837 x 10 101 overflows
An underfiow condition occurs when the result is smaller than the smallest number

which could be stored in the word of a computer. For example, if the word contains only
two digits of exponent, then

.5462 x 10 = .5427 x 10

.0035 x iO - = .35 x 10-101	 Underflows

Underfiow can also occur in multiplication and division.

4.7. REPRESENTATION OF CHARACTERS
Apart from storage and processing of numeric data, computer system store and process

A
B
C
0
E
F
C
H

K
L
M
N

Q
R

1100

I
1(00
110!

I
1101

0001
0010
0011
01(X)
0101
0110
0111
1000
1001
0001
0010
0011
0100
(1101
0)10
1)11!
1000
I (X)1

C
C2
C3
C4
CS
C6
C7
C8
C9
D
02
03
04
Di
06
07
08
09

0100

I
01(X)
0101

I
0101
0110

.1
0110
0111I
0111

0000
1011
11(X)
1101
1110
0000
1011
1100
1101
1110
0000
0001
1011
1100
1110
1111
1010
1011
1100
1110

40
4B
4C
40
4E
50
5B
5C
SD
SE
60
61
6B
6C
6E
6F
7A
7B
7C
7E

46	 Elements of Coinpuzr Science

character data also. Information processing using computers requires, generally, 26 capital
and 26 small English letters, 10 digits and many special characters (32) like +. -, (.), etc.
Total number of characters to be coded is thus 26 + 26 + 10 + 32 = 94. To represent them
on computer we require a string sequence of 0 and I and minimum 7 bits will be required
to encode the characters which can code 2 7 = 128 characters.

Coding of characters has been standardised to facilitate exchange of recorded data
between computers. The two popular standard codes used for modern data processing are:

(a) Extenoed Binary Coded Decimal Interchange Code (EBCDIC).
(Li) American Standard Code for Information Interchange (ASCII).
Data represented in ASCII format can be easily converted in EBCDIC format, and

vice versa to suit requirements of a particular computer system.
4.7.1. EBCDIC

The EBCDIC (pronounced as eb - si - dic) is an 8 bit code primarily used by IBM and IBM
compatible computer system. In addition to the various characters, it allows a large variety
of printable special characters and non- Zone Numeric---

--*.printable control characters. The control
characters are used to control such ac-
tivities as printer vertical spacing, 	 -FTmovement of cursor or the terminal 	

iscreen, etc. All 256 (28) hit combinations	 Fig. 4.8
have not yet been assigned characters, so the code can still grow as new requirements
develop. The representation of each character is divided into two 4 bit portion, a Zone
portion on the left and numeric portion on the right.

Table 4.6 shows the EBCDIC coding scheme used to represent alphabets, digits and
a few special characters. It is observed that a digit has its binary representation as the
numeric portion of its code.

Table 4.6: EBCDIC Coding Scheme
Char- 	 l!eaa-	 Chara- Zone	 III 	 Civni- Zone Niun-	 Ilexa-ac(er	 eric	 deciniaj -	 cier	 eric	 decimal	 cter	 eric I decimal

S	 1110 0010	 £2	 blank
1	 0011	 E3
U	 01(1)	 E4
V	 0101	 ES
W	 0110	 E6	 +
X	 0111	 E7	 &
Y	 1(XX)	 E8	 S
Z	 1110 1001	 £9

0	 III!	 (XXX)	 FO
1	 0001	 Fl
2	 0010	 F2
3	 0011	 F3	 >
4	 01(X)	 F4
5	 0101	 F5
6	 011(1	 F6
7	 0111	 F?
8	 10(1)	 F8	 =
9	 1111	 1001	 F9

1010 BO
01
02
133
04
05
136
07
OS
09

P

Q
R

S

T

U

V

W

X

Y

Al
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
Al)
AL
AF

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1011 0000
0001
0010

I	 0011
I	 010(1

0101
0110
0111
100))
1001

1011	 1010	 BA

001 101 0000	 50	 A
1	 0001	 51	 B
2	 0010	 52	 C
3	 0011	 53	 D
4	 0100	 54	 E
5	 0101	 55	 F
6	 0110	 56	 C
7	 0111	 57	 H
8	 1000	 58	 1

0101 1001 L	 --

	

Data Representation
	 47

The internal coded representation of the string MANJU in EBCDIC is
1101 0100	 1100 0001	 1101 0101	 1101 0001	 1110 0100

M	 A	 N	 J	 U

4.7.2. ASCII
These codes are of two types : ASCII-7 and ASCII-8. ASCII-7 is a 7 bit code that allows
128 (2) different characters. Table 4.7 shows the ASCII-8 coding scheme.

Table 4.7: ASCII-8 Coding Scheme

	

Char- Zone Nu-	 Hera- Chara- Zone Num-	 Hexa	 Char- Zone Num-	 Hexa-

acter	 meric	 decimal	 cter	 eric	 decimal	 acter	 eric	 decimal

Eauivalent	 I Equivalent

1010

4.7.3. Collating Sequence
The value of an alphanumeric or alphabetic data element is usually the name of some object.
In order to arrange them in some desired order, it is necessary to have some assigned ordering
system among the characters used by the computer. The order in which an alphanumeric
code causes the characters in the code to be arranged based on their numeric codes, is called
the collating sequence for the code and it varies from computer to computer.

In EBCDIC, the zones values of characters A through 9 increases from the equivalent
of decimal 12 to 15. This means a computer using EBCDIC code for its internal repre-
sentation of characters will treat numeric characters to be greater than alphabetic charac-
ters. On the other hand, a computer using ASCII-B code will place numbers ahead of
letters during ascending order.

For example, 23 > 2C > C2 in EBCDIC but in ASCII-8, C2 > 2C > 23.
4.7.4. Differences between EBCDIC and ASCII-8
There is no clear superiority of either EBCDIC and ASCII-8, but there are two important
differences. The collating sequence for EBCDIC has the numerals flow the letters: for ASCII-8,
the reverse is true. Hence, documents coded and sorted under one system would be in a
different order if they were coded and sorted by the other. Second, the ASCII codes for the
alphabet progress consecutively by +1, whereas EBCDIC has two gaps (between I and J and
between R and S) which proves annoying in certain programming situations.
4.7.5. Unicode
Although ASCII and EBCDIC contain some foreign language symbols, both are clearly
insuficient in a global computer market. Unicode solves this problem for most languages
by expanding the number of available bits to 16. Because 16 bits is enough to code more
than 65,000 characters, Unicode can represent many, if not most, of the world's languages.
Some languages are not represented because more research is needed to determine how
best to encode their scripts.

48	 Elements of Computer Science

REVIEW QUESTIONS SET
1. What is a sign bit?
2. What are mantissa and exponent of a real number?
3. What do you uiideistaiid by a floating point number? Give some examples.
4. What is normalised floating point number? Give some examples and write their mantissa and

exponents.
5. What is signed magnitude scheme? Give one example of this scheme.
6. What is the advantage of using normalized mantissa? Compare the advantages and disad-

vantages of BCD arithmetic with respect to binary arithnietic.
7. What are fixed and floating point representations? Describe their comparative advantages and

disadvantages.
8. Why excess representation is preferred for exponent in floating point representation?
9. Which signed representation in binary number system is most efficient in arithmetic? Explain.

10. What is the range of numbers represented if 10 bits are used (a) in signed magnitude form,
(I') in 2's complement form.

11.Discuss overflow and underfiow phenomena which occurs in a digital computer.
12. What is a weighted code?
13. What is the difference between ASCII and EDCDIC codes?
14. What is collating sequence?
15. What is a parity bit? What are the two kinds of parity?
16.Convert the decimal numbers to excess-3 code.

(a) 5	 (b) 62	 (c) 55	 (d) 395
17.Convert excess-3 code to decimal form:

(a) 1011	 (b) 0101 1011 1000
18.Convert the following gray codes to binary form:

(a) 0111	 (8) 1000	 (c) 1110010(1011
19.Convert the following binary numbers to gray code:

(a) 1000110111 (8) 110100110
20. Convert the following 5421 code number into decimal:

0010 1000	 1010	 (AMIF. S '94)21. Encode the following decimal numbers into BCD numbers
(a) 45	 (8) 732

22. Use normalized floating point representation to find
1011011.0100 + 1101101.0101

23. Add (a) 8 and 9, (8) 15 and 17, (c) 120 + 215 using BCD representation.
24. Represent the decimal number 8620 (a) in BCD, (b) in excess -3 code, (c) in 2-4 - 2 - 1 code.25. Represent the number (+ 47.5) 10 with normalized integer mantissa of 13 bits and an exponent

of 7 bits:
(a) As a binary number (radix 2);
(8) As a binary ceded octal (radix 8);
(c) As a binary ceded hexadecimal (radix 16).
Show that the mantissa is same in all the three cases (except for left or right zero), but that
the value of exponent changes. Determine the largest positive number that the 20 bit register
can hold in each of th€ three representations. What is the advantage of using radix 8 (or 16)
over radix 2 for floating point numbers in registers. 	 (AMIE, S '96)

ANS%TERS TO REVIEW QUESTIONS SET
1. A standard convention has been formulated to represent signed numbers in computers. The

sign of a number is represented by using an extra bit (0 or 1) at the extreme left of the number.
The symbol 0 as used to represent 'i" sign and '1' to represent '-' sign. These binary bits are
called the sign bits.

16. (a) 1000	 (b) 1001 0101	 (c) 1000 1000	 (d) 0110 1100 1000
17. (a) 8	 (8) 285
18. (a) 0101	 (b) 1000	 (c) 10111000010
19. (a) 1100101100 	 (b) 101110101
20.2, 5, 7

Data Representation
	 49

21. (a) 0100 0101	 (b) 0111 0011 0010
24. (a) 1000 0110 0010 0000

(b) 1011 1001 0101 0011
(c) 1110 1100 0010 0000

25. (a) .1011111 x 2

=0 1 0 1 1 1

Sign bit
(b) (+ 47.5) j = (+ 574) = .574 x 8

Binary coded octal representation	 I
I 00 00 J0 0 t) 00

(c) (+ 47.5)10 = (+ 2F.8) 15 = .2F8 x 162
Binary coded hexadecimal representation.

—0 ILI I ̂ 01 I I	 I

Largest numbers are of the order 261,863 and 1613,

5
BOOLEAN ALGEBRA AND

LOGIC CIRCUITS
5.0. INTRODUCTION
For centuries mathematicians felt that there was a connection between mathematics and
logic circuits but no one before George Boole could find this missing link. In 1854 he
invented symbolic logic known as Boolean algebra. Boolean algebra provides a mathematical
basis which is essential for proper understanding of logic circuits. This chapter deals with
the rules of Boolean algebra and their applications in the design of logic circuits.

5.1. AXIOMS OF BOOLEAN ALGEBRA

For any elements a, 8 and c of the set B on which two binary operations + and . and a
unary operation denoted - or ' ire defined, and 0 and 1 denote two distinct elements of
B. Then

I. Commutative Laws
(a)a+b=b+a	 (b)a.b=b a

2. Distributive Laws
(a) a + (bc) = (a+b) . (a+c) 	 (b) a.(b+c) = (nb) + (ac)

3. Identity Laws
(a)a+0=a	 (b)n.l=a

4. Complement Laws
(n)a+=l	 (h)a.a =0

5.2. BASIC THEOREMS
Let a, b, c be any three elements in a Boolean algebra B. Then

(i) Idempotent Laws
(a)a+a=a	 . (b)a.a=a

(ii) Boundedriess Laws
(a)a+1=l	 (b)a.0=0

(iii) Absorption Laws
(a)a+(a.b)a	 (b)a.(a+b)=a

(iv) Associative Laws
(a)(n+b)+ca+(b+c)	 (b)(a.b).c=a.(b.c)

(v) (Uniqueness of Complement)
Ima+x=1 and a.x=0, then x

(vi) (Involution Law):— an= a
(vii) (a) 0 = 1 and (b) 1 =0	 -
Dc Morgan's Laws: (a) (a+b) = . b

(b) (a . b) = + 8

50

Boo/ean A/gebra and Lngi!" Circuits 5 1

5.3. LOGICAL ADDITION (OR OPERATION)
Eilch variable in Boolean algebra has either of two values: true or false (1 or 0). For
instance, in logic equation, A + B = C. each of the variables A, Band C may have only
the values 0 or 1. We can define the + ve symbol by listing all possible combinations for
A and B and the resulting values of A + B.

Table 5.1 : Truth Table of Logical Addition (OR Operations)

INPUT OUTPUT
A B C=A+B

0 0 0
1 0 1
0 1 1
1 1 1

Table 5.1 is a logical addition table (truth table of logical addition) and could rep
resent binary addition table except for the last entry. The + symbol. therefore, does not
have the normal meaning but is a logical addition and is referred to as OR operation.
The equation A + B = C can be read as A OR B equals C. This concept can be extended
to any number of var iables. To avoid ambiguity, a number of other symbols have been
recommended as replacements for the + sign, for example, U and V.

5.4. LOGICAL MULTIPLICATION (AND OPERATION)
A second important operation in Boolean algebra is logical multiplication and is referred
to as AND operation. The logical multiplication of two variables A and B is expressed
as A.B and is read as A and B. The truth table for logical multiplication of two variables
is shown in Table 5.2.

Table 5.2 : Truth Table of Logical Multiplication (AND Operation)

INPUT OUTPUT
A B C=A . B

0 0 0
1 0 0
0 1 . 0
1 1 1

5.5. COMPLEMENTATION

Boolean algebra uses an operation called complementation and the symbol used for this
is - or ' and this can be defined as 0 = 1 and I = O. Thers A means the complement of
A and read as NOT A. The term or terms overlined are said to be negated and the process
of complementing is called negation.

Table 5.3 : Truth table for logical complementation

INPUT OUTPUT
A B=A
0 1
1 0

5.6. EXAMPLES TO ILLUSTRATE LOGICAL OPERATIONS
Electrical switches are good examples to illustrate OR, AND and many Boolean the(\,."ems.

52
	

Elements of Computer Science

A switch has only two states: either closed or open.

EcWhen the two switches are connected in parallel, the

]
current will flow in the circuit when either switch is
in closed position. The current will not flow at all
when both switches are in open position. If the flow-	 b

ing of current is taken as ON and not flowing as 	 Battery	 Lamp
OFF, and if we assume closed = 1, open = 0, ON = 	 Fig. 5.1: Parallel circuit
I and OFF = 0, then behaviour of two switches con-
nected in parallel can be tabulated as shown in Table 5.4.

Table 5.4 Behaviour of Two Switches in Parallel Circuit

I	 Switch A	 Switch B	 Bulb C

	Open (0)	 Open (0)	 OFF (0)
	Closed (1)	 I	 Open	 (0)	 ON (1)

	

Open	 (0)	 I	 Closed (I)	 ON (1)
	Closed (1)	 Closed (1)	 ON (1)

This is precisely the property described by the
7 truth table for logical addition (OR operation).

Similarly, when two switches connected in
I series as shown in Fig. 5.2, the lamp will light

up when both A and B are csed. Table 5.5

	

Fig. 5.2: Series circuit 	 shows the behaviour of two switches in series
circuit

Table 5.5: Behaviour of Two Switches in Series Circuit

	

Switch A	 Switch B	 Bulb C

	Open	 (0)	 Open (0)	 OFF (0)
	Closed (U	 Open (0)	 OFF (0)
	Open	 (0)	 Closed (1)	 OFF (0)
	Closed (1)	 Closed (I)	 ON (1)

This is precisely the property described by the truth table for logical multiplication
(AND operation).

5.7. LOGIC GATE
A logic gate is simply an electronic circuit that operates on one or more Input signals to
produce an output signal. Gates are digital (two-state) circuits and often called logic cir-
cuits because they can be analyzed with Boolean algebra. For example, the electronic
circuit which performs OR operation is called OR gate, the circuit which performs AND
operation is called AND gate and so on.

5.7.1. OR Gate
The OR gate has two or more inputs but only one output. 	 c = A + it
An input signal applied to gate has only two stable states B -	

ot

either I (high) or 0 (low). In case of a 2 input OR gate Fig. 5.3: Logic symbol for OR gate
the output 1 (high) if at least any one of the inputs isf> figh. The output is 0 if all inputs arc 0. The logic symbol (the

ymbol used to represent a cirruit performing specific function)
or OR gate of two variables is shown in Fig. 5.3.

Fig. 5.4: Symbols for 3 input 	 Logic symbols for OR gates with more than two inputs are
OR gate	 shown in Fig. 5.4.

Booleafl Algebra and Logic Circuits 	 53

5.7.2. AND Gate	 A
AND gate has two or more inputs but only one output I[I)-_---c = A B
In case of a 2-input gate the output is 1 (high) only if B

both inputs are 1 (high), otherwise the output is a (low). Fig. 5.5: Logic symbol for AND

	

Logic symbol for AND gate of two inputs is shown in 	 gate

Fig. 5.5.
Logic symbols for AND gates with two more inputs are shown

in Fig. 5.6.
Suppose A and B are assigned the sequence of bits as A =

Fig. 5.6: Logic symbol 101010, B = 111001. Then OR gate will produce the sequence A +
for 3 input AND gate B = 111011 and AND gate will produce the sequence A.B = 101000.

Both + and . obey the associative law, i.e.,
(A+B)+C = A+(B+C),and
(A.B).0	 = A.(B.C)

This means that one can write A + B + C and A.B.0 without ambiguity; no matter
in what order the operation is performed. The truth table for three input OR gate and
AND gate are shown in Tables 5.6 and 5.7, respectively.

Table 5.6: Truth Table for Three Input OR Gate

INPUT	 OUTPUT

Table 5.7: Truth Table for Three input AND Gate

INPUT	 I OUTPUT

4	 B	 C	 D

0	 0	 0	 0
o	 a	 i	 a
0	 1	 0	 0
o	 i	 i	 o
1	 0	 0	 0
1	 0	 1	 0
o	 1	 0	 0
0	 1	 1	 0
I	 I	 I	 I

5.7.3. NOT Gate
A NOT gate has only one input, and only one output signal. It is also called INVERTER.
Its output is the complement of the input signal. The output is 1 (high) if the input is 0
(lnw. The output is 0 when input is 1. Table 5.8 shows the truth table of NOT gate and
Fig. 5.7 shows logic symbol for a NOT gate.

Table 5.8: Truth Table for NOT Gate

INPUT OUTPUT
A

0	 1
1	 0

A
-->O—

B=A

Fig. 5.7: Logic symbol for NOT
gate

54
	

Elements of Computer Science

5.7.4. NOR and NAND (ate
Boolean algebra has two binary operators called AND and OR, and a unary operator
NOT. Other binary operators can be defined in terms of them. The NOR function is
the complement of OR function and its name is an abbreviation of not OR and uses
an OR symbol followed by a small circle. Similarly, NAND is the complement of AND
and is an abbreviation of not - ANt), and indicated by a symbol which consists of
an AND symbol followed by a small circle. Table 5.9 shows the truth table for NOR
gate. It shows that for every combination of the input signals, the output of the NOR
gate is the complement of the output of the OR gate.

Table 5.9: Truth Table for NOR Gate

INPUT	 OUfliJF

OR	 NOR
A	 B	 X = A + B

o	 o	 0	 1
o	 i	 1	 0
1	 0	 1	 0
1	 1	 1	 0

The circuit shown in Fig. 5.8 is a combination of OR gate followed by an inverter
The output f the OR gate is A + B and the output of the combination, that is, the NOR
gate, is A + B.

A —::I:>Y = A +

(a) Logic diagram of NOR function	 (b) Logic symbol for NOR gate

Fig. 5.8
Table 5.10 shows the truth table for NAND gate. It shows that for every combination

of the input signals, the output of the NAND gate is the complement of the output of
AND.

Table 5.10: Truth table for NAND gate

INPUT	 oI.TrN.rr

AND	 NAND
A	 B	 X=A.B

o	 0	 0	 1
o	 i	 0	 1
1	 0	 0	 1
1	 1	 1	 0

Figure 5.9 shows the logic diagram of NOR function and logic symbol for NOR gate.

Y =A ® B ®C ®D

Boolean Algebra and Logic Circuits. 	 55

AEBY
	

B -E:::Y ^ '^i B

	

(a) Logic diagram of NAND function
	 (b) Logic symbol for NAND gate

Fig. 5.9
5.7.5. Exclusive-OR (XOR) Gate
An OR gate recognises words with one or more l's. The EXCLUSIVE-OR gate is different;
it recognises only words that have an odd numbers of is. Table 5.11 is the truth table for
a 2-input XOR gate which shows the input-output relationship.

Table 5.11: Truth Table for 2-input XOR Gate

	

INPUT	 OUTPUT

A	 B	 C=B+A
o	 o	 0
o	 i	 i
1	 0	 1
1	 1	 0

In Boolean algebra, the sign stands for XOR operation
C =A.B+A.B=AXORB

C =AEI)B

A logic circuit of XOR operation is shown in Fig. 5.10.

= A.B + Ai BhjjI
(a) Two-input XOR gate

	

	 (b) Symbol for two-input XOR gate

Fig 5.10

One can see from Table 5.11 that the output is 1 only with an odd number of binary
I inputs, with an even number of binary 1 inputs the output is 0. An XOR gate, irrespec-
tive of the number of inputs, recognises only those words which have an odd number
of binary is. defective

Now consider a 4 input XOR gate which can be implemented by using three XOR
gates as shown in Fig. 5.11.

Fig. 5.11: Four-input XOR gate

56
	

Elements of Computer Science

Table 5.12: Truth Table for 4-input XOR Gate

INPUT
	

OUTPUT
A
	

B
	

D

0
	

0
	

0
	

0
	

0
0
	 0
	

0
	 1
	

I
0
	 0
	

1
	 0
	 I

0
	 0
	

I
	 I	 0

0
	

I
	 0
	

0
	

I
0
	 I
	

0
	

1
	 0

0
	

I
	 I
	

0
	 0

0
	 I
	 I

I
	 0
	

0
	

0
I
	 0
	

0
	

I
	

0
0
	

I
	 0
	 0

0
	 I	 1

I	 0
	 0
	 0

I	 I
	 0
	

I
1
	 I	 I
	 0

I
	 I	 I
	 0

We notice again from Table 5.12 that the output is 1 only with an odd number of
binary 1 inputs and is 0 only with even number of 1 inputs. This property of XOR gate
is used to check the parity (even or odd) of any word.

5.7.6. EXCLUSIVE-NOR (XNOR) Gate
XNOR gate is equivalent to an Exclusive OR gate followed by an inverter. The truth
table for XNOR gate is given in Table 5.13. The output is 1 only when both inputs
are either 0 or 1.

Table 5.13: Truth Table for 2-input XNOR Gate

INPUT	 OUTPUT
A	 B - Y=AB+AB

o	 o	 I
o	 i	 o
1	 0	 0
I	 I	 1	 I

XNOR operation can be written as follows:

Y
= A XNOR B
= AB
= AOB

The logic diagram and logic symbol is shown in Fig. 5.12.

:iI--t- "DD-
(a) XNOR gate	 (b) Symbol for Xt'JOR gate

Fig. 5.12

x.Y

Y) (X + Y)

(b)

(c)

Fig. 5.13: Three gating networks

Boolean Algebra and Logic Circuits 	 57

5.8. INTERCONNECTING GATES
The gates can be interconnected to form gating or logic networks. The Boolean algebra
expression corresponding to a given gating network can be derived by systematically
progressing from input to output on the gates. Figure 5.13 shows a gating network with
three inputs X, Y, and Z, and
an output expression.	 X

5.9. BOOLEAN FUNCTIONS
A digital computer operates on :

	

XY) +

electrical signals which have
only two states: high (1) and
low (0). A signal that does not 	 (a).
change its state in time is
called a constant signal and a
signal which changes in time is
known as a variable signal.
The variables which have only
two values 1 and 0 are called
Boolean variables. AND, OR
and NOT are basic operations
performed on Boolean vari-
ables. As in ordinary algebra,
we have the concept of a func-
tion of Boolean variables or an
expression containing Boolean
variable. For example, con-
sider the equation X = A.B +
C(D + E). Here the variable X
is a function of A, B. C, D and
E. This is written as X = f(A, B,
C, D, E), A, B, C, D and E are
Boolean variables. The right
hand side of the above equa-
tion is known as Boolean ex-
pression. Each occurrence of a
variable or its complement in
an expression is called literal.

5.10. SIMPLIFICATION OF BOOLEAN EXPRESSIONS
(ALGEBRAIC SIMPLIFICATION)

A Boolean expression can be reduced in the simplest form by using Boolean algebraic
laws. For a given Boolean expression, the minimization of a number of literals and the
number of terms will represent the simplest form of logic circuitry. Since each logic op-
erator represents a logic hardware, minimization of Boolean, expression means minimi-
zation in cost.

Example 5.1. Simply the following Boolean functions:
I. XYZfXYZ+XY
2. XY+XZ+YZ
3. Z(Y + Z) (X + Y + Z)
4. (X+Y+Z)(X+Y+Z)

58	 Elements of Computer Science

Solution.
I. XYZ+_XYZ+XY_

= XZ (Y +Y) + XT
-	 xY

2. XY+XZ+YZ	 -
= XY + XZ + YZ (X +X)
= xY + xz + xYz + xYz
=XY(1+Z)+XZ(1+Y)
= xY + xz

3. Z (Y + Z) (X + Y + Z)
= (ZY + ZZ) (X + Y + Z)
= (ZY + Z) (X + Y + Z)
= Z (Y + 1) (X + Y + Z)
=Z(X+Y+Z)
= zx + zy + zz
= zx + zy + z
= Z (X + Y + 1)

4. (X+Y+Z)(X+V+Z)
= xx + XT + xz +_yx +7 7 + Yz+ zx_+_z ' +7z
= X+XY+XZ + YX+Y+YZ+ZX+ZY+O
=X(1+Y+Z+Y+Z)+Y(1+Z+z)
= x.1 +_Y.1
=x+Y

5.11. SUM OF PRODUCTS FORMS OF BOOLEAN EXPRESSIONS
A Boolean expression E is said to be in a sum of products form if E is a sum of two or
more fundamental products of variables none of which is included in another. The vari-
ables may or may not be complemented. The following are examples of sum of products
expression:

(a) XZ + XY Z+ XYZ
(b) X+XY+YZ
(c) AB+CD	 -
(d) ABC +ABC+AC+ABC
Sometimes a product term may consist of a single variable. Each expression consists

of two or more AND (product) terms that are ORed together.

5.12. PRODUCE OF SUMS FORMS OF BOOLEAN EXPRESSIONS
A Boolean expression E is said to be in a product of sums form if E consists of several
sum terms logically multiplied. The variables may or may not be complemented. The
following are examples of product of sums expression:

(a) (X+Y)(X+Y)
(b) (A + B) (C + D) -	 - -
(c) (A+B+C)(A+B+C)(A+B+C)
Each expression consists of two or more OR (sum) terms that are ANDed together.

Boolean Algebra and Logic Circuits 	 59

5.13. CANONICAL AND STANDARD FORMS
When each term of a Boolean expression contains all variables in normal or complemented
form it is said to be in the canonical form. When a sum of products form of Boolean
expression is in canonical form, each product term is called a minterm. When a product

of sums form of Boolean expression is in canonical form, each sum term is called a

niaxterin. The canomal form of a sum of products expression is also called iruriterm ca-

nonical form or standard sum of products and the canonical form of a product of sums
expression is also called maxterm canonical form or standard product of sums.

In case of n variables, the maximum possible number of minterms and maxterms
are 2". The 2 different terms may be obtained by a method similar to one shown in Table
5.14.

Table 5.14

X	 Y	 Z	 -	 Minlerms -	 Maxterms

o	 0	 0	 X	 Y	 Z	 X + Y + Z

o	 0	 1	 X	 Y	 Z	 X + Y + Z -

o	 1	 o	 x

o	 1	 i	 z	 x+V+

1	 0	 0	 X	 7	 Z	 X+Y+Z

1	 0	 1	 X	 Y	 Z	 X + Y + Z

1	 1	 0	 X	 Y	 Z	 X+Z

1	 1	 1	 X	 Y	 Z	 X+Y+Z

Each miriterm is obtained from an AND term of n variØles, with each variable being
complemented if the corresponding bit of the binary number is 0 and normal if 1, and
each maxterm is obtained from an OR term of n variables with each variable being normal

if the corresponding bit is 0 and complemented if 1.
The following are the examples of the canonical sum of products Boolean expression:

(i) XY+XY+XY
(ii) XYZ4XYZ+XYZ+XYZ
The examples of canonical product of sums are:

(1) (X+Y)(X+Y)(X+Y)
(ii) (X+Y+Z)(X+Y+Z)(X+Y+z)(X+Z)

5.14. BOOLEAN FUNCTIONS AND TRUTH TABLES
A table which lists the value of the dependent variable for each set of values of the
independent variables is known as a truth table. The steps of obtaining truth table from
a given Boolean function are given below:

1. Fom a table with one column for each of the independent variables and one
column (preferably last column) for the dependent variable.

2. If there are n independent variables, start taking Os as values of all independent
variables and form successive rows using the natural binary counting sequence
till the count become (2" - 1).

3. Evaluate the value of the dependent variable by substituting the value of
the independent variable and enter the evaluated value in the appropriate
row.

The truth table of Boolean function F (A, B, C) = A + BC is shown in Table 5.15.

60	 Elements of Computer Science

Table 5.15 Truth Table of F(A, B, C) = A + BC

A	 B	 C	 A+BC
o	 0	 0	 0
o	 o	 1	 0
o	 1	 0	 0
o	 1	 1	 1
1	 0	 0	 1
1	 0	 1	 1
1	 1	 0	 1
1	 1	 1	 1

5.15. BOOLEAN EXPRESSION FROM TRUTH TABLE

The Boolean expression from a given truth table can be obtained either in sum of products
form or product of sums form. The steps described below can be applied to obtain the
sum of products form of Boolean expression:

I. Inspect the column corresponding to dependent variable from the top row and
pick the row with a 1 entry.

2. A term in the Boolean expression corresponding to this row is obtained by
'AND'ing all the independent variables in the truth table.

3. Repeat steps I and 2 till all the entries in the dependent variable column is
completed. Obtain an Boolean expression by 'OR'ing the terms corresponding
to the 1 entries of dependent variable.

The method for obtaining the product of sums form of Boolean expression is similar to
the one given above, instead of picking the rows of I entry in dependent variable, the
rows of 0 entry are to be picked up. The individual term is formed by taking the sum
of the independent variables. The expression is obtained by ANDing the individual terms.

We shall now consider the truth table given in Table 5.16 and find out the corres-
ponding Boolean expression in sum-of-products and product of sums forms.

Table 5.16

Inputs	 Ouput	 Product	 Sum
Terms	 Terms

ABC

o 0 0

o o i	 i
o 1 0	 1	 B. _E

o 1 1	 0	 A+B+C

1 0 0	 1	 A.B.0

1 0 1	 1	 A

1 1 0	 0

I 1 1	 0	 A + B + C

The sum-of-products expression will be as follows:

F = A.B.C+A.B.C+A.B.C+A.B.C+ABC
= A.B(C+C)+A.B(C+C)-.A.B.0
= A.B+A.II+A.B.0 = B+A.B.0 = B+A.0

X

z
F2

Boolean Algebra and Logic Circuits	 61

The product-of-sums expression will be as follows:

F = (A+B+C)(A+B+C)(A+B+C) = (A+B+C)(A+B)

B(A+A)+B(l +C)i-A.0 = B+A.0
This expression happens to be the same as for the sum-of-products solution.

5.16. IMPLEMENTING LOGIC EXPRESSION WITH LOGIC GATES
A Boolean function may be transformed from an algebraic expression into a logic diagram
composed of AND, OR and NOT gates. The logic diagram include an inverter circuit for
every variable present in its complement form. An AND - OR gates can be realised by
using NAND gates and OR-AND gates by NOR gates. To find simpler circuits, one must
know how to manipulate, to obtain equal and simple expression.

(a) Logic Expression in Sum of Products Form
Take two simple logic expressions: 	 A	 A B
(i) F1=AB+CD
(ii) F2=XYZ+XYZ^YY'	

B

B+CD
Expression (i) will require two AND

gates and one OR gate and (ii) will require
three AND gates and one OR gate. Figs. C
5.14 and 5.15 show the implementation of I)
the logic expression with logic gates.

(b) Logical Expression in Product of	 Fig. 5.14 : Implementation of Fi AB + CD
with AND - OR network

Sums Form

Fig. 5.15
Take an example.	 -

= (A + B)-(C + D)
The expression will require two OR gates and one AND gate. Fig. 5.16 shows the

implementation of the given expression using OR-AND network.

F1

Fig, 5.16: Implementation of Fi = (A + B) . (C + D) with OR-AND network

D0 = I

= iyz

D3 =Xy z

D4 = x

= x Z

= x yi

D7 = x y z

62
	 Elements of Computer Science

517. DECODER
A decoder is a combinational circuit that converts binary information from n input lines
to a maximum 2" unique output lines. The primary application of a decoder is that of
addressing, where the n-bit input X is interpreted as an address used to select one of 2"
output lines. The decoders are called it to in lines decoders when m :5 2". Another name
for it is a 1-of-m decoder because only 1 of in output lines has a high voltage. As an
example, consider 3- to -8 lines decoder circuit of Fig. 5.17.

Fig. 5.17 A 3 - to - 8 line decoder

The three inputs are decoded into eight outputs. This is a binary to octal decoder,
a circuit that converts from binary to octal. The truth table of the circuit is given in
Table 5.17. Note that output variables are mutually exclusive because only one output
can be equal to 1 at any time.

10

1

12
13

Output

Boolean Algebra and Logic Circuits 	 63

Table 5.17: Truth Table of a 3-to-8 Line Decoder

Input	 Output

X y z D0 D D 1)3 D4 1)5 D6 D7
o	 0	 0	 1	 0	 0	 0	 0	 0	 0	 0
o	 o	 1	 0	 1	 0	 0	 0	 0	 0	 0
o	 i	 o	 0	 0	 1	 0	 0	 0	 0	 0
o	 i	 i	 o	 0	 0	 1	 0	 0	 0	 0
1	 0	 ii	 0	 0	 0	 0	 1	 0	 0	 0
1	 0	 1	 0	 0	 0	 0	 0	 1	 0	 0
1	 1	 0	 0	 0	 0	 0	 0	 0	 1	 0
1	 1	 1 1 0	 0	 0	 0	 0	 0	 0	 1

5.18. ENCODER
An encoder does the reverse operation of a decoder, that is, it gets one of the active input
signal and converts it into the coded output signal. An encoder has 2" (or less) input
lines and n output lines. An example of an encoder is shown in Fig. 5.18. The octal-to-
binary encoder consists of eight inputs, one for each of the eight digits and three outputs
that generate the corresponding binary number.

Do
1)	

x=D4+D5+D6+D7

y =D2 + D3 + D6 +1)7

Ds

z=D1+D3+D5+D7

Fig. 5.18: Octal-to-binary encoder
Note that D0 is not connected to any OR gate; the binary output must be all Os in

this case.

5.19. MULTIPLEXER
Multiplexer means many - to - one. A multiplexer is a circuit with many inputs but only
one output. The selection of a particular input line is controlled by a set of control signal
lines. Normally, there are 2" input lines and n control lines whose bit combinations de-
termine which input is selected. A multiplexer is also called a data selector, since it selects
one of many input and steers the binary information to the output line. A multiplexer is
often abbreviated as MUX.

Fig. 5.19: 4 x multiplexer

64	 Elements of Computer Science

Consider a multiplexer which has 4 input lines, 2 control lines and one output line.
Using the two control signals one must be able to select and transmit any one of the
input lines to the output line.

For example, when CO 0 and C 1 = 0, one may want the input 10 to be transmitted
to the output. If C0 = 1 and C1 = 0, the 11 value must be transmitted to the output.
Similarly, other expected possibilities are shown in Table 5.18.

Table 5.18

C1	 CO	 Expected output
o	 0

o	 1	 Ij

1	 0	 12

1	 1	 13

It is routine to verify that the circuit shown in Fig. 5.20 works as a 4 x 1 multiplexer
explained above.

Co

13

Output

Fig. 510:4 X I multiplexer
Demultiplexers do the reverse work of multiplexers, that is, demultiplexers have one

input line, several output lines and some control lines. Using the control lines, the input
data are transmitted to the desired output line. The circuit diagram for a 1 x 4 demulti-
plexer is shown in Fig. 520.

From Fig. 5.21, it is easy to notice that the input is transmitted to Do when CO = 0,
C 1 = 0. When C 1 = 0 and CO = 1, the input is transmitted to D 1 . Similarly, the transmission
for various other control signals is shown in Table 5.19.

Table 5.19

IDemultiplexer
C1	 CO	 Output
0	 0	 DoI	 0	 1
i	 0	 02

L	 1	 0

A

Boolean Algebra and Logic Circuits	 65

5.20. ARITHMETIC CIRCUITS 	 4'
A computer's circuits can respond only to binary numbers. Arithmetic operations, such

C, as addition, subtraction, multiplica-
tion, division, etc., are performed in
the binary form in a digital computer.
Logic circuits of some basic arithme-

D0 tic operations are discussed in the fol-
Input	 {IIiuI}- lowing sections.

D1	

50.1. Half Adder
A half adder is a logic circuit that
adds 2 bits. Table 5.20 shows the ad-
dition of two bits. Columns 1 and 2
of the table give the values of two in-

0 2 	 put bits, column 3 gives the sum of
these two bits and column 4, the

0, carry bit. This table is called a half
adder truth table. Even though the
inputs and outputs are binary num-
bers, they may be taken as depicting

Fig. 521	 truth values of 0 and I for develop-
ing the Boolean expressions for C and S. By inspection of table, we obtain

S = A.B+A.B= A ED B

C=A.B

Table 5.20: A Half Adder Truth Table

IINPUT	 OUTPUT
B	 S	 C

(SUM)	 (CARRY)
0	 0	 0
1	 1	 0
0	 1	 0
1	 0

A logic circuit which uses logic gates to implement the half adder is shown in Fig. 5.22.

Fig. 5.22: A logic circuit realising half adder
It can also be seen from Table 5.20 that the sum of two binary digits can be repre-

sented by the output of an XOR gate and the carry output can be represented by the
output of an AND gate, i.e., if the same two inputs are applied to XOR and AND gates,
the output of XOR gate will represent the sum and the AND will represent the carry.

C.. I

66
	

Elements of Computer Science

Logic circuits using XOR gate and block diagram of half adders are shown in Figs.
5.23 and 5.24, respectively.

SUM =A®B

IIi CARRY = A.B

Fig. 5.23: Logic circuit for half adder using
XOR gate

:	

SUM

Fig. 5.24: Block diagram of half adder

5201. Full Adder

When adding two binary numbers, we may have a carry from one column to the next.
The carry coming out from one column is to be added to the next column. A half adder
cannot add 3 bits as it has only 2 input terminals.

A B C.

Fig. 5.25: Logic circuit for full adder

A.

B,,

C,,

JM

ARRY

CEW

Boolean Algebra and Logic Circuits 	 67

A full adder is a logic circuit that can add 3 bits at a time. Again, there are two
outputs: sum and carry. Table 5.21 gives the full adder truth table.

Table 5.21. Full Adder Truth Table

!NPIJtS	 OUTPUT
A,,	 B,,	 C,,	 S.	 C,,,

(CARRY IN)	 (SLIM) (CARRY GIlT)
o	 o	 0	 0	 0
o	 a	 1	 1	 0
o	 1	 0	 1	 0
o	 1	 1	 0	 1
1	 0	 0	 1	 0
1	 0	 1	 0	 1
1	 1	 0	 0	 1
1	 I	 1	 1	 1

The Boolean expression for S,, and C,,, 1 are obtained by looking at the Is in the S. and
C,, columns, respectively and writing the Boolean terms corresponding to them. SUM is
1 when the number of input is odd, CARRY is I when two or more inputs are Is.

S. =A,.B,.C,,+A,,.B,.C,+A,,.B,,.C,,+A,,.B,,.C,,

= A,(B,, C,+B,,C,,)+A,,(B,,C,,+B,,C,,)

= AB,,®C)+A,,(B,,C,,)

= A,,eB,,eC,,

C,,, 1	= A,,.B,,. C,,+A,,.B,,. C,,+A,,.B,,.C,,+A,,.B,,. C,

=

	

+A,,.B,.C,,+A,.B,,. C,,	 [Using Rule 5(a))
= B,,.C,,(A,,+A,,)+A,, . C,(B,,+B,,)+A,,.B,,(C,,+C,,)

	

= B,,. C,+A,,. C,+A,,. B.	 [Using Rule 4 (a)]
The logic circuit for the full adder is shown in Fig. 525. Also, a full adder using

3 input XOR gate and a block diagram of a full adder are shown in Figs. 5.26 and 5.27,
respectively.

Fig. 5.16: A full adder using 3 input XOR gate

68	 Elements of computer Science

sum

Bl.C.

Fig. 5.27: Block diagram of a full adder

5.20.3. Circuit Diagram of a Full Adder using Two Half Adders and OR Gate
(AMIE, W '95)

By connecting two half adders and an OR gate, we get a full adder. Figure 5.28 shows
a full adder using two half adders.

FULL ADDER

CARRYA.

HALF

	

	 CARRY
ADDER

BiSUMARRIiT

HALF
ADDER

SUM	 SUM
C H .-

s,,

Fig. 518 : A full adder realized from two half adders
For instance, suppose A = 1, B = 1, and C = 0. Figure 5.29 (a) shows the full adder

with these inputs. The first half adder (HA) has a sum of 0 with a carry of 1. The second
half adder has a sum of 0 with a carry of 0. Therefore, the final output is a sum of 0
with a carry of 1.

If the inputs are A = 1, B = 1, and C = 1, Fig. 5.29 (b) shows the full adder with
these inputs. The final output is a sum of 1 with a carry of 1.

1ErH2AL_1 1JLE-
(a)	 (b)

Fig. 5.29: Examples of working a full adder
510.4. Half Subtractor
The subtraction of two binary numbers may be accomplished by taking the complement
of the subtrahend and adding it to the minuend. By this method, the subtraction operation
becomes an addition operation.

A half-subtractor is a combinational circuit that subtracts two bits and produces their
difference. The truth table for the input-output relationships for a half-subtractor have
been summarized in Table 5.22. The difference output, D, resembles with XOR function
and borrow (B,, 1) are derived directly from the truth table.

DIFFERENCE = A ® B

BORROW = A. B

ii:iiLIII-'
DIFFERENCE

BORROW

	

Boolean Algebra and Lvgic Circuits 	 69

Table 5.22
INPUT	 OUTPUT

A	 B	 On	 B,,1
(MINUEND) (SUBTRAHEND) (DIFFERENCE)	 (BORROW)

o	 0	 0	 0
o	 1	 1	 1
1	 0	 1	 0
1	 1	 0	 0

0,,	 =AB+BA=AB

B,, 1 = AB
The logic circuit and block diagram for half subtractor are shown in Figs. 5.30 (a)

and (b), respectively.

	(a) Logic circuit of half subtractor 	 (b) Block diagram of half suhtractor
Fig. 5.30

5.20.5. Full Subtractor
A half subtractor handles onl y 2 bits at a time and can be used for the least significant
column of a subtraction problem. A full subtractor is a combinational circuit that performs
a subtraction between two bits, taking into account that a may have been borrowed by
a lower significant stage. This circuit has three inputs and two outputs. The truL'- table
for the circuit is shown in Table 5.23.

Table 5.23 A Full Subtractor Truth Table

INPUT	 OUTPUT
A	 B	 C,	 Dn 	 C,,1

(BORROW IN)	 (DIFFERENCE)	 (BORROW OUT)

0	 0	 0	 0	 0
0	 0	 1	 1	 1
0	 1	 0	 1	 1
0	 1	 1	 0	 1
1	 0	 0	 1	 0
1	 0	 1	 0	 0
1	 1	 0	 0	 0
l	 1	 1	 1	 1

The simplified Boolean function for two outputs of the full subtractor is
D,,	 =A,B,C,+A,,B,,C,,+A,,B,C,+A,B,C,,=A.,B,,C,

C 1 —A,B,+A,C,+B,C,
By connecting two half-subtractors and an OR gate, we get a full subtractor. Figures

5.31 and 5.32 show a full subtractor realised from two half-subtractors and a block dia-
gram.

70
	

Elements of Computer Science

FULL SUBTRACTOR

BORROW

HALF
SUBTRACTOR

DIFFERENCE i

BORROW
HALF

SUBTRACTOR

C.
	 BORROW
	 DIFFERENCE

Fig. 5.31: A full subtractor

	

BORROW IN	 10	 DIFFERENCE

	

A	 10
Subtractor

	

B	 01	 BORROW OUT

Fig. 5.32: Block diagram for full subtractor

5.20.6. Binary Adder
A binary adder is a logic circuit that can add two binary numbers. The addition of two

binary numbers each of K bits can be accomplished using one half adder (HA) and K-I
full adders (FM). The right most block represents a half adder. Each of the full adders
has three inputs and two outputs. The carry output of each adder goes to the carry input
of the next adder to the left. Consider, for example, K = 4, and two binary numbers to
be added A 3 A 2 A 1 A0 and B 3 B2 B 1 B0 . The answer is

A 3 A 2 A 1 A0

+ B. B 2 B 1 B0

C4 S 3 52 S 1 S5

Figure 5.33 shows a parallel 4 bit binary adder.

	

A3	 B3	 A2 B2	 A1	 B 1	 A0 B0

FA
C	

F1Aj

Fig. 5.33: Parallel 4 bit binary adder

Suppose A = 1100 and B = 1011. The half adder produces a sum of 1 and carry of
0, the first full adder produces a sum of I and a carry of 0, the second full adder produces
a sum of 1 and a carry of 0, and the third full alder produces a sum of 0 and a carry
of 1 The overall output is 10111.

Boolean Algebra and Logic Circuits
	

71

1	 1	 1	 0	 0	 1	 0	 1

0

	

	 1	 1	 1
Fig. 5.34: Adding 12 and 11 to get 23

A four bit binary adder can also he built by combining four full adders (Fig. 5.35),
the first full adder acts as a half adder as its carry input is held at logic 0 level.

A 3 B3	 A2 B 2 	 A1 B	 A0 130

S 3	 S2	 S1	 S0

Fig. 5.35: Four-bit parallel adder using four full adders
5.20.7. Binary Subtractor
A subtraction of one k-bit binary number B from the other k-bit binary number A can be
performed using one half -subtractor (HS) and k - I full subtractors (FSs). Let, for example,
k4,AA3 A 2 A 1 A0 and B=B,, B 2 B 1 B 0. The answerA — Bcan be written as

A3 i1 2 Al A0
-- B, 13,	 13 1 	 B0

D3 D, D1 D0

A four bit parallel subtractor, using a half-subtractor and three full subtractors, is
shown in Fig. 5.36.

MiNUEND SUBTRAHEND

A3	 83	 A2	 B2 	 A1	 B 1 	 A0	 B

D 2	D,	 D0

Fig. 5.36: Parallel 4-bit binary subtractor

SUM = DIFFERENCE = A® B

ARRY = A.B when INVERT = 0

30RROW = A.B when INVERT =

ADD =OINVERT LSUB 1

CO ADD/SUB
Control

72	 Elements of Computer Science

Controlled inverter	 A
In two input XOR gate, one of its input labelled as IN- 	 C
VERT be held low, output is the same as the other input INVERT
(A, say), i.e., A passes to the output unchanged. When 	 Fig. 5.37
INVERT be held high, output is the complement of A.

5.20.8. Half Adder/Subtractor
Since the sum and difference outputs of an adder/ subtractor can both be derived from
XOR gate, a single logic circuit, which is used for addition as well as subtraction, can be
developed by making use of XOR gate and INVERT function.

Fig. 5.38: Half adder/substractor
5.20.9. 2's Complement Adder/Subtractor (AMIE, S '93)

A 2's complement adder/subtractor is a logic circuit that can add or subtract binary
numbers. Fig. 5.39 shows a logic circuit for 2's complement adder/ sul.ractor.

S3 S,	 Si	 So

Fig. 5.39: A four-bit adder /subtractor with 2's complement ADD/SUB control

Addition
1A/hen INVERT is low (0) the B bits pass through the inverter withut any change. There-
fore, the full adder (FA) produces the sum

S = A + B.

Subtraction
When INVERT is high (1) the controlled inverter produces the l's complement of B.
Furthermore, the high INVERT adds 1 (CO = 1) to the first full adder. This addition of 1
to the l's complement of B forms the 2's complement of B.

Boolean Algebra and Logic Circuits
	 73

The output of the full adders is
S = A + B'

which is equivalent to S = A - B.

REVIEW QUESTIONS SET

1. Explain AND and OR operations with suitable examples of logic statements and electrical
switches.

2. Explain Boolean variables and Boolean functions.
3. Show that the exclusive OR function

x =AeBCE3D
is an odd function. 	 (AMIE,. S'96)

4. What is a truth table? What are truth tables of the following functions

(a)A+BC	 (li)AB+AB (c)A.B+B+C

5. Simplify the following Boolean expressions
(a)XY+XY	 (b)(X+Y)(X+Y)

(c)XYZ+XY+XYZ	 (d)ZX+ZXY

(e) A (A + B) (A + AB)	 (J)A(A+B) (AB +B)

(g)A (AB +B)	 (h)ABC+ ABC +ABC+ABC

6. What is a half adder? Write truth table for a half adder and develop its logic circuit
7. What is a full adder? How is a full adder built using half adders?
S. What is a NOR gate, a NAND gate? Under what input conditions is the output of a NOR

gate equal to 1? For what input conditions is the NAND gate output equal to 0?
9. Develop the expressions of the sum and carry for adding two 2 bit numbers. 	 (AMIE. W '95)

10. Give the schematic diagram of a binary 2's complement adder/subtractor. Briefly explain the
operation of the circuit.

11. What do you mean by block diagram? Draw the block diagram of serial adder and illustrate
the function with two 15-bit operands. 	 (AMIE, W '94)

12. Discuss decoder and multiplexer with suitable examples. 	 (AMIE, W'94)
13. What are (a) sum of products form, and (b) product of sums form of logic expressions. Explain

with suitable examples.
14. What is canonical form of logic expressions? Explain minterms and maxterms.
15. Explain the functions of encoder and decoder.

ANSWERS TO REVIEW QUESTIONS SET
4. Given only last column

(a) (1,1,1,0,1,1,1,1)	 (Li) (1,0,0,1)
(c) (0, 1, 1, 1, 0, 1, 1, 1)

5. (a)X (b)X (c)Y (d)Z(X+Y) (e)A(J)AB (g)Alf (h)B.

