CHAPTER

Two-Dimensional
g _Geometric Transformations

2

\ - Position
PN .
¢ . ;’ \
e '
a [l

183

184

W ith the procedures for displaying output primitives and their attributes,
we can create a variety of pictures and graphs. In many applications,

there is also a need for altering or manipulating displays. Design applications
and facility layouts are created by arranging the orientations and sizes of the
component parts of the scene. And animations are produced by moving the
“camera” or the objects in a scene along animation paths. Changes in orientation,
size, and shape are accomplished with geometric transformations that alter the
coordinate descriptions of objects. The basic geometric transformations are trans-
lation, rotation, and scaling. Other transformations that are often applied to ob-
jects include reflection and shear. We first discuss methods for performing geo-
metric transformations and then consider how transformation functions can be
incorporated into graphics packages.

5-1
BASIC TRANSFORMATIONS

Here, we first discuss general procedures for applying translation, rotation, and
scaling parameters to reposition and resize two-dimensional objects. Then, in
Section 5-2, we consider how transformation equations can be expressed in a
more convenient matrix formulation that allows efficient combination of object
transformations.

Translation

A translation is applied to an object by repositioning it aiong a straight-line path
from one coordinate location to another. We translate a two-dimensional point by
adding translation distances, {, and t,, to the original coordinate position (x, y) to
move the point to a new position (x', v*) (Fig. 5-1).

X'=x+t, V=Yt (51}

The translation distance pair (t,, t.) is called a translation vector or shift vector.

We can express the translation equations 5-1 as a single matrix equation by
using column vectors fo represent coordinate positions and the translation vec-
tor:

P=[x’} P’=[I],}, T=[t’} (5-2)
X X5 t,

This allows us to write the two-dimensional translation equations in the matrix
form:

PP=P+T (5-3)

Sometimes matrix-transformation equations are expressed in terms of coordinate
row vectors instead of column vectors. In this case, we would write the matrix
representations as P = [x y} and T = [l, t,). Since the column-vector representa-
tion for a point is standard mathematical notation, and since many graphics
packages, for example, GKS and PHIGS, also use the column-vector representa-
tion, we will follow this convention.

Translation is a rigid-body transformation that moves objects without defor-
mation. That is, every point on the object is translated by the same amount. A
straight line segment is translated by applying the transformation equation 5-3 to
each of the line endpoints and redrawing the line between the new endpoint po-
sitions. Polygons are translated by adding the translation vector to the coordinate
position of each vertex and regenerating the polygon using the new set of vertex
coordinates and the current attribute settings. Figure 5-2 illustrates the applica-
tion of a specified translation vector to move an object from one position to an-
other.

Similar methods are used to translate curved objects. To change the position
of a circle or ellipse, we translate the center coordinates and redraw the figure in
the new location. We translate other curves (for example, splines) by displacing
the coordinate positions defining the objects, then we reconstruct the curve paths
using the translated coordinate points.

Figure 5-2
7 {—; Moviqg a polygc?n from positio‘n (a)
5 10 15 20 to position (b) with the translation
ib) vector (-5.50, 3.75).

e

Figure 5-1
Translating a point from

position P to'position P’ with

translation vector T.

o

P
.__—__‘_—.
x!
Figure 5-3
Rotation of an object through

angle 6 about the pivot point
(x5 Y7

Figure 5-4

Rotation of a point from
position (x, y) to position
{x’, y) through an angle 6
relative to the coordinate
origin. The original angular
displacement of the point
from the x axis is ¢.

186

Rotation

A two-dimensional rotation is applied to an object by repositioning it along a cir-
cular path in the xy plane. To generate a rotation, we specify a rotation angle 6
and the position (x,, y,) of the rotation point (or pivot point) about which the ob-
ject is to be rotated (Fig. 5-3). Positive values for the rotation angle define coun-
terclockwise rotations about the pivot point, as in Fig. 5-3, and negative values
rotate objects in the clockwise direction. This transformation can also be de-
scribed as a rotation about a rotation axis that is perpendicular to the xy plane
and passes through the pivot point.

We first determine the transformation equations for rotation of a point posi-
tion P when the pivot point is at the coordinate origin. The angular and coordi-
nate relationships of the original and transformed point positions are shown in
Fig. 5-4. In this figure, r is the constant distance of the point from the origin, angle
¢ is the original angular position of the point from the horizontal, and 6 is the ro-
tation angle. Using standard trigonometric identities, we can express the trans-
formed coordinates in terms of angles # and ¢ as

x'=rcos{¢p+ 60)=rcosdcos §~rsin¢gsind

(5-4)
y'=rsin{¢ + 6 =rcos$siné + rsin ¢ cos 9
The original coordinates of the point in polar coordinates are
X = rCos @, y=rsin ¢ (5-5)

Substituting expressions 5-5 into 5-4, we obtain the transformation equations for
rotating a point at position (x, y} through an angle 8 about the origin:
x'=xcosf—ysing
¥y =xsin@+ycosd (5-0)

With the column-vector representations 5-2 for coordinate positions, we can write
the rotation equations in the matrix form:

where the rotation matrix is

5-8

| cos @ —sin@
"1 sing cos 6

When coordinate positions are represented as row vectors instead of col-
umn vectors, the matrix product in rotation equation 5-7 is transposed so that the
transformed row coordinate vector [x’ '] is calculated as

P'T=(R-P)
—_ PT . RT

where PT = |1 y], and the transpose R’ of matrix R is obtained by interchanging
rows and columns. For a rotation matrix, the transpose is obtained by simply
changing the sign of the sine terms.

Rotation of a point about an arbitrary pivot position is iltustrated in Fig. 5-5.
Using the trigonometric relationships in this figure, we can generalize Eqs. 5-6 to
obtain the transformation equations for rotation of a point about any specified ro-
tation position (x,, y,):

fl

x'=x,+(x - x)cos ¥~ (y- y,)sin b

v =y + QO —x)sinf+(y- y)cos b (5-9

These general rotation equations differ from Eqgs. 5-6 by the inclusion of additive
terms, as well as the multiplicative factors on the coordinate values. Thus, the
matrix expression 5-7 could be modified to include pivot coordinates by matrix
addition of a column vector whose elements contain the additive (translational)
terms in Eqs. 5-9. There are better ways, however, to formulate such matrix equa-
tions, and we discuss in Section 5-2 a more consistent scheme for representing the
transformation equations.

As with translations, rotations are rigid-body transformations that move
objects without deformation. Every point on an object is rotated through the
same angle. A straight line segment is rotated by applying the rotation equations
5-9 to each of the line endpoints and redrawing the line between the new end-
point positions. Polygons are rotated by displacing each vertex through the speci-
fied rotation angle and regenerating the polygon using the new vertices. Curved
lines are rotated by repositioning the defining points and redrawing the curves.
A circle or an ellipse, for instance, can be rotated about a noncentral axis by mov-
ing the center position through the arc that subtenas the specified rotation angle.
An ellipse can be rotated about its center coordinates by rotating the major and
minor axes.

Scaling

A scaling transformation alters the size of an object. This operation can be car-
ried out for polygons by multiplying the coordinate values (x, y) of each vertex
by scaling factors s, and s, to produce the transformed coordinates {x', y'):

X=X s, y'=y'sy (5-10)

Scaling factor s, scales objects in the x direction, while s, scales in the y direction.
The transformation equations 5-10 can also be written in the matrix form:

x'y |so0 X .
“|o S . v 6-11)
or
PP=S-P 5-12)

where S is the 2 by 2 scaling matrix in Eq. 5-11.

Any positive numeric values can be assigned to the scaling factors s, and s,
Values less than 1 reduce the size of objects; values greater than 1 produce an en-
largement. Specifying a value of 1 for both s, and s, leaves the size of objects un-

changed. When s, and s, are assigned the same value, a uniform scaling is pro-

Section 5-1

Basic Transtormations

Figure 5-5

Rotating a point from
position (x, y) to position
x/y") through an angle 8
about rotation point (x, , y,).

Chapter 5

Twao-Dimensional Geometric
Transformations

(a)
{b)
Figure 5-6
Turning a square (a) into a

rectangle (b) with scaling
factorss, = 2and s, = 1.

Figure 5-7

A line scaled with Eq 5-12
using s, = 5, = 0.5 is reduced
insize and moved closer to
the coordinate ongin.

i ° P,
ixy, yy

Figure 5-8

Scaling relative to a chosen
fixed point (x,, y). Distances
from each polygon vertex to
the fixed point are scaled by
transformation equations
5-13.

188

duced that maintains relative object proportions. Unequai values for s, and s, re-
sult in a differential scaling that is often used in design applications, where pic-
tures are constructed from a few basic shapes that can be adjusted by scaling and
positioning transformations (Fig. 5-6).

Objects transformed with Eq. 5-11 are both scaled and repositioned. Scaling
factors with values less than 1 move objects closer to the coordinate origin, while
values greater than 1 move coordinate positions farther from the origin. Figure
5-7 illustrates scaling a line by assigning the value 0.5 to both s, aud s, in Eq.
5-11. Both the line length and the distance from the origin are reduced by a
factor of 1/2.

We can control the location of a scaled object by choosing a position, called
the fixed point, that is to remain unchanged after the scaling transformation. Co-
ordinates for the fixed point (xy, y,) can be chosen as one of the vertices, the object
centroid, or any other position (Fig. 5-8). A polygon is then scaled relative to the
fixed point by scaling the distance from each vertex to the fixed point. For a ver-
tex with coordinates (x. vy}, the scaled coordinates (x’, y') are calculated as

xt=aprlx-xps,, Yy =yt ly - s, (5-13)

We can rewrite these scaling transformations to separate the multiplicative and
additive terms:

i

X

x s, +x(l - s)
(5-14)

y=y syl —s)
where the additive terms x((1 — 5,) and y,(1 — $,) are constant for all points in the
object.

Including coordinates for a fixed point in the scaliny, equations is similar to
including coordinates for a pivot point in the rotation equations. We can set up a
column vector whose elements are the constant terms in Eqs. 3-14, then we add
this column vector to the product S - P in Eq. 5-12. In the next section, we discuss
a matrix formulation for the transformation equations that involves only matrix
multiplication.

Polygons are scaled by applying transformations 3-14 to each vertex and
then regenerating the polygon using the transformed vertices. Other objects are
scaled by applying the scaling transformation equations to the parameters defin-
ing the objects. An ellipse in standard position is resized by scaling the semima-
jor and semiminor axes and redrawing the ellipse about the designated center co-
ordinates. Uniform scaling of a circle is done by simplv adjusting the radius.
Then we redisplay the circle about the center coordinates using the transformed
radius.

5-2
MATRIX RFPRESENTATIONS AND HOMOGENEOUS
COORDINATES

Many graphics applications involve sequences of geometric transformations. An
animation, for example, might require an object to be translated and rotated at
each increment of the motion. In design and picture construction applications,

we perform translations, rotations, and scalings to it the picture components into
their proper posithons. Here we consider how the matrix representations dis-
cussed in the previous sections can be reformulated so that such transformation
sequences can be efficiently processed.

We have seen in Section 5-1 that each of the basic transformations can be ex-
pressed in the general matrix form

PP=M, -P+M, (5-15)

with coordinate positions P and P’ represented as ¢3lumn vectors, Matrix M, isa
2 by 2 array containing multiplicative factors, and M, is a two-element column
matrix containing translational terms. For translation, M, is the identity matrix.
For rotation or scaling, M, contains the translational terms associated with the
pivot point or scaling fixed point. To produce a sequence of transformations with
these equations, such as scaling followed by rotation then translation, we must
calculate the transformed coordinates one step at a time. First, coordinate posi-
tions are scaled, then these scaled coordinates are rotated, and finally the rotated
coordinates are translated. A more efficient approach would be to combine the
transformations so that the final coordinate positions are obtained directly from
the initial coordinates, thereby eliminating the calculation of intermediate coordi-
nate values. To be able to do this, we need to reformulate Eq. 5-15 to eliminate the
matrix addition associated with the translation terms in M,.

We can combine the multiplicative and translational terms for two-dimen-
sional geometric transformations into a single matrix representation by expand-
ing the 2 by 2 matrix representations to 3 by 3 matrices. This aliows us to express
all transformation equations as matrix multiplications, providing that we also ex-
pand the matrix representations for coordinate positions. To express any two-di-
mensional transformation as a matrix multiplication, we represent each Cartesian
coordinate position (x, y) with the homogeneous coordinate triple (x,, y,, A,
where

X Yy
X =,

y =7 (5-16)

Thus, a gencral homogeneous coordinate representation can also be written as (h-
x. by, h). For two-dimensional geometric transformations, we can choose the ho-
mogencous parameter i to be any nonzero value. Thus, there is an infinite num-
ber of equivalent homogeneous representations for each coordinate point (x, y).
A convenient choice is simply to set h = 1. Each two-dimensional position is then
represented with homogeneous coordinates (x, v, 1). Other values for parameter h
are needed, for example, in matrix formulations of three-dimensional viewing
transformations.

The term homogeneous coordinates is used in mathematics to refer to the ef-
tect of this representation on Cartesian equations. When a Cartesian point (x, y) is
converted to a homogeneous representation (x,, y,, /), equations containing x
and vy, such as f(x, y) = 0, become homogeneous equations in the three parame-
ters x4, ., and h. This just means that if each of the three parameters is replaced
by any value v times that parameter, the value © can be factored out of the equa-
tions.

Expressing positions in homogeneous coordinates allows us to represent all
geometric transformation equations as matrix muitiplications. Coordinates are

Section 5-2

Matrix Representations and
Homogeneous Coordinates

189

Chapter 5

190

Two-Dimensional Geometric
Transformations

represented with three-element column vectors, and transformation operations
are written as 3 by 3 matrices. For translation, we have

x’ 1 0 ¢,
yv]=1t0 1 t,{-|v (5-17)
1 0 0 1 1
which we can write in the abbreviated form
P =T, t) P (5-18)

with T(t,, t,) as the 3 by 3 translation matrix in Eq. 5-17. The inverse of the trans-
lation matrix is obtained by replacing the translation parameters ¢, and t, with
their negatives: —t, and —t,.

Similarly, rotation transformation equations about the coordinate origin are
now written as)

X cosf —sinfd O x
y | =] sin@ cos6 0 |-y (5-19)
1 0 0 1111
or as
P'=R(6) P 5-20)

The rotation transformation operator R(8) 1s the 3 by 3 matrix in Eq. 5-19 with
rotation parameter 6. We get the inverse rotation matrix when 8 is replaced
with — 6.

Finally, a scaling transformation relative to the coordinate onigin is now ex-
pressed as the matrix multiplication

X s, 0 0O X
¥y =10 s 0O y (3-21)
1 0 1 1
or
P'=S(s,,s) P (5-22)

where S(s,, s,) is the 3 by 3 matrix in Eq. 5-21 with parameters s, and s,. Replac-
ing these parameters with their multiplicative inverses (1/5, and 1/s,) yields the
inverse scaling matrix. '

Matrix representations are standard methods for implementing transforma-
tions in graphics systems. In many systems, rotation and scaling functions pro-
duce transformations with respect to the coordinate origin, as in Egs. 5-19 and
5-21. Rotations and scalings relative to other reference positions are then handled
as a succession of transformation operations. An alternate approach in a graphics
package is to provide parameters in the transformation functions for the scaling
fixed-point coordinates and the pivot-point coordinates General rotation and
scaling matrices that include the pivot or fixed point are then set up directly
without the need to invoke a succession of transformation functions.

5-3
COMPOSITE TRANSFORMATIONS

With the matrix representations of the previous section, we can set up a matrix
for any sequence of transformations as a composite transformation matrix by
calculating the matrix product of the individual transformations. Forming prod-
ucts of transformation matrices is often referred to as a concatenation, or compo-
sition, of matrices. For column-matrix representation of coordinate positions, we
form composite transformations by multiplying matrices in order from right to
left. That is, each successive transformation matrix premultiplies the product of
the preceding transformation matrices.

Translations
If two successive translation vectors (f,, t,;) and (t,,, t,,) are applied to a coordi-
nate position P, the final transformed location P' is calculated as
P'=Tlty, ty) ATl 0y P
ATt t) - Tlty,) - P
where P and P" are represented as homogeneous-coordinate column vectors. We
can verify this result by calculating the matrix product for the two associative

groupings. Also, the composite transformation matrix for this sequence of trans-
lations is

10 ¢y, 10 ty, L0ty +ty,
0 1 1 }-10 1 H =0 1 t,+1, (5-241
0 0 1 0 0 1 00 1
or
Tt t2) Tl t,) = Tl + oty T 1) (5-23

which demonstrates that two successive translations are additive.

Rotations
Two successive rotations applied to point P produce the transformed position
P' = R(8,) - {R(§)) - P

= [R(&) - R(#)) - I (5-200

By multiplying the two rotation matrices, we can verify that two successive rota-
tions are additive:

R(6,) - R(8) = R(G;, +) (5-27)

so that the final rotated coordinates can be calculated with the composite rotation
matrix as

P'=R(, + 6) P (528

Section 5-3

Composite Transformations

191

Chapter 5

Two-Dimensional Geometric
Transformations

{m)

Scalings

Concatenating transformation matrices for two successive scaling operations pro-
duces the following composite scaling rmatrix:

s 0 0 sqm 0 0 Sq * Sp 0 0
0 s9 0}-1]0 s, O0]= 0 Sy S O (5-29)
0 0 1 0 0 1 0 0 1
or
S(sy2, 5y2) - S(s11, 51) = S(5x1 * 822, Sy1 547) (5-30)

The resulting matrix in this case indicates that successive scaling operations are
multiplicative. That is, if we were to triple the size of an object twice in succes-
sion, the final size would be nine times that of the original.

General Pivot-Point Rotation

With a graphics package that only provides a rotate function for revolving objects
about the coordinate origin, we can generate rotations about any selected pivot
point (x,, y,) by performing the following sequence of translate-rotate-translate
operations:

1. Translate the object so that the pivot-point position is moved to the coordi-
nate origin.

2. Rotate the object about the coordinate origin.

3. Translate the object so that the pivot point is returned to its original posi-
tion.

This transformation sequence is illustrated in Fig. 5-9. The composite transforma-

| Gt wd "
[t} tc}

H {dl

Oeigmia Fosian Transiatron ol Rotston i’ra_rumuon of
of Object snd Object 90 that sbout Object 80 that
Pivot Point Pivot Point Origin the Pivot Point
(X, v,) s &t Is Returnad
Origin to Position
(x,.v)
Figure 5-9

A transformation sequence for rotating an object about a specified pivot point using the
rotation matrix R(#) of transformation 5-19.

192

tion matnx for this sequence is obtained with the concatenation

1 0 X, cos 6 -sin¢ 0 1 0 - X,
0 1y |} siné cosf O 1 (0O 1 -y,
0 0 1 0 0 1 0 0 1
cosf# —sind x(1 — cos 9 + y, sin 8
=] sin 6 cos @yl —cos A — x,sin @ (530
0 0 I

which can be expressed in the form
T(x, y) RO -Ti-x, —y)= Rlx,y, & (H-30

where T(-x,, —y,) = T Y, y,). In general, a rotate function can be set up to ac-
cept parameters for pivot-point coordinates, as well as the retation angle, and to
generate automatically the rotation matrix of Eq. 5-31.

General Fixed-Point Scaling

Figure 5-10 illustrates a transformation sequence tc produce scaling with respect
to a selected fixed position (x,, y,) using a scaling function that can only scale rela-
“1ve to the coordinate origin.

. Translate object so that the fixed point coincides with the coordinate origin.
. Scale the object with respect to the coordinate origin.

w N

. Use the inverse translation of step 1 to return the object to its original posi-
tion.

Concatenating the matrices for these three operations produces the required scal-
ing matrix

1 0 x g 0 0 1 0 -x s, 0 x(1-s)
0 1 y 6 s, 0110 1T -y |l-[0 s wd-s) (5-33
0 0 1 0 0 1 0 0 1 0 0 1
or
T(x;, yp) - S(s,, 5,) - T(=x;, —yp) = S(x, yp, 5, 8,) (5-34)

This transformation is automatically generated on systems that provide a scale
function that accepts coordinates for the fixed point.

General Scaling Directions

Parameters s, and s, scale objects along the x and y directions. We can scale an ob-
ject in other directions by rotating the object to align the desired scaling direc-
tions with the coordinate axes before applying the scaling transformation.
Suppose we want to apply scaling factors with values specified by parame-
ters s, and s, in the directions shown in Fig. 5-11. To accomplish the scaling with-

Section 5-3

Composite Transformations

193

(x, ¥yl

%
[E P A |
*\‘ |

fan ib! ci iy
Ongmal Postron 'ransiate Object Scale Object Translate Object
of Object and so that Fixed Point writh Respect s0 thet the Fixed Point
Fixed Polm {x. v} t» at Origin to Origin Is Returned to
Position (x,, v,
Figure 5-10

A transformation sequence for scaling an object with respect to a specified fixed position
using the scaling matrix S(s,, 5,) of transformation 5-21.

g

5

Figure 5-11

Scaling parameters s; and
5, are to be applied in
orthogonal directions
defined by the angular
displacement .

194

out changing the orientation of the object, we first perform a rotation so that the
directions for s, and s, coincide with the x and y axes, respectively. Then the scal-
ing transformation is applied, followed by an opposite rotation to return points
to their original orientations. The composite matrix resulting from the product of
these three transformations is

R7'(6) - S(sy, 5) - R(6)

s, cos? 6+ s,8in* 6 (s, — s)) cos Bsin@ 0
=| (s —sy)cos Bsin @ s,sin? 6+ s,cos?6¢ O (5-35)
0 0 1

As an example of this scaling transformation, we turn a unit square into a
parallelogram (Fig. 5-12) by stretching it along the diagonal from (0, 0) to (1, 1).
We rotate the diagonal onto the y axis and double its length with the transforma-
tion parameters 6 = 45°, 5, =1, and 5, = 2.

In Eq. 5-35, we assumed that scaling was to be performed relative to the ori-
gin. We could take this scaling operation one step further and concatenate the
matrix with translation operators, so that the composite matrix would include
parameters for the specification of a scaling fixed position.

Concatenation Properties

Matrix multiplication is associative. For any three matrices, A, B, and C, the ma-
trix product A - B - C can be performed by first multiplying A and B or by first
multiplying B and C:

A B-C=(A-B)-C=A-B-O (5-36)

Therefore, we can evaluate matrix products using either a left-to-right or a right-
to-left associative grouping.

On the other hand, transformation products may not be commutative: The
matrix product A - B is not equal to B - A, in general. This means that if we want

(0, 1} ", 1

(32 12)

(0, 0) (1,0 x 0.0) _ «

Figure 5-12
A square (a) is converted to a parallelogram (b} using the composite
transformation matrix 5-35, withs; = 1,5, = 2, and 8 = 45°.

to translate and rotate an object, we must be careful abou! the order in which the
composite matrix is evaluated (Fig. 5-13). For some special cases, such as a se-
quence of transformations ali of the same kind, the multiplication of transforma-
tion matrices is commutative. As an example, two successive rotations could be

performed in either order and the final position would be the same. This commu-

tative property holds also for two successive translations or two successive scal-
ings. Another commutative pair of operations is rotation and uniform scaling
(s, = sy).

General Composite Transformations and Computational Efficiency

A general two-dimensional transformation, representing a combination of trans-
lations, rotations, and scalings, can be expressed as

X TSy TSy 175, x
Y| =] e 15, trs, ||y (5-37)
1 0 0 1 1

The four elements rs; are the multiplicative rotation-scaling terms in the transfor-
mation that involve only rotation angles and scaling factors. Elements frs, and
trs, are the translational terms containing combinations of translation distances,
pivot-point and fixed-point coordinates, and rotation angles and scaling parame-
ters. For example, if an object is to be scaled and rotated about its centroid coordi-
nates (x., y,) and then translated, the values for the elements of the composite
transformation matrix are

T, ty) ‘Rx, v, 0) - Slx, vy, s, sy)

sycos @ —s,sin@ x(1 — s, cos) + y,5, sin 0+ ¢,
=| s5sin® s,cos8 ydl —s,cos6) — xs,sin 6+ ¢, (5-38)
0 0 1

Although matrix equation 5-37 requires nine multiplications and six addi-
tions, the explicit calculations for the transformed coordinates are

Section 5-3

Composite Transformations

Chapter 5

196

Two-Dimensional Geometric
Transformations

L/ . ey |
Final Final
N - Position -~ Position

(’ b "’ XS N I"'_'l

el 5 —4

(" Ll [Neo o

(a) (b)
Figure 5-13
Reversing the order in which a sequence of transformation: is
performed may affect the transformed position of an object. In (1), an
object is first translated, then rotated In (b), the object is rotated first,
then translated.
X' = xcrsg oy rsy tolrs, YT XIS, Ty IS, Hrs, [CIRED]

Thus, we actually only need to perform four muliiplications and four additions
to transform coordinate positions. This is the maximum number of computations
required for any transformation sequence, once the individual matrices have
been concatenated and the elements of the composite matrix evaluated. Without
concatenation, the individual transformations would be applied one at a time
and the number of calculations could be significantly increased. An efficient im-
plementation for the transformation operations, therefore, is to formulate trans-
formation matrices, concatenate any transformation sequence, and calculate
transformed coordinates using Eq. 5-39. On parallel systems, direct matrix multi-
plications with the composite transformation matrix of Ec. 5-37 can be equally ef-
ficient.

A general rigid-body transformation matrix, involving only translations
and rotations, can be expressed in the form

'
13 rn,r Ty
O (540
0o o 1

where the four elements r, are the multiplicative rotation terms, and elements tr,
and tr, are the translational terms. A rigid-body change in coordinate position is
also sometimes referred to as a rigid-motion transformation. All angles and dis-
tances between coordinate positions are unchanged by the transformation. In ad-
dition, matrix 5-40 has the property that its upper-left 2-by-2 submatrix is an or-
thogonal matrix. This means that if we consider each row of the submatrix as a
vector, then the two vectors (r,,, ry) and (r,,, r,.) form an orthogonal set of unit
vectors: Each vector has unit length

N
R

2 2 = 2 4+ p2 =
rn+rn_rw'ry_n-'] (2~

and the vectors are perpendicular (their dot product is 0):

,.

21
N
(193

Foelyx ¥ Tyl = 0

Therefore, if these unit vectors are transformed by the rotatign submatrix, (ry, 7y}
is converted to a unit vector along the x axis and (r,,, r,,} is transformed into a
unit vector along the y axis of the coordinate system:

Ty Ty O r,,w 1
e Ty O try =10 (5-43)
0 0 1 L 1 1

- - - W
T Ty 0 Tyr
T Ty O]ry|=t1 (5-44)
0 0 1 1 | 1

As an example, the following rigid-body transformation first rotates an object
through an angle 6 about a pivot point (x,, ¥,) and then translates:

T(t,, t) Rx, y, 6)

cos @ -—sinf@ x(l-cosf) +ysin6+¢,
=|sin@ cos® yll-—cos®) - xsinf+t, (5-45)
0 0 1

Here, orthogonal unit vectors in the upper-left 2-by-2 submatrix are (cos 6,
~sin 6) and (sin 6, cos 8), and

cos@ -—siné 0 cos 8 1
sin @ cos® 0}|-| —-singf=1]0 (5-46)
0 0 1 1 1

Similarly, unit vector (sin 6, cos 6) is converted by the transformation matrix in
Eq. 5-46 to the unit vector (0, 1) in the y direction.

The orthogonal property of rotation matrices is useful for constructing a ro-
tation matrix when we know the final orientation of an object rather than the
amount of angular rotation necessary to put the object into that position. Direc-
tions for the desired orientation of an object could be determined by the align-
ment of certain objects in a scene or by selected positions in the scene. Figure 5-14
shows an object that is to be aligned with the unit direction vectors u' and v'. As-
suming that the original object orientation, as shown in Fig. 5-14(a), is aligned
with the coordinate axes, we construct the desired transformation by assigning
the elements of u' to the first row of the rotation matrix and the elements of v' to
the second row. This can be a convenient method for obtaining the transforma-
tion matrix for rotation within a local (or “object”) coordinate system when we
know the final orientation vectors. A similar transformation is the conversion of
object descriptions from one coordinate system to another, and in Section 5-5, we
consider how to set up transformations to accomplish this coordinate conversion.

Since rotation calculations require trignometric evaluations and several
multiplications for each transformed point, computational efficiency can become
an important consideration in rotation transformations. In animations and other
applications that involve many repeated transformations and small rotation an-
gles, we can use approximations and iterative calculations to reduce computa-

Section 5-3

Composite Transformations

197

Chapter 5

198

Two-Dimensional Geometric
Transformations

{a) (b}

Figure 5-14

The rotation matrix for revolving an object from position (a) to position
(b) can be constructed with the values of the unit orientation vectors u’
and v' relative tc the original orientation.

tions in the composite transformation equations. When the rotation angle is
small, the trigonometric functions can be replaced with approximation values
based on the first few terms of their power-series expansions. For small enough
angles (less than 10°), cos # is approximately 1 and sin 6 has a value very close to
the value of 6 in radians. If we are rotating in small angular steps about the ori-
gin, for instance, we can set cos #to 1 and reduce transtormation calculations at
each step to two multiplications and two additions for each set of coordinates to
be rotated:

Y =x-ysin§, y' =xsinf+y (5-47)

where sin 6 is evaluated once for all steps, assuming the rotation angle does not
change. The error introduced by this approximation at each step decreases as the
rotation angle decreases. But even with small rotation angles, the accumulated
error over many steps can become quite large. We can control the accumulated
error by estimating the error in x* and y' at each step and resetting object posi-
tions when the error accumulation becomes too great.

Composite transformations often involve inverse matrix calculations. Trans-
formation sequences for general scaling directions and for reflections and shears
(Section 5-4), for example, can be described with inverse rotation components. As
we have noted, the inverse matrix representations for the basic geometric frans-
formations can be generated with simple procedures. An inverse translation ma-
trix is obtained by changing the signs of the translation distances, and an inverse
rotation matrix is obtained by performing a matrix transpose (or changing the
sign of the sine terms). These operations are much simpler than direct inverse
matrix calculations.

An implementation of composite transformations is given in the following
procedure. Matrix M is initialized to the identity matrix. As each individual
transformation is specified, it is concatenated with the total transformation ma-
trix M. When all transformations have been specified, this composite transforma-
tion is applied to a given object. For this example, a polygon is scaled and rotated
about a given reference point. Then the object is translated. Figure 5-15 shows the
original and final positions of the polygon transformed by this sequence.

Section 5-3

y
200 Composite Transformations
150
ref pt
100 (100, 100)

50 100 150 200 X 50 100 150 200 X

(a) {b}

Figure 5-15

A polygon (a) is transformed into
(b) by the composite operations in
the following procedure.

r #include <math.h>
#include "graphics.h*

typedef float Matrix3x3(31(3];
Matrix3x3 theMatrix;

void matrix3x3SetIdentity (Matrix3x3 m)
{

int i.3;

for {i=0; i<3:; i++) for (3=0; J<3; j++) m(i]1(3} = (i == J):
}

/* Multiplies matrix a times b, putting result in b */
void matrix3x3PreMultiply {Matrix3x3 a, Matrix3x3 b)
{

int r,c:

Matrix3x3 tmp:

for (r = 0; r <
for (c = 0; ¢
tmp(r]jc] =
alr]i0]*plo)lc) » alr}{li*pll)lc]) + alrli{2]*pl2]lc]:

3; r++)
< 3; c++t)

for (r = 0; r < 3; r++)
for (c = 0; ¢ < 3; ct++)
birllc) - tmplr](cl:
}

void translate2 {int tx, int ty)
{

Matrix3x3 m;

matrix3x3SetIdentity (m):

m{0})[{2] = tx;

m{l}[2]) = ty:

matrix3x3PreMultiply (m, theMatrix);

199

}
void scale2 (float sx, Ioat sy, wcPt2 refpt;
{

Matrix3x3 m:

matrixix3SetIdentity ({(m});

m{0! (0} = sx;
mi{0)[2] = (1 - sx) * refpt.x;
m(1]{1] = sy;

m(1)[2) = (1 - sy) * refpt.y;
matrix3x3PreMultiply (m, theMatrix);
}

void rotate2 {float a, wcPt2 refPr)
{
Matrix3x3 m;

matrix3x3SetIdentity (m):
a = pToRadians (a);

m{0) {0} = cosf (a};
m(0] (1] = -sini (a};
m{0) (2] = rcfPt.x * (1 - cosf (a)) + refPt.y * sinf (a);

m[1])[0] = sinf (a);:
m(l) (1] = cosf (a);
m[1]{2) = refPt.y * (1 - cosf (a)) - refPt.x * sinf (a);
matrix3x3iPreMultiply (m, theMatrix);
}

void transformPoints2 (int npts, wcPt2 rpts)
{

int k;

float tmp:

for tk = 0; k < npts; k++) {
tmp = theMatrix[0]{0] * pts[k].x + theMatxix([0}[1] *
pts[k] .y 4+ theMatrix([0Q])(2];

ptsik] .y = theMatrix(1l}{0] * ptsik].x + theMatrix(l)[1l] *
pts{k] .y + theMatrix[1])[2];
pts(k].x = tmp;

}
)

void main (int arge, char ** argv)

{
wcPt2 pts(3) = { 50.0, 50.0, 150.0, 50.0, 1060.0, 150.0};
wcPt2 refPt = (100.0, 100.0};
long windowID = cgpenGraphics (*argv, 200, 3%0};
setBackground (WHITE};
setColoxr (BLUE):
pFillarea (3, prts):
matrix3x3SetIdentity (theMatrix):;
scalez (0.5, 0.3, refpt);
rotate2 (90.0, refPt);
translatez (0, 150);
transformPoints2 (3, pts),
pFillAarea (3.pts);
sleep 110);
closeGraphics (windowlD);

i

S —_—

5-4
OTHER TRANSFORMATIONS

Basic transformations such as translation, rotation, and scaling are included in
most graphics packages. Some packages provide a few additional transforma-
tions that are useful in certain applications. Two such transformations are reflec-
tion and shear.

Reflection

A reflection is a transformation that produces a mirror image of an object. The
mirror image for a two-dimensional reflection is generated relative to an axis of
reflection by rotating the object 180° about the reflection axis. We can choose an
axis of reflection in the xy plane or perpendicular to the xy plane. When the re-
flection axis is a line in the xy plane, the rotation path about this axis isin a plane
perpendicular to the xy plane. For reflection axes that are perpendicular to the xy
plane, the rotation path is in the xy plane. Following are examples of some com-
mon reflections.

Reflection about the line y = 0, the x axis, is accomplished with the transfor-
mation matrix

(5-48)

o
'
o - O
-0 O

This transformation keeps x values the same, but “flips” the y values of coordi-
nate positions. The resulting orientation of an object after it has been reflected
about the x axis is shown in Fig. 5-16. To envision the rotation transformation
path for this reflection, we can think of the flat object moving out of the xy plane
and rotating 180° through three-dimensional space about the x axis and back into
the xy plane on the other side of the x axis.

A reflection about the y axis flips x coordinates while keeping y coordinates
the same. The matrix for this transformation is

o o =
o = o

0
0 (5-49)
1

Figure 5-17 illustrates the change in position of an object that has been reflected

about the line x = 0. The equivalent rotation in this case is 180° through three-di-

mensional space about the y axis.

We flip both the x and y coordinates of a point by reflecting relative to an
axis that is perpendicular to the xy plane and that passes through the coordinate
origin. This transformation, referred to as a reflection relative to the coordinate
origin, has the matrix representation:

-1 o0
0 -1 0 {5-50)
0 0 1

Section 5-4
Other Transformations

1
12 A
/I A
J v Original
A e
/ \ Position
! \
2 ‘I—{—-—-—l 3
\ x
2’ 3
Reflected
Position
1
Figure 5-16

Reflection of an object about
the x axis.

y
Original Reflected
Position Position
2|-\\ 2
CC
37 3
x

Figure 5-17
Reflection of an object about
the y axis.

201

Refiected
Position

3

NS
N
J
3

Original
Position

Figure 5-18

Reflection of an object relative
to an axis perpendicular to
the xy plane and passing
through the coordinate origin.

y=x
Y ,.\3 Origipa| /7
-~ \ Position 7/
i \ /
47 \ 7/
~~ | Ve
27> \ y;
7 Ret
~d1 eflected
7 1’ Position
Ve
Ve
// 3
7/
7/
Ve 2
// x
Figure 53-20

Reflection of an object with
respect to the line y = x.

202

y
3
Py 2
Yorr T _ .
2" “"-:71 /
5\ S
\ Ve
N
A4
A
3
},
X 1t X
Figure 5-19

Reflection of an object relative to an axis perpendicular to
the xy plane and passing through point P,,.

An example of reflection about the origin is shown in Fig. 5-18. The reflection ma-
trix 5-50 is the rotation matrix R(8) with 6 = 180°. We are simply rotating the ob-
ject in the xy plane half a revolution about the origin.

Reflection 5-50 can be generalized to any reflection point in the xy plane
(Fig. 5-19). This reflection is the same as a 180° rotation in the xy plane using the
reflection point as the pivot point.

If we chose the reflection axis as the diagonal line v = x (Fig. 5-20), the re-
flection matrix is

o = O
o O =
- o O

We can derive this matrix by concatenating a sequence of rotation and coordi-
nate-axis reflection matrices. One possible sequence is shown in Fig. 5-21. Here,
we first perform a clockwise rotation through a 45° angle, which rotates the line y
= x onto the x axis. Next, we perform a reflection with respect to the x axis. The
final step is to rotate the line y = x back to its original position with a counter-
clockwise rotation through 45°. An equivalent sequence of transformations is first
to reflect the object about the x axis, and then to rotate counterclockwise 90°.

To obtain a transformation matrix for reflection about the diagonal v = —x,
we could concatenate matrices for the transformation sequence: (1) clockwise ro-
tation by 45°, (2) reflection about the y axis, and (3) counterclockwise rotation by
45°. The resulting transformation matrix is

0 -1 ©
-1 0 0 (5-52)
0 0 1

Figure 5-22 shows the original and final positions for an object transformed with
this reflection matrix.

Reflections about any line y = mx + b in the vy plane can be accomplished
with a combination of translate-rotate-reflect transformations. In general, we first
translate the line so that it passes through the origin. Then we can rotate the line
onto one of the coordinate axes and reflect about that axis. Finally, we restore the
line to its original position with the inverse rotation and translation transforma-
tions.

We can implement reflections with respect to the coordinate axes or coordi-
nate origin as scaling transformations with negative scaling factors. Also, ele-
ments of the reflection matrix can be set to values other than *1. Values whose
magnitudes are greater than 1 shift the mirror image farther from the reflection
axis, and values with magnitudes less than 1 bring the mirror image closer to the
reflection axis.

Shear

A transformation that distorts the shape of an object such that the transformed
shape appears as if the object were composed of internal layers that had been
caused to slide over each other is called a shear. Two common shearing transfor-
mations are those that shift coordinate x values and those that shift y values.

An x-direction shear relative to the x axis is produced with the transforma-
tion matrix

1 sh, O
0 1 o0 (5-53)
0 0 1

which transforms coordinate positions as
x'=x+sh, -y, y =y (5-54)

Any real number can be assigned to the shear parameter sh.. A coordinate posi-
tion (x, y) is then shifted horizontally by an amount proportional to its distance (y
value) from the x axis (y = 0). Setting sh, to 2, for example, changes the square in
Fig. 5-23 into a parallelogram. Negative values for sh, shift coordinate positions
to the left.

We can generate x-direction shears relative to other reference lines with

1 sh, —sh.:yu
0 1 0 (5-55)
0 0 1

with coordinate positions transformed as
X' =X+ Sh Y = Yeog), y =y (5-56)

An example of this shearing transformation is given in Fig. 5-24 for a shear para-
meter value of 1/2 relative to the line y = —1.

Section 5-4

Other Transformations

(a)

(c)

Figure 5-21

Sequence of transformations
to produce reflection about
the line y = x: (a) clockwise
rotation of 45°, (b) reflection
about the x axis;and (¢)
counterclockwise rotation
bv 45°.

203

N 2 Reflected
N o
~ Position
~
N
NV p
\\ 3
2emmm—== 1 N
R '
~]
\‘ 1
Original "~ : N
Position 13 \\
AN
. ye—x
Figure 5-22

Reflection with respect to the

liney = —x.

204

{b)

Figure 5-23
A unit square (a) is converted to a parallelogram (b) using the x-
direction shear matrix 5-53 with sh, = 2.

A y-direction shear relative to the line x = x, is generated with the trans-
formation matrix

1 0 0
shy 1 =shy, X (5-57)
0 0 1

which generates transformed coordinate positions
x' =x, y' = shy(x — Xty (5-58)

This transformation shifts a coordinate position vertically by an amount propor-
tional to its distance from the reference line x = x,. Figure 5-25 illustrates the
conversion of a square into a parallelogram with sh, = 1/2 and x(= —1.

Shearing operations can be expressed as sequences of basic transformations.
The x-direction shear matrix 5-53, for example, can be written as a composite
transformation involving a series of rotation and scaling matrices that would
scale the unit square of Fig. 5-23 along its diagonal, while maintaining the origi-
nal lengths and orientations of edges parallel to the x axis. Shifts in the positions
of objects relative to shearing reference lines are equivalent to translations.

{0, 1} 1,1 (1. 1) 2,1

(0, 0} 1,0 x Toron Gzo x

Ym=“1'f Yer=-1T

(a) (b}

Figure 5-24
A unit square (a) is transformed to a shifted parallelogram (b)
with sh, = 1/2 and y = — 1 in the shear matrix 5-55.

v 2
{0, 3/2)
(1, 1)
(0, 172
Xeat -1 X
(b}
Figure 5-25
A unit square (a) is turned into a shifted parallelogram (b) with
parameter values sh, = 1/2 and x,, = ~1 in the y-direction using

shearing transformation 5-57.

5-5
TRANSFORMATIONS BETWEEN COORDINATE SYSTEMS

Graphics applications often require the transformation of object descriptions
from one coordinate system to another. Sometimes objects are described in non-
Cartesian reference frames that take advantage of object symmetries. Coordinate
descriptions in these systems must then be converted to Cartesian device coordi-
nates for display. Some examples of two-dimensional non-Cartesian systems are
polar coordinates, elliptical coordinates, and parabolic coordinates. In other
cases, we need to transform between two Cartesian systems. For modeling and
design applications, individual objects may be defined in their own local Carte-
sian references, and the local coordinates must then be transformed to position
the objects within the overall scene coordinate system. A facility management
program tor office layouts, for instance, has individual coordinate reference de-
scriptions for chairs and tables and other furniture that can be placed into a floor
plan, with multiple copies of the chairs and other items in different positions. In
other applications, we may simply want to reorient the coordinate reference for
displaying a scene. Relationships between Cartesian reference systems and some
&Smmon non-Cartesian systems are given in Appendix A. Here, we consider
transformations between two Cartesian frames of reference.

Figure 5-26 shows two Cartesian systems, with the coordinate origins at (0,
0) and (xy, o) and with an orientation angle 6 between the x and x” axes. To trans-
form object descriptions from xy coordinates to x'y’ coordinates, we need to set
up a transformation that superimposes the x'y’ axes onto the xy axes. This is
done in two steps:

1. Translate so that the origin (x,, yp) of the x’y’ system is moved to the ofigin
of the xy system.
2. Rotate the x” axis onto the x axis.

Translation of the coordinate origin is expressed with the matrix operation
-x,

1 0
T(=%, -y =| 0 1 -y, (5-59)
0 0 1

Section 5-5

Transformations between
Coordinate Systems

205

Chapter 5

206

Two-Dimensional Ceometric
Transformations

y axis
g
<
N
Yo Figure 5-26
A Cartesian x'y’ system positioned
+ at (x,, y,) with orientation 8 in an xy
o Xo xaxis Cartesian system.

and the orientation of the two systems after the translation operation would ap-
pear as in Fig. 5-27. To get the axes of the two systems into coincidence, we then
perform the clockwise rotation

cos@ sing 0
R(-¢)=] —-sinB <cos8 O (5-60)
0 0 1

Concatinating these two transformations matrices gives us the complete compos-
ite matrix for transforming object descriptions from the xy system to the x'y’ sys-
tem:

My, = R(=6) T(~Xo, ~¥0) (5-67)

An alternate method for giving the orientation of the second coordinate sys-
tem is to specify a vector V that indicates the direction for the positive y’ axis, as
shown in Fig. 5-28. Vector V is specified as a point in the xy reference frame rela-
tive to the origin of the xy system. A unit vector in the y” direction can then be
obtained as

v
vz—,—v—'=(v,,vy) (5-

1
[on}
(-

And we obtain the unit vector u along the x” axis by rotating v 90° clockwise:

u = (v, ~v)

= (u,,u,) (5-63)

Figure 5-27
Position of the reference frames
shown in Fig. 5-26 after translating
L the origin of the x 'y " system to the
T xaxis eoordinate origin of
gin of the xy system.

Section 5-5

Transformations between
Coordinate Systems

Figure 5-28

Cartesian system x 'y " with origin at
Py = (x4 ¥o) and ¥’ axis parallel to

x axis vector V.

In Section 5-3, we noted that the elements of any rotation matrix could be ex-
pressed as elements of a set of orthogonal unit vectors. Therefore, the matrix to
rotate the 1’y system into coincidence with the xy system can be written as

u, u, 0
R={v, v 0 (5-64)
0 0 1

As an example, suppose we choose the orientation for they'axisas V = (-1, 0),
then the x’ axis is in the positive y direction and the rotation transformation ma-’
trix is

|
(= =]
o o =
-0 o

Equivalently, we can obtain this rotation matrix from 5-60 by setting the orienta-
tion angle as 6 = 90°.

In an interactive application, it may be more convenient to choose the direc-
tion for V relative to position Py than it is to specifv it relative to the xy-coordi-
nate origin. Unit vectors u and v would then be oriented as shown in Fig. 5-29.
The components of v are now calculated as

PI_PO

v= ——
ng"Pgl

(5-65)

and u js obtained as the perpendicular to v that forms a right-handed Cartesian
system.

y axis

Figure 5-29

A Cartesian x 'y system defined
with two coordinate positions, Py
and P, within an 1y reference
frame.

207

Chapter 5

208

Two-Dimensional Geometric
Transformations

5-6

AFFINE TRANSFORMATIONS

A coordinate transformation of the form

X' =auxtagy+th, y=a,x+ayth, (5-66)

is called a two-dimensional affine transformation. Each of the transformed coor-
dinates x' and y " is a linear function of the original coordinates x and y, and para-
meters a; and b, are constants determined by the transformation type. Affine
transformations have the general properties that parallel lines are transformed
into parallel lines and finite points map to finite points.

Translation, rotation, scaling, reflection, and shear are examiples of two-di-
mensional affine transformations. Any general two-dimensional affine transfor-
mation can always be expressed as a composition of these five transformations.
Another affine transformation is the conversion of coordinate descriptions from
one reference system to another, which can be described as a combination of
translation and rotation. An affine transformation involving only rotation, trans-
lation, and reflection preserves angles and lengths, as well as parallel lines. For
these three transformations, the lengths and angle between two lines remains the
same after the transformation.

5-7
TRANSFORMATION FUNCTIONS

Graphics packages can be structured so that separate commands are provided to
a user for each of the basic transformation operations, as in procedure trans-
formObject. A composite transformation is then set up by referencing individ-
ual functions in the order required for the transformation sequence. An alternate
formulation is to provide users with a single transformation function that in-
cludes parameters for each of the basic transformations. The output of this func-
tion is the composite transformation matrix for the specified parameter values.
Both options are useful. Separate functions are convenient for simple transforma-
tion operations, and a composite function can provide an expedient method for
specifying complex transformation sequences.

The PHIGS library provides users with both options. Individual commands
for generating the basic transformation matrices are

translate (trans._ateVector, matrixTranslate)
rotate (theta, matrixRotate)
scale (scaleVector, matrixScale)

Bach of these functions produces a 3 by 3 transformation matrix that can then be
used to transform coordinate positions expressed as homogeneous column vec-
tors. Parameter translateVector is a pointer to the pair of translation dis-
tances f, and t,. Similatly, parameter scaleVector specifies the pair of scaling
values s, and s,. Rotate and scale matrices (matrixTranslate and matrix-
Scale) transform with respect to the coordinate origin.

We concatenate transformation matrices that have been previously set up
with the function

composeMatrix (matrix2, matrixl, matrixOut)

where elements of the composite output matrix are calculated by postmultiply-
ing matrix2 by matrix1. A composite transformation matrix to perform a com-
bination scaling, rotation, and translation is produced with the function

buildTransformationMatrix (referencePoint, translateVector,
theta, scaleVector, matrix)

Rotation and scaling are carried out with respect to the coordinate position speci-
fied by parameter referencePoint. The order for the transformation sequence
is assumed to be (1) scale, (2) rotate, and (3) translate, with the elements for the
composite transformation stored in parameter matrix. We can use this function
to generate a single transformation matrix or a composite matrix for two or three
transformations (in the order stated). We could generate a translation matrix by
setting scaleVector = (1, 1), theta = 0, and assigning x and y shift values to
parameter translateVector. Any coordinate values could be assigned to pa-
rameter referencePoint, since the transformation calculations are unaffected
by this parameter when no scaling or rotation takes place. But if we only want to
set up a translation matrix, we can use function translate and simply specify
the translation vector. A rotation or scaling transformation matrix is specified by
setting translateVector = (0, 0) and assigning appropriate values to parame-
ters referencePoint, theta, and scaleVector. To obtain a rotation matrix,
we set scaleVector = (1, 1); and for scaling only, we set theta = 0. If we want
to rotate or scale with respect to the coordinate origin, it is simpler to set up the
matrix using either the rotate or scale function.

Since the function buildTransformationMatrix always generates the
transformation sequence in the order (1) scale, (2) rotate, and (3) translate, the fol-
lowing function is provided to allow specification of other sequences:

composeTransformationMatrix (matrixIn, referencePoint,
translateVector, theta, scaleVector, matrixOut)

We can use this function in combination with the buildTransformationMa-
trix function or with any of the other matrix-construction functions to compose
any transformation sequence. For example, we could set up a scale matrix about
a fixed point with the buildTransformationMatrix function, then we could
use the composeTransformationMatrix function to concatenate this scale
matrix with a rotation about a specified pivot point. The composite rotate-scale
sequence is then stored in matrixoOut.

After we have set up a transformation matrix, we can apply the matrix to
individual coordinate positions of an object with the function

transformPoint (inPoint, matrix, outPoint)

where parameter inPoint gives the initial xy-coordinate position of an object
point, and parameter outPoint contains the corresponding transformed coordi-
nates. Additional functions, discussed in Chapter 7, are available for performing
two-dimensional modeling transformations.

Section 5-7

Transformation Functions

209

Chapter 5

Two-Dimensional Ceometric
Transformations

Pmn
ol
, |
| .
.
(a)
Pl 1
: 1
. .
) |
I
| .
Tt 1
I
']
l‘ . i
O
PD
(b}
Figive 5-30

Translating an object from
screen position (a) to position
(b) by moving a rectangular
block of pixel values.

Coordinate positions P

and

min

P .. specify the limits

of the rectangular block to
be moved, and P, is the
destination reference
position,

210

5-8
RASTER METHODS FOR TRANSFORMATIONS

The particular capabilities of raster systems suggest an alternate method for
transforming objects. Raster systems store picture information as pixel patterns
in the frame buffer. Therefore, some simple transformations can be carried out
rapidly by simply moving rectangular arrays of stored pixel values from one lo-
cation to another within the frame buffer. Few arithmetic operations are needed,
so the pixel transformations are particularly efficient.

Raster functions that manipulate rectangular pixel arrays are generally re-
ferred to as raster ops. Moving a block of pixels from one location to another is
also called a block transfer of pixel values. On a bilevel svstem, this operation is
called a bitBlt (bit-block transfer), particularly when the function is hardware
implemented. The term pixBit is sometimes used for block transfers on multi-
level systems (multiple bits per pixel).

Figure 5-30 illustrates translation performed as a block transfer of a raster
area. All bit settings in the rectangular area shown are copied as a block into an-
other part of the raster. We accomplish this translation by first reading pixel in-
tensities from a specified rectangular area of a raster into an array, then we copv
the array back into the raster at the new location. The original object could be
erased by filling its rectangular area with the background intensity (assuming the
object does not overlap other objects in the scene).

Typical raster functions often provided in graphics packages are:

® copy - move a pixel block from one raster area to another.
* read - save a pixel block in a designated array.
* write - transfer a pixel array to a position in the frame buffer.

Some implementations provide options for combining pixel values. In replace
mode, pixel values are simply transfered to the destination positions. Other op-
tions for combining pixel values include Boolean operations (aud, or, and exclr.-
sive or) and binary arithmetic operations. With the exclusive or mode, two succes-
sive copies of a block to the same raster area restores the values that were
originally present in that area. This technique can be used to move an object
across a scene without destroying the background. Another option for adjusting
pixel values is to combine the source pixels with a specified mask. This allows
only selected positions within a block to be transferred or shaded by the patterns
defined in the mask.

‘_n

S~ s
S ouN
PN A

™

Figure 5-31

Rotating an array of pixel values. The original array
orientation 15 shown in (a), the array orientation after a
90° counterclockwise rotation is shown in (k), and the
array orientation after a 180° rotation is shown in (c).

Rotated _ Destination
Pixel Araas
Pixel
Array

1 Destination
1 Pixel Array

Figure 5-32

A raster rotation for a rectangular
block of pixels is accomplished by
mapping the destination pixel areas
onto the rotated block.

Rotations in 90-degree increments are easily accomplished with block trans-
fers. We can rotate an object 90° counterclockwise by first reversing the pixel val-
ues in each row of the array, then we interchange rows and columns. A 180° rota-
tion is obtained by reversing the order of the elements in each row of the array,
then reversing the order of the rows. Figure 5-31 demonstrates the array manipu-
lations necessary to rotate a pixel block by 90° and by 180°.

For array rotations that are not multiples of 90°, we must perform more
computations. The general procedure is illustrated in Fig. 5-32. Each destination
pixel area is mapped onto the rotated array and the amount of overlap with the
rotated pixel areas is calculated. An intensity for the destination pixel is then
computed by averaging the intensities of the overlapped source pixels, weighted
by their percentage of area overlap.

Raster scaling of a block of pixels is analogous to the cell-array mapping
discussed in Section 3-13. We scale the pixel areas in the original block using
specified values for s, and s, and map the scaled rectangle onto a set of destina-
tion pixels. The intensity of each destination pixel is then assigned according to
its area of overlap with the scaled pixel areas (Fig. 5-33).

l'"'I"'l’"‘T"l""‘l“"l""l“‘|
1 1 1 1 [1 | H
botomd-—d==g--}--F ==k~ Destinstion
1 | I] t i 1 | H Pixel Array
Lol odobo Loy
1 | | [1) H
b] | ! |] 1) \
1 1 i R S P -
i] ' ' 1 1 1 ':
Scaled T T M] 1 1)
Pk S B B X T ey S S
Aray P11 -! oo
17 1] | 1
4+ t-r-Ft--r--r-—r -
| L +] 1 | 1
LY L I R B B
(xp, ¥
Figure 5-33

Mapping destination pixel areas onto a scaled array of
pixel values. Scaling factors s, = 5, = 0.5 are applied
relative to fixed point (x;, y,).

Section 5-8

Raster Methods for
Transformations

Chapter 5

212

Two-Dimensional Geomelric
Transformations

SUMMARY

The basic geometric transformations are translation, rotation, and scaling. Trans-
lation moves an object in a straight-line path from one position to another. Rota-
tion moves an object from one position to another in a circular path around a
specified pivot paint (rotation point). Scaling changes the dimensions of an object
relative to a specified fixed point.

We can express two-dimensional geometric transformations as 3 by 3 ma-
trix operators, so that sequences of transformations can be concatenated into a
single composite matrix. This is an efficient formulation, since it allows us to re-
duce computations by applying the composite matrix to the initial coordinate po-
sitions of an object to obtain the final transformed positions. To do this, we also
need to express two-dimensional coordinate positions as three-element column
or row matrices. We choose a column-matrix representation for coordinate points
because this is the standard mathematical convention and because many graph-
ics packages also follow this convention. For two-dimensional transformations,
coordinate positions ate then represented with three-element homogeneous coor-
dinates with the third (homogeneous) coordinate assigned the value 1.

Composite transformations are formed as multiplications of any combina-
tion of translation, rotation, and scaling matrices. We can use combinations of
translation and rotation for animation applications, and we can use combinations
of rotation and scaling to scale objects in any specified direction. In general, ma-
trix multiplications are not commutative. We obtain different results, for exam-
ple, if we change the order of a translate-rotate sequence. A transformation se-
quence involving only translations and rotations is a rigid-body transformation,
since angles and distances are unchanged. Also, the upper-left submatrix of a
rigid-body transformation is an orthogonal matrix. Thus, rotation matrices can be
formed by setting the upper-left 2-by-2 submatrix equal to the elements of two
orthogonal unit vectors. Computations in rotationgl transformations can be re-
duced by using approximations for the sine and cosine functions when the rota-
tion angle is small. Over many rotational steps, however, the approximation error
can accumulate to a significant value.

Other transformations include reflections and shears. Reflections are trans-
formations that rotate an object 180° about a reflection axis. This produces a mir-
ror image of the object with respect to that axis. When the reflection axis is per-
pendicular to the xy plane, the reflection is obtained as a rotation in the xy plane.
When the reflection axis is in the xy plane, the reflection is obtained as a rotation
in a plane that is perpendicular to the xy plane. Shear transformations distort the
shape of an object by shifting x or i coordinate values by an amount proportional
to the coordinate distance from a shear reference line.

Transformations between Cartesian coordinate systems are accomplished
with a sequence of translate-rotate transformations. One way to specify a new co-
ordinate reference frame is to give the position of the new coordinate origin and
the direction of the new y axis. The direction of the new x axis is then obtained by
rotating the y direction vector 90 clockwise. Coordinate descriptions of objects in
the old reference frame are transferred to the new reference with the transforma-
tion matrix that superimposes the new coordinate axes onto the old coordinate
axes. This transformation matrix can be calculated as the concatentation of a
translation that moves the new origin to the old coordinate origin and a rotation
to align the two sets of axes. The rotation matrix is obtained from unit vectors in
the x and y directions for the new system.

Two-dimensional geometric transformations are affine transformations.
That is, they can be expressed as a linear function of coordinates x and y. Affine
transformations transform parallel lines to parallel lines and transform finite
points to finite points. Geometric transformations that do not involve scaling or
shear also preserve angles and lengths.

Transformation functions in graphics packages are usually provided only
for translation, rotation, and scaling. These functions include individual proce-
dures for creating a translate, rotate, or scale matrix. and functions for generating
a composite matrix given the parameters for a transformation sequence.

Fast raster transformations can be performed by moving blocks of pixels.
This avoids calculating transformed coordinates for an object and applying scan-
conversion routines to display the object at the new position. Three common
raster operations (bitBlts or pixBlts) are copy, read, and write. When a block of
pixels is moved to a new position in the frame buffer, we can simply replace the
old pixel values or we can combine the pixel values using Boolean or arithmetic
operations. Raster translations are carried out by copying a pixel block to a new
location in the frame buffer. Raster rotations in multiples of 90° are obtained by
manipulating row and column positions of the pixel values in a block. Other
rotations are performed by first mapping rotated pixel areas onto destination po-
sitions in the frame buffer, then calculating overlap areas. Scaling in raster trans-
formations is also accomplished by mapping transformed pixel areas to the
frame-buffer destination positions.

REFERENCES

For additional information on homogeneous coordinates in computer graphics, see Blinn
(1977 and 1978).

Transformation functions in PHICS are discussed in Hopgood and Duce (1991), tHoward et
al. (1991), Gaskins (1992), and Blake (1993). For information on GKS transformation func-
tions, see Hopgood et al. (1983) and Enderle, Kansy, and Pfaff (1984).

EXERCISES

5-1 Write a program to continuously rotate an object about a pivot point. Smatl angles are
to be used for each successive rotation, and approximations to the sine and cosine
functions are to be used to speed up the calculations. The rotation angle for each step
is to be chosen so that the object makes one complete revolution in less than 30 sec-
onds. To avoid accumulation of coordinate errors, reset the original coordinate values
for the object at the start of each new revolution.

5-2 Show that the composition of two rotations is additive by concatinating the matrix
representations for R(8,) and R(8,) to obtain

R(6;) - R(8) = R(6; + &)

5-3 Write a set of procedures to implement the buildTransformationMatrix and the
composeTransformationMatrix functions to produce a composite transforma-
tion matrix for any set of input transformation parameters.

5-4 Write a program that applies any specified sequence of transformations to a displayed
object. The program is to be designed so that a user selects the transformation se-
quence and associated parameters from displayed menus, and the composite transfor-

Exercises

213

Chapter 5

214

Two-Dimensional Geomes:'c
Transforma. ons

5-5

5-6

5-7

5-8

5-9

5-10

5-1

5-1.

[

g

5-17

5-19

mation is then calculated and used to transform the object. Display the original object
and the transformed object in different colors or different fill patterns.

Modify the transtormation matrix (5-35), for scaling in an arbitrary direction, to in-
clude coordinates for any specified scaling fixed point (x, yo.

Prove that the multiplication of transformation matrices for each of the following se-
quence of operations is commutative:

{a) Two successive rotations.

(b) Two successive trans|ations.

{c) Two successive scalings.

Prove that a uniform scaling (s, = s,) and a rotatior form a commutative pair of opera-
tions but that, in general, scaling and rotation are not commutative operations.
Multiply the individual scale, rotate, and translate matrices in Eq. 5-38 to verify the el-
ements in the composite transformation matrix.

Show that transformation matrix (5-51), for a reflection about the line y = x, is equiva-
lent to a reflection relative to the x axis followed by a counterclockwise rotation of
90°.

Show that transformation matrix (5-52), for a reflection about the line y = —x, is
equivalent to a reflection relative to the y axis followed by a counterclockwise rotation
of 90°.

Show that tworsuccessive reflections about either of the coordinate axes is equivalent
to a single rotation about the coordinate origin.

Determine the form of the transformation matrix for a reflection about an arbitrary line
with equation y = mx + b

Show that two successive reflections about any line passing through the coordinate
origin is equivalent to a single rotation about the origin

Determine a sequence of basic transformations that are equivalent 1o the x-direction
shearing matrix {5-53).

Determine a sequence of basic transformations that are equivalent to the y<direction
shearing matrix (5-57)

Set up a shearing procedure to display italic characters, given a vector font definitior,
That is, all character shapes in this font are defined with straight-line segments, and
italic characters are formed with shearing transformations. Determine an appropriate
value for the shear parameter by comparing italics and plain text in some available
font. Define a simple vector fon! for input to your routine.

Derive the following equations for transforming a coordinate point P = (x, yi in one
Cartesian system to the coordinate values (x', y) in another Cartesian system that is ro-
tated by an angle 8, as in Fig. 5-27. Project point P onto each of the four axes and
analyse the resulting right triangles.

X'=xcos §+ ysin 8, y'= —=xsin 8+ vcas @

Write a procedure to compute the elements of the matrix for transforming object de-
scriptions from one Cartesian coordinate system to another. The second coordinate
system is o be defired with an arigin point Py and a vector V that gives the direction
for the positive y' axis of this system.

Set up procedures for implementing a block transfer of a rectangular area of a frame
buffer, using one furction to read the area into an array and another function to cop-
the array into the designated transfer area,

Determine the results of performing two successive block transfers into the same area
of a frame buffer using the various Boolean operations.

What are the results of performing two successive block transfers into the same area o1
a frame buffer using the binary arithmetic operations?

5-22 Implement a routine to perform block transfers in a trame buifer using any specified
Boolean operation or a replacement (copy) operation Evercises

5-23 Write a routine to implement rotations in increments of 90° in frame-buffer block
transfers.

5-24 Wirite a routine to implement rotations by any specified angle in a frame-buffer block
transler.

5-25 Write a routine to implement scaling as a raster transformation of a pixel block.

215

CHAPTER

Two-Dimensional Viewing

Viewing Coordinate
Window

\\] Normalized Space

Viewport

/A ' I ws2
/ A h Window

~
I

ws1
Window ws2 Viewport

ws1 Viewport

Monitor 1 Monitor 2

216

W e now consider the formal mechanism for displaying views of a picture
on an output device. Typically, a graphics package allows a user to
specify which part of a defined picture is to be displayed and where that part is
to be placed on the display device. Any convenient Cartesian coordinate system,
referred to as the world-coordinate reference frame, can be used to define the pic-
ture. For a two-dimensional picture, a view is selected by specifying a subarea of
the total picture area. A user can select a single area for display, or several areas
could be selected for simuitaneous display or for an animated panning sequence
across a scene. The picture parts within the selected areas are then mapped onto
specified areas of the device coordinates. When multiple view areas are selected,
these areas can be placed in separate display locations, or some areas could be in-
serted into other, larger display areas. Transformations from world to device co-
ordinates involve translation, rotation, and scaling operations, as well as proce-
dures for deleting those parts of the picture that are outside the limits of a
selected display area.

6-1
THE VIEWING PIPELINE

A world-coordinate area selected for display is called a window. An area on a
display device to which a window is mapped is called a viewport. The window
defines what is to be viewed; the viewport defines where it is to be displayed.
Often, windows and viewports are rectangles in standard position, with the rec-
tangle edges parallel to the coordinate axes. Other window or viewport geome-
tries, such as general polygon shapes and circles, are used in some applications,
but these shapes take longer to process. In general, the mapping of a part of a
world-coordinate scene to device coordinates is referred to as a viewing transfor-
mation. Sometimes the two-dimensional viewing transformation is simply re-
ferred to as the window-to-viewport transformation or the windowing transformation.
But, in general, viewing involves more than just the transformation from the win-
dow to the viewport. Figure 6-1 illustrates the mapping of a picture section that
falls within a rectangular window onto a designated rectangular viewport.

In computer graphics terminology, the term window originally referred to an
area of a picture that is selected for viewing, as defined at the beginning of this
section. Unfortunately, the same term is now used in window-manager systems
to refer to any rectangular screen area that can be moved about, resized, and
made active or inactive. In this chapter, we will only use the term window to

217

Window
Viewpoint
Y¥max |
YWein =
— L Ju
meln Xwnwx vawn Xvﬂ’\.l)(
World Coordinates Device Coordinates

Figuere 6-1
A viewinyg transformation using standard rectang,es for the window and viewport.

refer to an area of a world-coordinate scene that has been selected for displav.
When we consider graphical user interfaces in Chapter & we will discuss screen
windows and window-manager systems.

Some graphics packages that provide window and viewport operations
allow only standard rectangles, but a more general approach is to allow the rec-
tangular window to have any orientation. In this case, we carry out the viewing
transformation in several steps, as indicated in Fig. 6-2. First, we construct the
scene in world coordinates using the output primitives and atiributes discussed
in Chapters 3 and 4. Next, to obtain a particular orientation for the window, we
can set up a two-dimensional viewing-coordinate system in the world-coordi-
nate plane, and define a window in the viewing-coordinate system. The viewing-
coordinate reference frame is used to provide a method for setting up arbitrarv
orientations for rectangular windows. Once the viewing reference frame is estab-
lished, we can transform descriptions in world coordinates to viewing coordi-
nates. We then define a viewport in normalized coordinates (in the range from 0
to 1) and map the viewing-coordinate description of the scene to normalized co-
ordinates. At the final step, all parts of the picture that he outside the viewport
are clipped, and the contents of the viewport are transferred to device coordi-
nates. Figure 6-3 illustrates a rotated viewing-coordinate reference frame and the
mapping to normalized coordinates.

By changing the position of the viewport, we can view objects at different
positions on the display area of an output device. Also, by varying the size of
viewports, we can change the size and proportions of displayed objects. We
achieve zooming effects by successively mapping different-sized windows on a

Construct 7 Convert Map Viewing Map Normalized
World-Coordinate World- Coordinates to Viewportto
MC Scene Using WC Coordinates vC Normalized NVC Device &~
—™ Modealing-Coordinate §—> to —— Viewing Coordinates " } Coordinates "+
Transformations Viewing using Window-Viewport_ |
Coordinates Specifications g

Figure 6-2
The two-dimensional viewing-transformation pipeline.

218

&,
IQ‘P
y world 14
_—~Window
Yo _-Viewpoint
+
[
s,
—t ha —
Xo x world 0 1
World Coordinates Normalized

Device Coordinates

Figure 6-3
Setting up a rotated world window in viewing coordinates and the
corresponding normalized-coordinate viewport.

fixed-size viewport. As the windows are made smaller, we zoom in on some part
of a scene to view details that are not shown with larger windows. Similarly,
more overview is obtained by zooming out from a section of a scene with succes-
sively larger windows. Panning effects are produced by moving a fixed-size win-
dow across the various objects in a scene.

Viewports are typically defined within the unit square (normalized coordl—
nates). This provides a means for separating the viewing and other transforma-
tions from specific output-device requirements, so that the graphics package is
largely device-independent. Once the scene has been transferred to normalized
coordinates, the unit square is simply mapped to the display area for the particu-
lar output device in use at that time. Different output devices can be used by pro-
viding the appropriate device drivers.

When all coordinate transformations are completed, viewport clipping can
be performed in normalized coordinates or in device coordinates. This allows us
to reduce computations by concatenating the various transformation matrices.
Clipping procedures are of fundamental importance in computer graphics. They
are used not only in viewing transformations, but also in window-manager sys-
tems, in painting and drawing packages to eliminate parts of a picture inside or
outside of a designated screen area, and in many other applications.

6-2
VIEWING COORDINATE REFERENCE FRAME

This coordinate system provides the reference frame for specifying the world-
coordinate window. We set up the viewing coordinate system using the proce-
dures discussed in Section 5-5. First, a viewing-coordinate origin is selected at
some world position: Py = (%, yo). Then we need to establish the orientation, or
rotation, of this reference frame. One way to do this is to specify a world vector V
that defines the viewing y, direction. Vector V is called the view up vector.

Given V, we can calculate the components of unit vectors v = (v,, v,) and
u = (u,, u,) for the viewing y, and x, axes, respectively. These unit vectors are
used to form the first and second rows of the rotation matrix R that aligns the
viewing x,y, axes with the world x,y,, axes.

Section 6-2

Viewing Coordinate Reference

Frame

219

Chapter 6

Two-Dimensional Viewing

y
world world fview

YQ'.\

Figure 6-4

A viewing-coordinate frame is moved into coincidence with the world
frame in two steps: (a) translate the viewing origin to the world origin,
then (b) rotate to align the axes of the two systems.

We obtain the matrix for converting world-coordinate positions to viewing
coordinates as a two-step composite transformation: First, we translate the view-
ing origin to the world origin, then we rotate to align the two coordinate refer-
ence frames. The composite two-dimensional transformation to convert world
coordinates to viewing coordinates is

Myucve =R-T (6-1)
where T is the translation matrix that takes the viewing origin point P, to the

world origin, and R is the rotation matrix that aligns the axes of the two reference
frames. Figure 6-4 illustrates the steps in this coordinate transformation.

6-3
WINDOW-TO-VIEWPORT COORDINATE TRANSFORMATION

Once object descriptions have been transferred to the viewing reference frame,
we choose the window extents in viewing coordinates and select the viewport
limits in normalized coordinates (Fig. 6-3). Object descriptions are then trans-
ferred to normalized device coordinates. We do this using a transformation that
maintains the same relative placement of objects in normalized space as they had
in viewing coordinates. [f a coordinate position is at the center of the viewing
window, for instance, it will be displayed at the center of the viewport.

Figure 6-5 illustrates the window-to-viewport mapping. A point at position
(xw, yw) in the window 1s mapped into position (xv, yv) in the assoctated view-
port. To maintain the same relative placement in the viewport as in the window,
we require that

XV =Xy XW — XUy,
Wmax ~ XVmin AWmax ™ XW,

min

YU — YUnin - YW~ Y,
YUmax ~ ¥V YOmax ~ YWmin

6-2)

YW T
yvmu
® (xv, yv)
(xw, yw) °
YWoan T
+ -
melﬂ xwmu
Figure 6-5

A point at position (xw, yw) in a designated window is mapped to
viewport coordinates (xv, yv) so that relative positions in the two areas
arethe same.

Solving these expressions for the viewport position (xv, yv), we have

AV = AV, + (W — XW, 5%

(6-3)
Y0 = YOmin + (yw - Wmm)sy
where the scaling factors are
sx = rUmax - xvmm
xwmax - xwmm
6-4)

sy = yvmax — yvmin
YWmax ~ YW

Equations 6-3 can also be derived with a set of transformtions that converts the
window area into the viewport area. This conversion is performed with the fol-
lowing sequence of transformations:

1. Perform a scaling transformation using a fixed-point position of (xw
YWn) that scales the window area to the size of the viewport.

2. Translate the scaled window area to the position of the viewport.

Relative proportions of objects are maintained if the scaling factors are the
same (sx = sy). Otherwise, world objects will be stretched or contracted in either
the x or y direction when displayed on the output device.

Character strings can be handled in two ways when they are mapped to a
viewport. The simplest mapping maintains a constant character size, even
though the viewport area may be enlarged or reduced relative to the window.
Ttis method would be employed when text is formed with standard character
fonts that cannot be changed. In systems that allow for changes in character size,
string definitions can be windowed the same as other primitives. For characters
formed with line segments, the mapping to the viewport can be carried out as a
sequence of line transformations.

From normalized coordinates, object descriptions are mapped to the vari-
ous display devices. Any number of output devices can be open in a part‘cular
application, and another window-to-viewport transformation can be performed
for each open output device. This mapping, called the workstation transforma-

Section 6-3

Window-to-Viewport Coordinate

Transformation

221

Chapter 6

222

Two-Dimensional Viewing

Viewing Coordinate

Window
\ ; Normalized Space
EES- Viewport
LA @ we
Window

Monitor 1 Monitor 2

Figure 6-6
Mapping selected parts of a scene in normalized coordinates to
different video monitors with workstation transformations.

tion, is accomplished by selecting a window area in normalized space and a
viewport area in the coordinates of the display device. With the workstation
transformation, we gain some additional control over the positioning of parts of
a scene on individual output devices. As illustrated in Fig. 6-6, we can use work-
station transformations to partition a view so that different parts of normalized
space can be displayed on different output devices.

6-4
TWO-DIMENSIONAL VIEWING FUNCTIONS

We define a viewing reference system in a PHIGS application program with the
following function:

evaluatevViewOrientationMatrix (x0, y0, xV, y\.
error, viewMatrix)

where parameters x0 and y0 are the coordinates of the viewing origin, and para-
meters xV and yV are the world-coordinate positions for the view up vector. An
integer error code is generated if the input parameters are in error; otherwise, the
viewMatrix for the world-to-viewing transformation is calculated. Any number
of viewing transformation matrices can be defined in an application.

To set up the elements of a window-to-viewport mapping matrix, we in-
voke the function

2valuateViewMappingMatrix (xwmin, xwmax, ywnmin, y»max,
xvmin, xwvmax, yvmin, yvmax, error, viewMappingMatrix)

Here, the window limits in viewing coordinates are chosen with parameters
xwmin, xwmaXx, ywmin, and ywmax; and the viewport limits are set with the nor-

malized coordinate positions xvmin, xvmax, yvmin, yvmax. As with the
viewing-transformation matrix, we can construct several window-viewport pairs
and use them for projecting various parts of the scene to different areas of the
unit square.

Next, we can store combinations of viewing and window-viewport map-
pings for various workstations in a viewing table with

setViewRepresentation {(ws, viewlIndex, viewMatrix,
viewMappingMatrix, xclipmin, =xclipmax, yclipmin,
yclipmax, clipxy)

where parameter ws designates the output device (workstation), and parameter
viewIndex sets an integer identifier for this particular window-viewport pair.
The matrices viewMatrix and viewMappingMatrix can be concatenated and
referenced by the viewIndex. Additional clipping limits can also be specified
here, but they are usually set to coincide with the viewport boundaries. And pa-
rameter clipxy is assigned either the value nociip or the value clip. This allows
us to turn off clipping if we want to view the parts of the scene outside the view-
port. We can also select noclip to speed up processing when we know that all of
the scene is included within the viewport limits.
The function

s2tViewindex (viewlIndex)

selects a particular set of options from the viewing table. This view-index selec-
tion is then applied to subsequently specified output primitives and associated
attributes and generates a display on each of the active workstations.

At the final stage, we apply a workstation transformation by selecting a
workstation window-viewport pair:

setWorkstationWindow (ws, xwsWindmir, xwsWindmax,
ywsWindmin, ywsWindmax)

setWorkstationViewport (ws. xwsVPortmin, XwsVPortmax,
ywsVPortmin, ywsVPortmax)

where parameter ws gives the workstation number. Window-coordinate extents
are specified in the range from 0 to 1 (normalized space), and viewport limits are
in integer device coordinates.

If a workstation viewport is not specified, the unit square of the normalized
reference frame is mapped onto the largest square area possible on an output de-
vice. The coordinate origin of normalized space is mapped to the origin of device
coordinates, and the aspect ratio is retained by transforming the unit square onto
a square area on the output device.

Example 6-1 Two-Dimensional Viewing Example

As an example of the use of viewing functions, the following sequence of state-
ments sets up a rotated window in world coordinates and maps its contents to
the upper right corner of workstation 2. We keep the viewing coordinate origin at
the world origin, and we choose the view up direction for the window as (1, 1).
This gives us a viewing-coordinate system that is rotated 45° clockwise in the
world-coordinate reference frame. The view index is set to the value 5.

Section 6-4

Two-Dimensional Viewing
Functions

223

Chapter 6

224

Two-Dimensional Viewing

evaluateViewOrientationMatrix (¢, 0, 1, 1,
viewError, viewMat);
evaluateViewMappingMatrix (-60.5, 41.24, -20.75, 82.5, 0.5,
0.8, (.7, 1.0, viewMapError, viewMapMat);
setViewRepresentation (2, 5, viewMat, viewMapMmat, 0.5, 0.8,
0.7, 1.0, <lipl);
setViewlndex (5);

Similarly, we could set up an additional transformation with view index 6 that
would map a specified window into a viewport at the lower left of the screen.
Two graphs, for example, could then be displayed at opposite screen corners
with the following statements.

setViewIndex (5);
polyline (3, axes);
polyline (15, datal}:
setViewIndex (6);
polyline (3, axes);
polyline (25, datal);

View index 5 selects a viewport in the upper right of the screen display, and view
index 6 selects a viewport in the lower left corner. The function polyline (3,
axes) produces the horizontal and vertical coordinate reference for the data plot
in each graph.

6-5
CLIPPING OPERATIONS

Generally, any procedure that identifies those portions of a picture that are either
inside or outside of a specified region of space is referred to as a clipping algo-
rithm, or simply clipping. The region against which an object is to clipped is
called a clip window.

Applications of clipping include extracting part of a defined scene for view-
ing; identifying visible surfaces in three-dimensional views; antialiasing line seg-
ments or object boundaries; creating objects using solid-modeling procedures;
displaying a multiwindow environment; and drawing and painting operations
that allow parts of a picture to be selected for copying, moving, erasing, or dupli-
cating. Depending on the application, the clip window can be a general polygon
or it can even have curved boundaries. We first consider clipping methods using
rectangular clip regions, then we discuss methods for other clip-region shapes.

For the viewing transformation, we want to display only those picture parts
that are within the window area (assuming that the clipping flags have not been
set to noclip). Everything outside the window is discarded. Clipping algorithms
can be applied in world coordinates, so that only the contents of the window in-
terior are mapped to device coordinates. Alternatively, the complete world-coor-
dinate picture can be mapped first to device coordinates, or normalized device
coordinates, then clipped against the viewport boundaries. World-coordinate
clipping removes those primitives outside the window from further considera-
tion, thus eliminating the processing necessary to transform those primitives to
device space. Viewport clipping, on the other hand, can reduce calculations by al-
lowing concatenation of viewing and geometric transformation matrices. But

viewport clipping does require that the transformation to device coordinates be Section 6-7

performed for all objects, including those outside the window area. On raster Line Clipping
systems, clipping algorithms are often combined with scan conversion.

In the following sections, we consider algorithms for clipping the following
primitive types

¢ Point Clipping

¢ Line Clipping (straight-line segments)
» Area Clipping (polygons)

Curve Clipping

Text Clipping

Line and polygon clipping routines are standard components of graphics pack-
ages, but many packages accommodate curved objects, particularly spline curves
and conics, such as circles and ellipses. Another way to handle curved objects is
to approximate them with straight-line segments and apply the line- or polygon-
clipping procedure.

6-6
POINT CLIPPING

Assuming that the clip window is a rectangle in standard position, we save a
point P = (x, y) for display if the following inequalities are satisfied:
TWein S X = XWpyy,
6-5)
Wmin = y = ywm.:x

where the edges of the clip window (YW, YW, YWin, ¥&may) Can be either the
world-coordinate window boundaries or viewport boundaries. If any one of
these four inequalities is not satisfied, the point is clipped (not saved for display).

Although point clipping is applied less often than line or polygon clipping,
some -applications may require a point-clipping procedure. For example, point
clipping can be applied to scenes involving explosions or sea foam that are mod-
eled with particles (points) distributed in some region of the scene.

6-7
LINE CLIPPING

Figure 6-7 illustrates possible relationships between line positions and a standard
rectangular clipping region. A line<clipping procedure involves several parts.
First, we can test a given line segment to determine whether it lies completely in-
side the clipping window. If it does not, we try to determine whether it lies com-
pletely outside the window. Finally, if we cannot identify a line as completely in-
side or completely outside, we must perform intersection calculations with one
or more clipping boundaries. We process lines through the “inside-outside” tests
by checking the line endpoints. A line with both endpoints inside all clipping
boundaries, such as the line from P, to P,, is saved. A line with both endpoints
outside any one of the clip boundaries (line P,P, in Fig. 6-7) is outside the win-

i)

Window Windaw

P,

| e,
|
e P
P)
Befare Clipping After Ciipping
(a) (b)

Figure 6-7

Line clipping against a rectangular clip window.

226

dow. All other lines cross one or more clipping boundaries, and may require cal-
culation of multiple intersection points. To minimize calculations, we try to de-
vise clipping algorithms that can efficiently identify outside lines and reduce in-
tersection calculations.

For a line segment with endpoittts (¥, ¥;) and (x,. 2} and one or both end-
points autside the clipping rectangle, the parametric representation

Y oooxy 4ty <oxg) .
(6-6)
y=y tulyy—y), Osu=d

could be used to determine values of parameter u for intersections with the clip-
ping boundary coordinates. If the value of ¥ for an intersection with a rectangle
boundary edge is outside the range 0 to 1, the line does not enter the interior of
the window at that boundary. If the value of « is within the range from O to 1, the
line segment does indeed cross into the clipping area. This method can be ap-
plied to each clipping boundary edge in turn to determine whether any part of
the line segment is to be displayed. Line segments that are parallel to window
edges can be handled as special cases.

Clipping line segments with these parametric tests requires a good deal of
computation, and faster approaches to clipping are possible. A number of effi-
cient jine clippers have been developed, and we survey the major algorithms in
the next sections. Some algorithms are designed explicitly for two-dimensional
pictures and some are easily adapted to three-dimensional applications.

Cohen-Sutherland Line Clipping

This is one of the oldest and most popular line-clipping procedures. Generally,
the method speeds up the processing of line segments by performing initial tests
that reduce the number ol intersections that must be calculated. Everv line end-

point in a picture is assigned a four-digit binary code, called a region code, that
identifies the location of the point relative to the boundaries of the clipping rec-
tangle. Regions are set up in referehce to the boundaries as shown in Fig. 6-8.
Each bit position in the region code is used to indicate one of the four relative co-
ordinate positions of the point with respect to the clip window: to the left, right,
top, or bottom. By numbering the bit positions in the region code as 1 through
4 from right to left, the coordinate regions can be correlated with the bit posi-
tions as

bit 1: left
bit 2: right
bit 3: below
bit 4: above

A value of 1 in any bit position indicates that the point is in that relative position;
otherwise, the bit position is set to 0. If a point is within the clipping rectangle,
the region code is 0000. A point that is below and to the left of the rectangle has a
region code of 0101.

Bit values in the region code are determined by comparing end point coordi-
nate values (x, y) to the clip boundaries. Bit 1 is set to 1 if x < xtwy;,. The other
three bit values can be determined using similar comparisons. For languages in
which bit manipulation is possible, region-code bit values can be determined
with the following two steps: (1) Calculate differences between endpoint coordi-
nates and clipping boundaries. (2) Use the resultant sign bit of each difference
calculation to set the corresponding value in the region code. Bit 1 is the sign bit
of x — xw ;. bit 2 is the sign bit of xw,, — x; bit 3 is the sign bit of y — ywg,,; and
bit 4 is the sign bit of yw,,,, — y.

Once we have established region codes for all line endpoints, we can
quickly determine which lines are completely inside the clip window and which
are clearly outside. Any lines that are completely contained within the window
boundaries have a region code of 0000 for both endpoints, and we trivially accept
these lines. Any lines that have a 1 in the same bit position in the region codes for
each endpoint are completely outside the clipping rectangle, and we trivially re-
ject these lines. We would discard the line that has a region code of 1001 for one
endpoint and a code of 0101 for the other endpoint. Both endpoints of this line
are left of the clipping rectangle, as indicated by the 1 in the first bit position of
each region code. A method that can be used to test lines for total clipping is to
perform the logical and operation with both region codes. If the result is not 0000,
the line is completely outside the clipping region.

Lines that cannot be identified as completely inside or completely outside a
clip window by these tests are checked for intersection with the window bound-
aries. As shown in Fig. 6-9, such lines may or may not cross into the window in-
terior. We begin the clipping process for a line by comparing an outside endpoint
to a clipping boundary to determine how much of the line can be discarded.
Then the remaining part of the line is checked against the other boundaries, and
we continue until either the line is totally discarded or a section is found inside
the window. We set up our algorithm to check line endpoints against clipping
boundaries in the order left, right, bottom, top.

To illustrate the specific steps in clipping lines against rectangular bound-
aries using the Cohen—Sutherland algorithm, we show how the lines in Fig. 6-9
could be processed. Starting with the bottom endpoint of the line from P, to P,,

Section 6-7
Line Clipping
001 1000 101
o001 m 010
[Window |
01 0100 10
Figure 6-8
Binary region codes assigned

to line endpoints according to
relative position with respect
to the clipping rectangle.

227

Chapter 6

Two-Dimensional Viewing

P;

NP3 Window

!

)

|

’ Figure 6-9

i Lines extending from one

i P, coordinate region to another may

P, ! pass through the clip window,
P \ P or they may intersect clipping
3|| ! boundaries without entering the

window.

we check P, against the left, right, and bottom boundaries in turn and find that
this point is below the clipping rectangle. We then find the intersection point P,
with the bottom boundary and discard the line section from P, to P}, The line
now has been reduced to the section from P; to P,. Since P, is outside the clip
window, we check this endpoint against the boundaries and find that it is to the
left of the window. Intersection point P, is calculated, but this point is above the
window. So the final intersection calculation yields P;, and the line from P| to P
is saved. This completes processing for this line, so we save this part and go on to
the next line. Point P, in the next line is to the left of the clipping rectangle, so we
determine the intersection P3 and eliminate the line section from P, to P;. By
checking region codes for the line section from P} to P, we find that the remain-
der of the line is below the clip window and can be discarded also.

Intersection points with a clipping boundary can be calculated using the
slope-intercept form of the line equation. For a line with endpoint coordinates (x,,
y1) and (x,, y»), the y coordinate of the intersection point with a vertical boundary
can be obtained with the calculation

y=yn+mx-x) (6-7)
where the x value is set either to xw,,;, or to xw,,, and the slope of the line is cal-

culated as m = (y; ~ y;}/(x;, — x;). Similarly, if we are looking for the intersection
with a horizontal boundary, the x coordinate can be calculated as

x:n+y;% (6-8)

with y set either to yw., or to yw,,,,.

The following procedure demonstrates the Cohen-Sutherland line-clipping
algorithm. Codes for each endpoint are stored as bytes and processed using bit
manipulations.

#$define ROUND(a)

{({int) (a+0.5})

/* Bit masks encode a point's position relative to the clip edges. A
point ‘s status is encoded by OR'ing together appropriate bit masks.

*/
tdefine LEFT_EDGE

228

Ox1

#define RIGHT EDGE 0Ox2
#defne BOTTOM_EDGE 0Ox4
#define TOP EDGE Ox8

% Points encoded as 0000 are completely Inside the clip rectangle;
all others are outside at least one edge. If OR'ing two codes is
FALSE (no bits are set in either code), the line can be Accepted. If
the AND operation between two codes is TRUE, the line defined by those
endpoints is completely outside the clip region and can be Rejected.

Y

#define INSIDE(a) (ta)
#define REJECT(a,b) (a&b)
#define ACCEPT(a.b) (!{(alb))

unsigned char encode (wcPtZ2 pt. dcPt winMin, dcPt winMax)
{
unsigned char code=0x(C0;

Lf (pr.x < winMin.x)
code = code | LEFT_EDGE;

it (pt.x » winMax.x)

code = code | RIGHT_EDGE;
if (pt.y < winMin.y)

code = code | BOTTOM_EDGE:
if (pt.y > winMax.y)

code = code | TOP_EDGE;

return {code);

vo1d swapPts (wcPt2 * pl, wcPt2 * p2)
(

wCPLZ tmp;

tmp = *pl; *pl = *p2; *p2 = tmp;

vo.d swapCudes {unsigned char * ¢l, unsigrec¢ char * ¢2)
{

unsigned char tmp;

tmp = *cl; *cl = *c2; *c2 = tmp;
}

vo.d cliplLine (dcPt winMin, dJdcPt winMax, wckt2 pl, wcPu2 p2)
{

unsigned c¢har codel, code?;

int done = FALSE, draw = FALSE:

float m:

while {(!done) ({
codel = encode (pl, winMin, winMax);
code2 = encode (p2, winMin, winMax);
if (ACCEPT (codel, code2))
done = TRUE;
draw = TRUE:
)
else
if (REJECT (codel, codel2)}
done = TRUE;
else |
/* Ensure that pl is outside window */
if (INSIDE (codei)) {

229

swapPts (&pl, &p2);
swapCodes (&codel, &codel);
}
/* Use slope {m) to find line-clipEdge intersections */
if (p2.x !'= pl.x)
m = (p2.y - pl.y] / (p2.x - pl.x);
if {codel & LEFT_EDGE)} {
pl.y += (winMin.x - pl.x) * m;
pl.x = winMin.x;
}
else
if {codel & RIGHT_EDGE) {
pPl.y += (winMax.x - pl.x) * m;
pl.x = winMax.x;
}
else
if (codel & BOTTOM_EDGE) {
/* Need to update pl.x for non-vertical lines only */
it (p2.x = pl.x)
pl.x += (winMin.y - pl.y) / m;
pl.y = winMin.y;
)
else
if (codel & TOP_EDGE} {
if {p2.x != pl.x)
pl.x += (winMax.y - pl.y) / ©u;
rl.y = winMax.y;
1

)
}
if (draw)
lineDDA (ROUND(pl.x), ROUND(pl.y), ROUND(p2.x), ROUND(p2.y))};

Liang-Barsky Line Clipping

Faster line clippers have been developed that are based on analysis of the para-
metric equation of a line segment, which we can write in the form

x =Xy + ubx 6-9)
y =y, + uldy, 0=u=1

where Ax = x, — x; and Ay = y, — y,. Using these parametric equations, Cyrus
and Beck developed an algorithm that is generally more efficient than the
Cohen-Sutherland algorithm. Later, Liang and Barsky independently devised an
even faster parametric line-clipping algorithm. Following the Liang-Barsky ap-
proach, we first write the point-clipping conditions 6-5 in the parametric form:

AW = X + UDX = xW,,

{6-10)
yzumin = yl + uAy = yu)max
Each of these four inequalities can be expressed as
up, < q,, k=1,2,3,4 (6-11)

230

where parameters p and q are defined as

p, = - Ax, g4y = Xy T AWyyn

b = AX, G2 = XWmay X, ((7]2)
ps = —Ay, 43 = Y1~ Yl

P4 = AV/ ‘74 = .Vu’max }11

Any line that is parallel to one of the clipping boundaries has p, = 0 for the value
of k corresponding to that boundary (k =1, 2, 3, and 4 correspond to the left,
right, bottom, and top boundaries, respectively). If, for that value of k, we also
find g, < 0, then the line is completely outside the boundary and can be elimi-
nated from further consideration. If g, =0, the line is inside the parallel clipping
boundary.

When p; - 0, the infinite extension of the line proceeds from the outside to
the inside of the infinite extension of this particular clipping boundary. If p, > 0,
the line proceeds from the inside to the outside. For a nonzero value of p,, we can
calculate the value of 1 that corresponds to the point where the infinitely ex-
tended line intersects the extension of boundary k as

u = (6-13)

For each line, we can calculate values for parameters u; and u, that define
that part of the line that lies within the clip rectangle. The value of u, is deter-
mined by looking at the rectangle edges for which the line proceeds from the out-
side to the inside (p < 0). For these edges, we calculale r, = g,/p;. The value of u,
is taken as the largest of the set consisting of 0 and the various values of r. Con-
versely, the value of u; is determined by examining the boundaries for which the
line proceeds from inside to outside (p > 0). A value of r, is calculated for each of
these boundaries, and the value of u, is the minimum of the set consisting of 1
and the calculated r values. If 4, > u,, the line is completely outside the clip win-
dow and it can be rejected. Otherwise, the endpoints of the clipped line are calcu-
lated from the two values of parameter .

This algorithm is presented in the following procedure. Line intersection
parameters arce initialized to the values u; =0 anc u,; = 1. For each clipping
boundary, the appropriate values for p and g are calculated and used by the func-
tion clipTest to determine whether the line can be rejected or whether the intersec-
tion parameters are to be adjusted. When p < (), the parameter r is used to update
uy;; when p > (0, parameter r is used to update u,. If updating 1, or u, results in
Uy > uy, we reject the line. Otherwise, we update the appropriate u parameter
only if the new value results in a shortening of the ine. When p = 0 and q < 0,
we can discard the hine since it is parallel to and outside of this boundary. If the
line has not been rejected after all four values of p and g have been tested, the
endpoints of the clipped line are determined from values of u; and u,.

Section 6-7

Line Clipping

#include "graphics. h*
#define ROUND (a) (1int) (a+d.5))

int clipTest (float p, float q, float * ul, flear * u2)

231

float r;
int retvVal = TRUE;

if (p < 0.0} (
r = q / p;
if (r > *u2:
H retvVal = FALSE;

else
if (r » *ul)
*ul = 1
}
else

if (p » 0.0) {
r=qg/ p;
if {(r < *ul)
retVal = FALSE;
else if {(r < *u2)
*u2 = r;
}
else
/* p = 0, so line is parallel to this ¢lipping edge */
if (g < 0.0}
/* Line is outside clipping edge
retVal = FALSE;

return (retval);
> (
void cliplLine (dcPt winMin, dcPt winMax, wcF:2Z pl, wcPt2 p2)
{

float ul = 0 0, u2 = 1.0, dx = p2.x - pl.x dy;

if (clipTest (-dx, pl.x - winMin.x, &ul, &u2j) [
if (¢clipTest (dx, winMax.x - pl.x, &ul, &u2)) {
dy = p2.y - pl.y:
if (clipTest {(-dy, pl.y - winMin.y, &ul, &u2))
1f {clipTest (dy, winMax.y - pl.y, &uvi. &u2)) { ;
if (u2 < 1.0} { !
p2.x = pl.x + u2 * dx; i
pZz.y = pl.y + u2 * dy; !
)
1f {ul » 0.0) {
pl.x = ul * dx; ,
pl.y += ul * dy: I
|

}
lineDDA (ROUND{pl.x), ROUND(pl.y)} ROUND(p2.x}, ROUND(p2.y));

In general, the Liang-Barsky algorithm is more efficient than the
Cohen—Sutherland algorithm, since intersection calculations are reduced. Each
update of parameters u, and u, requires only one division; and window intersec-
tions of the line are computed only once, when the final values of u; and u, have
been computed. In contrast, the Cohen-Sutherland algorithm can repeatedly cal-
culate intersections along a line path, even though the line may be completely
outside the clip window. And, each intersection calculation requires both a divi-
sion and a multiplication. Both the Cohen-Sutherland and the Liang-Barsky al-

gorithms can be extended to three-dimensional clipping (Chapter 12).
232

Nicholl-Lee-Nicholl Line Clipping

By creating more regions around the clip window, the Nicholl-Lee-Nicholl (or
NLN) algorithm avoids multiple clipping of an individual line segment. In the
Cohen-Sutherland method, for example, multiple intersections may be calcu-
lated along the path of a single line before an intersection on the clipping rectan-
gle is located or the line is completely rejected. These extra intersection calcula-
tions are eliminated in the NLN algorithm by carrying out more region testing
before intersection positions are calculated. Compared to both the Cohen-Suther-
land and the Liang-Barsky algorithms, the Nicholl-Lee-Nicholl algorithm per-
forms fewer comparisons and divisions. The trade-off is that the NLN algorithm
can only be applied to two-dimensional clipping, whereas both the Liang-Barsky
and the Cohen-Sutherland methods are easily extended to three-dimensional
scenes.

For a line with endpoints P, and P,, we first determine the position of point
P, for the nine possible regions relative to the clipping rectangle. Only the three
regions shown in Fig. 6-10 need be considered. If P, lies in any one of the other
six regions, we can move it to one of the three regions in Fig. 6-10 using a sym-
metry transformation. For example, the region directly above the clip window
can be transformed to the region left of the clip window using a reflection about
the line y = —x, or we could use a 90° counterclockwise rotation.

Next, we determine the position of P, relative to P,. To do this, we create
some new regions in the plane, depending on the location of P,. Boundaries of
the new regions are half-infinite line segments that start at the position of P, and
pass through the window corners. If P, is inside the clip window and P, is out-
side, we set up the four regions shown in Fig. 6-11. The intersection with the ap-
propriate window boundary is then carried out, depending on which one of the
four regions (L, T, R, or B) contains P,. Of course, if both P, and P, are inside the
clipping rectangle, we simply save the entire line.

If P, is in the region to the left of the window, we set up the four regions, L,
LT, LR, and LB, shown in Fig. 6-12. These four regions determine a unique bound-
ary for the line segment. For instance, if P, is in region L, we clip the line at the
left boundary and save the line segment from this intersection point to P,. But if
P, is in region LT, we save the line segment from the left window boundary to the
top boundary. If P, is not in any of the four regions, L, LT, LR, or LB, the entire
line is clipped.

P, in Window P, in Edge Region
{a) {b)

Section 6-7

Line Clipping

F.in Corner Region

e}

Figure 6-10
Three possible positions for a line endpoint P, in the NLN line-clipping algorithm.

3

A //
~ P
\ e
L AN o A
x
PR
P ~.
/ ~
P % .~
,
.
4
Figure 6-11

The four clipping regions
used in the NLN algorithm
when P, is inside the clip
window and P, is outside.

234

s LT
///:__ »—’—’-
Py - { LA
\\\ L DR -
.
S, 1B Figure 6-12
N The four clipping regions used in
S the NLN algorithm when P, is
h directly left of the clip window.

For the third case, when P; is to the left and above the clip window, we use
the clipping regions in Fig. 6-13. In this case, we have the two possibilites shown,
depending on the position of P, relative to the top left corner of the window. If P,
is in one of the regions T, L, TR, TB, LR, or LB, this determines a unique clip-
window edge for the intersection calculations. Otherwise, the entire line is re-
jected.

To determine the region in which P, is located, we compare the slope of the
line to the slopes of the boundaries of the clip regions. For example, if P, is left of
the clipping rectangle (Fig. 6-12), then P, is in regjon LT if

slope P\Prg < slope P,P, < slope PP, (6-14)

or

YroW Y2V W T W (6-15)
Xg— X7 X2 — X, X <X
And we clip the entire line if
Uy =yl = x) < —x)y, —y) (6-10)

The coordinate difference and product calculations used in the slope tests
are saved and also used in the intersection calculations. From the parametric
equations

x=x, +(x; - x)u
y=yF - yu

an x-intersection position on the left window boundary is x = x, with i =
(x, — x,)/{x; — xy), so that the y-intersection position is

Y-u

X

y=y+ (xp, — 1)) (e-17)

IR Tl p
VA N T YC\: ————————————
| = N
Y -~ ~
] ~ e \ \\\\
T : VT
e AN \ U N
v ~ \ ~ ~ L
R or \ ~
\ N TR 1 ~
| \ \\ \ \\
Ui .. \ L ~
v A
1 \\
T
] Y
\ N \
! LB
L La T8 N \
¢ ' \
(a) (b)
Figure 6-13

The two possible sets of clipping regions used in the NLN algorithm when P, 1s above and
-0 the left of the clip window.

And an intersection position on the top boundary has y = y; and u =
(yr — ¥/, — yy), with

X - x
x=x + 2

Yo~

(yT' _Vl.l (G-1&8

Line Chpping Using Nonrectangular Clip Windows

In some applications, it is often necessary to clip lines against arbitrarily shaped
polyvgons. Algorithms based on parametric line equations, such as the
Liang~-Barsky method and the earlier Cyrus-Beck approach, can be extended eas-
ily to convex polygon windows. We do this by modifying the algorithm to in-
clude the parametric equations for the boundaries of the clip region. Preliminary
screening of line segments can be accomplished by processing lines against the
coordinate extents of the clipping polygon. For concave polygon-clipping re-
gions, we can still apply these parametric clipping procedures if we first split the
concave polygon into a set of convex polygons.

Circles or other curved-boundary clipping regions are also possible, but less
commonly used. Clipping algorithms for these areas are slower because intersec-
tion calculations involve nonlinear curve equations. At the first step, lines can be
clipped against the bounding rectangle (coordinate extents) of the curved clip-
ping region. Lines that can be identified as completely outside the bounding rec-
tangle are discarded. To identify inside lines, we can calculate the distance of line
endpoints from the circle center. If the square of this distance for both endpoints
of a line 15 less than or equal to the radius squared, we can save the entire line.
The remaining lines are then processed through the intersection calculations,
which must solve simultaneous circle-line equations.

Splitting Concave Polvgons

We can identify a concave polygon by calculating the cross products of succes-
sive edge vectors in order around the polygon perimeter. If the z component of

235

Chapter 6

Two-Dimensional Viewing

Figure 6-15
Splitting a concave polygon
using the vector method.

236

€, x Ej), >0
{E;, X Ey), >0
(E; > E), <O
{E, X Eg), >0
(E, > Eg), >0

(E¢ > Ey), >0

Figure 6-14
Identifying a concave polygon by calculating cross
products of successive pairs of edge vectors.

some cross products is positive while others have a negative z component, we
have a concave polygon. Otherwise, the polygon is convex. This is assuming that
no series of three successive vertices are collinear, in which case the cross product
of the two edge vectors for these vertices is zero. If all vertices are collinear, we
have a degenerate polygon (a straight line). Figure 6-14 illustrates the edge-
vector cross-product method for identifying concave polygons.

A vector method for splitting a concave polygon in the xy plane is to calculate
the edge-vector cross products in a counterclockwise order and to note the sign
of the z component of the cross products. If any z component turns out to be neg-
ative (as in Fig. 6-14), the polygon is concave and we can split it along the line of
the first edge vector in the cross-product pair. The following example illustrates
this method for splitting a concave polygon.

Example 6-2: Vector Method for Splitting Concave Polygons

Figure 6-15 shows a concave polygon with six edges. Edge vectors for this poly-
gon can be expressed as
E =(1,00), E,=(1,1,0)
E,=(1,-1,0), E, = (0,2,0)
Es =(-3,0,0), E,= (0, -2,0
where the z component is 0, since all edges are in the xy plane. The cross product
E,Ax E, for two successive edge vectors is a vector perpendicular to the xy plane
with z component equal to E.E;, — E,Ej,.
E, xE,=1(0,0,1), E, X E;= (0,0, -2)
E, X E; = (0,0, 2), E, X E; =(0,0,6)
E, x E; = (0,0, 6), E, X E =(,0,2
Since the cross product E, X E; has a negative z component, we split the polygon

along the line of vector E;. The line equation for this edge has aslope of 1and ay
intercept of ~1. We then determine the intersection of this line and the other

Vs Figure 6-16
Splitting a concave polygon using
the rotational method. After

V2 Vs ¥ rotating V; onto the x axis, we find
that V, is below the x axis. So we
split the polygon along the line

Va of VZV;.

polygon edges to split the polygon into two pieces. No other edge cross products
are negative, so the two new polygons are both convex.

We can also split a concave polygon using a rotational method. Proceeding
counterclockwise around the polygon edges, we translate each polygon vertex V,
in turn to the coordinate origin. We then rotate in a clockwise direction so that
the next vertex V,,, is on the x axis. If the next vertex, V,,,, is below the x axis, the
polygon is concave. We then split the polygon intc two new polygons along the x
axis and repeat the concave test for each of the two new polygons. Otherwise, we
continue to rotate vertices on the x axis and to test for negative y vertex values.
Figure 6-16 illustrates the rotational method for splitting a concave polygon.

6-8
POLYGON CLIPPING

To clip polygons, we need to modify the line-clipping procedures discussed in
the previous section. A polygon boundary processed with a line clipper may be
displayed as a series of unconnected line segments (Fig. 6-17), depending on the
orientation of the polygon to the clipping window. What we really want to dis-
play is a bounded area after clipping, as in Fig. 6-18. For polygon clipping, we re-
quire an algorithm that will generate one or more closed areas that are then scan
converted for the appropriate area fill. The output of a polygon clipper should be
a sequence of vertices that defines the clipped polygon boundaries.

Figure 6-17
77777777777777 ! Display of a polygon processed by a
Before Clipping After Clipping line-clipping algorithm

Section 6-8

Polygon Clipping

237

Chapter 6

238

Two-Dimensional Viewing

Onginal
Pofygon

Figure 6-19

"

Figure 618
Display of a correctly clipped
Before Clipping After Clippin olygon.

g polyg

Sutherland-Hodgeman Polvgon Clipping

We can correctly clip a polygon by processing the polygon bound ry as a whole
against each window edge. This could be accomplished by processing ali poly-
gon vertices against each clip rectangle boundary in turn. Beginning with the ini-
tial set of polygon vertices, we could first clip the polygon against the left rectan-
gle boundary to produce a new sequence of vertices. The new set of vertices
could then be successively passed to a right boundary clipper, a bottom bound-
ary clipper, and a top boundary clipper, as in Fig. 6-19. At each step, a new se-
quence of output vertices is generated and passed to the next window boundary
clipper.

There are four possible cases when processing vertices in sequence around
the perimeter of a polygon. As each pair of adjacent polygon vertices is passed to
a window boundary clipper, we make the following tests: (1) If the first vertex is
outside the window boundary and the second vertex is inside, both the intersec-
tion point of the polygon edge with the window boundary and the second vertex
are added to the output vertex list. (2) If both input vertices are inside the win-
dow boundary, only the second vertex is added to the output vertex list. (3) If the
first vertex is inside the window boundary and the second vertex is outside, only
the edge intersection with the window boundary is added to the output vertex
list. (4) If both input vertices are outside the window boundary, nothing is added
to the output list. These four cases are illustrated in Fig. 6-20 for successive pairs
of polygon vertices. Once all vertices have been processed for one clip window
boundary, the output list of vertices is clipped against the next window bound-
ary.

Clip Clip
Bottom Top

Clipping a polygon against successive window boundaries.

) Q) udAtms

)
(XeWwm 342p ‘UTHM 3dop ‘g eBpg d £3dOM} @pisSur 3url

¥ HO03 N 2uyap4
!abpa { dol ‘wo3lzog ‘aybry ‘3za7 } umua japadKiy

‘Krepunoq mopuim

STy} 10§ ISI| XaHaA jndjno
2wt syunod ays [aqey o3
pasn AIe SIQLINU PAWLL] |
xapaa yiim Sunuels ‘moputm
e jo Arepunoq 1331 3
isure@e uodLjod e Suiddy)
1z-9 24n814

‘Arepunoq yoea jsutede paddip sjutod jsef pue jsiy
ayy 4q pauyap sauy sdip sunnor Buisop e ‘passadord uaaq aaey saduIaA uo3Ljod
I[e 13y ‘Arepunoq yey) 1surede paddip 1urod 1511 oY) A1epUNOG MOpUIM YIED 10§
sa10)s JuTod 151y Aere ay] ‘sjurod jo Aerre 1ndino ayj ojur paIajua udy) st saue
-punoq mopuim [e jsutede Suiddip saarains jeyy juiod Luy -a8eis Suiddip xau
ay) 03 passed s1 31 ‘mopuim ay) apisut st d J] -adeis Suiddip 1xau ayy 03 passed pue
paje[nd[ed Sl UONDIISIAUIT 3Y} ‘ATepunoq MOpUIM SIY] SISO [Alepunoq]s pue
d syutodpua Aq pauyap aulf ay) J| Arepunoq mopuim isiy ayy jsurede Juiddip
10§ aunnol JutoddTTo ayl 0) d xapIaa Ydoea sassed aunnol urew ay | -Arepunoq
mopuim-dip yoea 10j paddipd sem jeyy jurod juadal jsow ayj SpIodads ‘s ‘AeLie
uy ‘yoeoidde Suiddip aurnadid ay) sayensuowap ainpasord Buimoroy ayl

'sraddip Arepunogq jo
auradid e y3nouyy zz-9 “31g ur sadniaa uo8£jod ay jo uoissardord ay) arensnyyr
am “gz-9 "8 ul ‘mopum dip e yym sjputod uonssiajur syt pue uo3£[od e smoys
7z-9 am3ig -aunpadid ay) ur anuyuod jou ssop jutod ay) ‘esimasyi0 staddip Lie
-punoq moj [ie 4q A7RpuUnoq MOpulm B U0 I0 3PISUl 3¢ 0] PaUTULI3IP Uadq uaadq
sey 11 1235 A[uo s xauaa ndino ayy o) pappe st (Jutod UOLISIIUT pajeMI[ed
e 10 xapaa ndut ue 1ay319) jutod v -saunnor uiddi> yo aunadid e pue sossasord
a13uis e 10 siossadord [pesed yym auop aq ued sgz 1 Jaddmp Arepunoq jxau
ay) 0} uo sadydA paddmd ayy Suissed pue days yoea je saoysaa enpiarpur Suid
-dip £ dunis 4q s3s1] xamaa Indino djerpauLIaul aY) JjeRUTWI[R URd 3py Alepunoq
mopuim yoea jsurede paddip s1 uo84jod e se saon194 jo 3s1p Indino ue 105 93e103s
dn Bunyes sainbaz paquosap isnl asey am se wiyirod[e ayi Suyuawapdwg

‘A1epUNOq MOpUIM JX3U 3Yj Joj ssadoxd ayy yead
-a1 pnom am ‘sputod paaes aay ayy Surs) jutod uoydasIduL BYy) 24aeS pue puy
3Mm 0§ “IPISINO S X2UIA [BUY pub [IXIS Y] ‘paes are os[e 43y} pue ‘apisul aq
0} PAUIULIZPP ' G PUE § SIS € XIHIA pue juiod UOUIISISUL 3Y) YJOq dAES
PUE UOTIDISISNT 3y} S}B[NI[ED dM ‘IPISUL SI YoM ‘¢ XapaA 0} Suofe Butsopy Aie
-punoq ayj Jo IPISINO Y] UO 3q O} PUNOJ AL 7 PUE | SO ‘ATepunog mopuim
131 ayy surele 1z-9 Sy ul eare ayy Surssasoid Aq poyiawr sTy) Ajensn{[l Sz

‘Krepunoq mopuim a1 ay) jsureSe saonaaa uo3£jod jo sired jo Surssasord aaissadrong

07-9 24n814

aUOU BARS
N0 — N0

LA oARs *A ones AL BAES
N0 — u Tp) Ul — ino

I..ﬂi

Figure 6-22
A polygon overlapping a
rectangular clip window.

Top i

T4 Ollppar: R T Ty Clipper. out
v, — v, v,
v, _— Vi A) -
v, I vy, Vy} (V3. Vy) —_— (V3. V3 (V3. V3
\ A a— v,
- v; _— v,
Figure 6-23

Processing the vertices of the polygon in Fig. 6-22 through a boundary-clipping pipeline.
After all vertices are processed through the pipeline, the vertex list for the clipped polygon
is {V3, V3, V,, Vil

case Left: if (p.x < wMin.x) return (FALSE); break;
case Right: if (p.x > wMax.x) return (FALSE}:; break;
case Bottom: if (p.y < wMin.y) return (FALSE); break;
case Top: if (p.y » wMax.y) return (FALSE): break;

}
return (TRUE);
}

int cross (wcPt2 pl, wcPt2 p2, Edge b, dcPt wMin, dcPt wMax)
{
if (inside (pl, b, wMin, wMax) == inside (p2, b, wMin, wMax))
return (FALSE):
else return (TRUE)};
)

wcPt2 intersect (wcPt2 pl, wcPt2 p2, Edge b, dcPt wMin, dcPt wMax)
{

wcPt2 iPt;

float m;

if (pl.x != p2.x}) m = (pl.y - p2.y) / (pl.x - p2.x);
switch (b) {
case Left:
iPt.x = wMin.x;
iPt.y = p2.y + (wMin.x - p2.x) * m;
break; ’
case Right:
iPt.x = wMax.Xx;

240

iPt.y = p2.y + (wMax.x - p2.x) * m;
break;

case Bottom:
iPt.y = wMin.y;
if (pl.x !'= p2.x) iPt.x = p2.x + (wMin.y - p2.y) / m;
else iPt.x = p2.x;
break;

case Top:
iPt.y = wMax.y:
if (pl.x != p2.x}) iPt.x
else iPt.x = p2.x;
break;

)

return (iPt);

}

pP2.x + {(wMax.y - p2.y) / m;

void clipPoint (wcPt2 p, Edge b, dcPt wMin, dcPt wMax,
wcPt2 * pQut, int * cnt, wcPt2 * first[], wcPt2 * s)
{
wcPt2 iPt:

/* If no previous point exists for this edge, save this point. */
if (‘first(bl)
first (b] = &p;
else
/* Previous point exists. If 'p' and previous point cross edge,
find intersection. <Clip against next boundary, if any. If
no more edges, add intersection to output list. */
if (cross {p, si{b], b, wMin, wMax}) {
iPt = intersect (p, s(bl, b, wMin, wMax);
if (b < Top)
clipPoint (iPt, b+l, wMin, wMax, pOut, cnt, frst, s);

else {
pout (*cnt] =_.iPt; ({*cnt)++;
}
}
s(b] = p; /* Save 'p' as most recent point for this edge */

/* For all, if point is ‘inside’' proceed to next clip edge, if any */
if {inside (p, b, wMin, wMax))
if (b < Top)
clipPoint (p, b+l, wMin, wMax, pOut, cnt, first, s};

else {
pOut [*cnt] = p; (*cnt)++;
}
}
void closeClip (dcPt wMin, dcPt wMax, wcPt2 * pOut,
int * cnt, wcPt2 * first(], wcPt2 * s)
{
wcPt2 i;
Edge b;

for (b = Left: b <= Top; b++) {
if (cxoss (s[b), *first(b], b, wMin, wMax)) {
i = intersect (s{b), *first(b], b, wMin, wMax);
if (b < Top)
clipPoint (i, b+l, wMin, wMax, pOut, cnt, first, s);
else {
pOut(*cnt] = i; (*cnt)++;
}

241

}

l

}

/* ‘fAirst’ holds pointer to first point processed against a clip
edge. ‘s' holds most recent point proce:ssed against an edge */
wcPt2 * first [N_EDGE]

int i, cnt = 0;

int clipPolygon (dcPt wMin, dcPt wkMax, int n, wcPt2 * pIn, wcPt2 * pOut}

for (i=0; i<n; i++)

clipPoint (pIa[i]).

closeClip (wMin,
return (cnt);

wMax,

Left, wMin, wMax, pOut. &cnt, first, s);

(0, 0, 0, 0} s{N_EDGEI};

pout, &cnt, first, s)-

242

Convex polygons are correctly clipped by the Sutherland-Hodgeman algo-
rithm, but concave polygons may be displayed with extraneous lines, as demon-
strated in Fig. 6-24. This occurs when the clipped polygon should have two or
more separate sections. But since there is only one output vertex list, the last ver-
tex in the list is always joined to the first vertex. There are several things we
could do to correctly display concave polygons. For one, we could split the con-
cave polygon into two or more convex polygons and process each convex poly-
gon separately. Another possibility is to modify the Sutherland-Hodgeman ap-
proach to check the final vertex list for multiple vertex points along any clip
window boundary and correctly join pairs of vertices. Finally, we could use a
more general polygon clipper, such as either the Weiler-Atherton algorithm or
the Weiler algorithm described in the next section.

Woeiler—Atherton Polygcn Clipping

Here, the vertex-processing procedures for window boundaries are modified so
that concave polygons are displayed correctly. This clipping procedure was de-
veloped as a method for identifying visible surfaces, and so it can be applied
with arbitrary polygon-clipping regions.

The basic idea in this algorithm is that instead of always proceeding around
the polygon edges as vertices are processed, we sometimes want to follow the
window boundaries. Which path we follow depends on the polygon-processing
direction (clockwise or counterclockwise) and whether the pair of polygon ver-
tices currently being processed represents an outside-to-inside pair or an inside-

Figure 6-24

Clipping the concave polygon in (a)

with the Sutherland-Hodgeman

clipper produces the two connected
b areas in (b).

.

(b)

Figure 6-25
Clipping a concave polygon (a} with the Weiler-Atherton
algorithm generates the two separate polygon areas

in (b).

to-outside pair. For clockwise processing of polygon vertices, we use the follow-
ing rules:

¢ For an outside-to-inside pair of vertices, follow the polygon boundary.

¢ For an inside-to-outside pair of vertices, follow the window boundary in
a clockwise direction.

In Fig. 6-25, the processing direction in the Weiler-Atherton algorithm and the re-
sulting clipped polygon is shown for a rectangular clipping window.

An improvement on the Weiler-Atherton algorithm is the Weiler algorithm,
which applies constructive solid geometry ideas to clip an arbitrary polygon
against any polygon-clipping region. Figure 6-26 illustrates the general idea in
this approach. For the two polygons in this figure, the correctly clipped polygon
is calculated as the intersection of the clipping polygon and the polygon object.

Other Polygon-Clipping Algorithms

Various parametric lineclipping methods have also been adapted to polygon
clipping. And they are particularly well suited for clipping against convex poly-
gon-clipping windows. The Liang-Barsky Line Clipper, for example, can be ex-
tended to polygon clipping with a general approach similar to that of the Suther-
land-Hodgeman method. Parametric line representations are used to process
polygon edges in order around the polygon perimeter using region-testing proce-
dures similar to those used in line clipping.

]

_| polygaon
slipping object
;r(:!wur/
Figure 6-26
Clipping a polygon by determining
" clipped the intersection of two polygon
area areas.

Section 6-8

Polygon Clipping

Chapter 6

Two-Dimensional Viewing

)

]
____________ 4
Before Clipping

After Chpping

Figure 6-27
Clipping a filled circle.

o
[STRING 2!

Before Clipping

STRING 2

After Clipping

Figure 6-28

Text clipping using a
bounding rectangle about the
entire string,.

244

6-9
CURVF CLIPPING

Areas with curved boundaries can be clipped with methods similar to those dis-
cussed in the previous sections. Curve-clipping procedures will involve nonlin-
car equations, however, and this requires more processing than for objects with
linear boundaries.

The bounding rectangle for a circle or other curved object can be used first
to test for overlap with a rectangular clip window. If the bounding rectangle for
the object is completely inside the window, we save the object. If the rectangle is
determined to be completely outside the window, we discard the object. In either
case, there is no further computation necessary. But if the bounding rectangle test
fails, we can look for other computation-saving approaches. For a circle, we can
use the coordinate extents of individual quadrants and then octants for prelimi-
nary testing before calculating curve-window intersections. For an ellipse, we can
test the coordinate extents of individual quadrants. Figure 6-27 illustrates circle
clipping against a rectangular window.

Similar procedures can be applied when clipping a curved object against a
general polygon clip region. On the first pass, we can clip the bounding rectangle
of the object against the bounding rectangle of the clip region. If the two regions
overlap, we will need to solve the simultaneous line-curve equations to obtain
the clipping intersection points.

6-10
TEXT CLIPPING

There are several techniques that can be used to provide text clipping in a graph-
ics package. The clipping technique used will depend on the methods used to
generate characters and the requirements of a particular application.

The simplest method for processing character strings relative to a window
boundary is to use the ali-or-none string-clipping strategy shown in Fig. 6-28. If all
of the string is inside a clip window, we keep it. Otherwise, the string is dis-
carded. This procedure is implemented by considering a bounding rectangle
around the text pattern. The boundary positions of the rectangle are then com-
pared to the window boundaries, and the string is rejected if there is any overlap.
This method produces the fastest text clipping.

An alternative to rejecting an entire character string that overlaps a window
boundary is to use the all-or-none character-clipping strategy. Here we discard only
those characters that are not completely inside the window (Fig. 6-29). In this
case, the boundary limit< of individual characters are compared to the window.
Any character that either overlaps or is outside a window boundary is clipped.

A final method for handling text clipping is to clip the components of indi-
vidual characters. We now treat characters in much the same way that we treated
lines. If an individual character overlaps a clip window boundary, we clip off the
parts of the character that are outside the window (Fig. 6-30). Outline character
fonts formed with line segments can be processed in this way using a line-
clipping algorithm. Characters defined with bit maps would be clipped by com-
paring the relative position of the individual pixels in the character grid patterns
to the clipping boundaries.

6-11
EXTERIOR CLIPPING

So far, we have considered only procedures for clipping a picture to the interior
of a region by eliminating everything outside the clipping region. What is saved
by these procedures is inside the region. In some cases, we want to do the reverse,
that is, we want to clip a picture to the exterior of a specified region. The picture
parts to be saved are those that are outside the region. This is referred to as exte-
rior clipping.

A typical example of the application of exterior clipping is in multiple-
window systems. To correctly display the screen windows, we often need to
apply both internal and external clipping. Figure 6-31 illustrates a multiple-
window display. Objects within a window are clipped to the interior of that win-
dow. When other higher-priority windows overlap these objects, the objects are
also clipped to the exterior of the overlapping windows.

Exterior clipping is used also in other applications that require overlapping
pictures. Examples here include the design of page layouts in advertising or pub-
lishing applications or for adding labels or design patterns to a picture. The tech-
nique can also be used for combining graphs, maps, or schematics. For these ap-
plications, we can use exterior clipping to provide a space for an insert into
larger picture. :

Procedures for clipping objects to the interior of concave polygon windows
can also make use of external clipping. Figure 6-32 shows a line P,P; that is to be
clipped to the interior of a concave window with vertices V,V,V,V, V5. Line P,P,
can be clipped in two passes: (1) First, PP, is clipped to the interior of the convex
polygon V,V,V,V, to vield the clipped segment P;P'; (Fig. 6-32(b)). (2) Then an
external clip of PP, is performed against the convex polygon V,V.V, to yield
the final clipped line segment PiP’,.

SUMMARY

In this chapter, we have seen how we can map a two-dimensional world-
coordinate scene to a display device. The viewing-transformation pipeline in-

&

Figure 6-31

A multiple-window screen display
showing examples of both interior
and exterior clipping. (Courtesy of
Sun Microsystems).

Summary

STR

NG 1

TRING 3

)

STRING 4

Before Clipping

NG 1

TRING 3

5N

STRING 4

After Clipping

Figure 6-29
Text clipping using a
bounding rectangle about
individual characters.

TRING 1

wo

Before Clipping

TRING 1

After Clipping

Figure 6-30
Text clipping performed on

the components of individual
characters.

245

Interior Clip
(o)

Exterior Clip
(c)

Figure 6-32

Clipping line P, P, to the interior of a concave polygon with vertices V,V.V,V, V. (a), using
convex polygons V,V,V,V, (b) and V,V;V, (<), to produce the clipped line PiP-.

246

cludes constructing the world-coordinate scene using modeling transformations
transferring world-coordinates to viewing coordinates, mapping the viewing-
coordinate descriptions «f objects to normalized device voordinates, and finallyv
mapping te device coordinates. Normalized coordinates are specified in the
range from 0 to 1, and thev are used to make viewing packages independent of
particular output devices ‘

Viewing coordinates are specified by giving the world-coordinate position
of the viewing origin and the view up vector that defines the direction of the
viewing y axis. These parameters are used to construct tae viewing transforma-
tion matrix that maps world-coordinate object descriptions to viewing coordi-
nates.

A window is then sct up in viewing coordinates, and a viewport is specitied
in normalized device courdinates. Typically, the window and viewport are rec-
tangles in standard position (rectangle boundaries are parallel to the coordinate
axes). The mapping from viewing coordinates to normalized device coordinates
is then carried out so that relative positions in the window are maintained in the
viewport.

Viewing functions 1in a graphics programming package are used to create
one or more sets of viewing parameters. One function is typically provided to
calculate the elements of the matrix for transforming world coordinates to view-
ing coordinates. Anocther function is used to set up the window-to-viewport
transformation matrix, and a third function can be used to specify combinations
of viewing transformations and window mapping in a viewing table. We can

then select different viewing combinations by specitving particular view indices
listed in the viewing table.

When objects are displayed on the output device, all parts of a scene out-
side the window {and the viewport) are clipped oft unless we set clip parameters
to turn off clipping. In many packages, clipping 15 done in normalized device co-
ordinates so that all transformations can be concatenated into a single transfor-
mation operation before applying the clipping algorithms. The clipping region is
commonly referred to as the clipping window, or as the clipping rectangle when
the window and viewport are standard rectangles Several algorithms have been
developed for clipping objects against the clip-window boundaries.

Line-clipping algorithms include the Cohen-Sutherland method, the
Liang-Barsky method, and the Nicholl-Lee-Nichell method. The Cohen-Suther-
land method is widelv used, since it was one of the first line-clipping algorithms
to be developed. Region codes are used to identifv the position of line endpoints
relative to the rectangular, clipping window boundaries. Lines that cannot be im-
mediately identified as completely inside the window or completely outside are
then clipped against window boundaries. Liang and Barsky use a parametric line
representation, similar to that of the earlier Cyrus<-Beck algorithm, to set up a
more efficient line-clipping procedure that reduces intersection calculations. The
Nicholl-Lee—Nicholl algorithm uses more region testing in the xy plane to reduce
interseclion calculations even further. Parametric line clipping is easily extended
to convex clipping windows and to three-dimensional clipping windows.

Line clipping can also be carried out for concave, polygon clipping win-
dows and for clipping windows with curved boundaries. With concave poly-
gons, we can use either the vector method or the rozational method to split a con-
cave polygon into a number of convex polygons. With curved clipping windows,
we calculate line intersections using the curve equations.

Polygon-clipping algorithms include the Sutherland-Hodgeman method,
the Liang-Barsky method, and the Weiler-Atherton miethod. In the Suther-
land-Hodgeman clipper, vertices of a convex polvgon are processed in order
against the four rectangular window boundaries to produce an output vertex list
for the clipped polygon. Liang and Barsky use parametric line equations to repre-
sent the convex polygon edges, and they use similar testing to that performed
line clipping to produce an output vertex list for the clipped polygon. Both the
Weiler-Atherland method and the Weiler method correctly clip both convex ard
concave polygons, and these polygon clippers also allow the clipping window to
be a general polygon. The Weiler-Atherland algorithm processes polygon ver-
tices in order to produce one or more lists of output polygen vertices. The Weiler
method performs clipping by finding the intersection region of the two polygons.

Objects with curved boundaries are processed against rectangular clipping
windows by calculating intersections using the curve equations. These clipping
procedures are slower than line clippers or polygon clippers, because the curve
equations are nonlinear.

The fastest text-clipping method is to completely ¢lip a string if any part of
the string is outside any window boundary. Another method for text clipping is
to use the all-or-none approach with the individual characters in a string. A third
method is to apply either point, line, polygon, or curve clipping to the individual
characters in a string, depending on whether characters are defined as point
grids or as outline fonts.

In some applications, such as creating picture insets and managing multi-
ple-screen windows, exterior clipping is performed. In this case, all parts of a
scene that are inside a window are clipped and the exterior parts are saved.

summary

247

Chapter 6

248

Two-Dimensional Viewing

REFERENCES

Line-clipping algorithms are discussed in Sproull and Sutherland (1968), Cyrus and Beck
(1978), and Liang and Barsky (1984). Methods for improving the speed of the
Cohen-Sutherland line-clipping algorithm are given in Duvanenko (1990).

Polygon-clipping methods are presented in Sutherland and Hodgeman (1974) and in Liang
and Barsky (1983). General techniques for clipping arbitrarily shaped polygons against
each other are given in Weiler and Atherton (1977) and in Weiler (1980).

Two-dimensional viewing operations in PHIGS are discussed in Howard et al. (1991), Gask-
ins (1992), Hopgood and Duce (1991), and Blake {1993). For information on GKS viewing
operations, see Hopgood et al. (1983) and Enderle et al. (1984},

EXERCISES

6-1.

6-2.

6-3.

6-4.

6-5.

6-6.
6-7.

6-8.
6-9.

6-10.

6-11.

6-12.

6-13.

Write a procedure to to implement the evaluateviewOrientationMatrix func-
tion that calculates the elements of the matrix for transforming world coordinates to
viewing coordinates, given the viewing coordinate origin P, and the view up vector V.
Derive the window-to-viewport transformation equations 6-3 by first scaling the win-
dow to the s1ze of the viewport and then translating the scaled window to the view-
port position.

Write a procedure to ymplement the evaluateViewMappingMatrix function that
calculates the elements of a marrix for performing the window-to-viewport transforma-
tion.

Write a procedure to implement the setViewRepresentation function to concate-
nate viewMatrix and viewMappingMatrix and to store the result, referenced by
a spegified view index, in a viewing table.

Write a set of procedures to implement the viewing pipeline without clipp:ng and
without the workstation transformation. Your program should allow a scene to be con-
structed with modeling-coordinate transformations, a specified viewing system, and a
specified window—viewport pair. As an option, a viewing table can be implemented to
store different sets of viewing transformation parameters.

Derive the matrix representation for a workstation transformation.

Write a set of procedures to implement the viewing pipeline without clipping, but in-
cluding the workstation transformation. Your program should allow a scene to be con-
structed with modeling-coordinate transformations, a specified viewing system, a
specified window—viewport pair, and workstation transformation parameters. For a
given world-coordinate scene, the composite viewing transformation matrix should
transform the scene to an output device for display.

Implement the Cohen-Sutherland line-clipping algorithm.

Carefully discuss the rationale behind the various tests and methods for calculating the
intersection parameters u, and u, in the Liang-Barsky line-clipping algorithm.
Compare the number of arithmetic operations performed in the Cohen-Sutherland
and the Liang-Barsky line-clipping algorithms for several different line orientations rel-
ative to a clipping window.

Wirite a procedure to implement the Liang-Barsky line-clipping algorithm.

Devise symmetry transformations for mapping the intersection calculations for the
three regions in Fig. 6-10 to the other six regions of the xy plane.

Set up a detailed algorithm for the Nicholl-Lee-Nicholl approach to line clipping for
any input pair of line endpaints.

. Compare the number of arithmetic operations perfarmec in NLN algorithm to both the

Cohen-Sutherland and the Liang-Barsky line-clipping algorithms for several different
line orientations relative to a clipping window.

6-16.
6-17.
6-18.
6-19.

6-21
6-22.

6-24.

6-25.

. Wiite a routine to identify concave polygons by calculating cross products of pairs of

edge vectors.

Write a routine to split a concave polygon using the vector method.

Write a routine to split a concave polygon using the rotational method.

Adapt the Liang-Barsky line-clipping algorithm to polygon clipping.

Set up a detaled algorithm for Weiler-Atherton polygon clipping assuming that the
clipping window is a rectangle in standard position.

. Devise an algorithm for Weiler-Atherton polygon clipping, where the clipping win-

dow can be any specified polygon.

. Wirite a routine to clip an ellipse against a rectangular window.

Assuming that all characters in a text string have the same width, develop a text-clip-
ping algorithm that clips a string according to the “all-or-none character-clipping”
strategy.

. Develop a text-clipping algorithm that clips individual characters assuming that the

characters are defined in a pixel grid of a specified size.

Write a routine to implement exterior clipping on any part of a defined picture using
any specified window.

Write a routine 1o perform both interior and exterior clipping, given a particular win-
dow-system display. Input to the routine is a set of window positions on the screen,
the objects to be displayed in each window, and the window priorities. The individual
objects are to be clipped to fit into their respective windows, then clipped to remove
parts with overlapping windows of higher display priority.

Exercises

249

CHAITlTFR — =

Structures and Hierarchical
Modeling

F or a great many applications, it is convenient to be able to create and ma-
nipulate individual parts of a picture without affecting other picture parts.
Most graphics packages provide this capability in one form or another. With the
ability to define each object in a picture as a separate module, we can make modi-
fications to the picture more easily. In design applications, we can try out differ-
ent positions and orientations for a component of a picture without disturbing
other parts of the picture. Or we can take out parts of the picture, then we can
easily put the parts back into the display at a later time. Similarly, in modeling
applications, we can separately create and position the subparts of a complex ob-
ject or system into the overall hierarchy. And in animations, we can apply trans-
formations to individual parts of the scene so that one object can be animated
with one type of motion, while other objects in the scene move differently or re-
main stationary.

7-1
STRUCTURE CONCEPTS

A labeled set of output primitives (and associated attributes) in PHIGS is called a
structure. Other commonly used names for a labeled collection of primitives are
segments (GKS) and objects (Graphics Library on Silicon Graphics systems). In this
section, we consider the basic structure-managing functions in PHIGS. Similar
operations are available in other packages for handling labeled groups of primi-
tives in a picture.

Bastc Structure Functions

When we create a structure, the coordinate positions and attribute vajues speci-
fied for the structure are stored as a labeled group in a system structure list called
the central structure store. We create a structure with the function

openStructure (id)

The label for the segment is the positive integer assigned to parameter id. In
PHIGS+, we can use character strings to label the structures instead of using inte-
ger names. This makes it easier to remember the structure identifiers. After all
primitives and attributes have been listed, the end of the structure is signaled
with the closeStructure statement. For example, the following program

251

Chapter 7

252

Structures and Hierarchical
Modehing

statements define structure 6 as the line sequence specitied in polyline with the
designated line type and color:

openStructure {(c);
setLinetype (1lt):
setPolylineColourlIndex (lc);
polyline (n, pts):
closeStructure;

Any number of structures can be created for a picture, but only one structure can
be open (in the creation process) at a time. Any open structure must be closed be-
fore a new structure can be created. This requirement eliminates the need for a
structure identification number in the closeStructure statement.

Once a structure has been created, it can be displayed on a selected output
device with the function

postStructure (ws, id, priority)

where parameter ws is the workstation identifier, id is the structure name, and
priority is assigned a real value in the range from 0 to 1. Parameter priority
sets the display priority relative to other structures. When two structures overlap
on an output display device, the structure with the higher priority will be visible.
For example, if structures 6 and 9 are posted to workstation 2 with the following
priorities

postStructure

(2. 6, 0.8)
postStructure (2

3, 0.0

then any parts of structure 9 that overlap structure 6 will be hidden, since struc-
ture 6 has higher prioritv. If two structures are assigned the same priority value,
the last structure to be posted is given display precedence

When a structure is posted to an active workstation, the primitives in the
structure are scanned and interpreted for display on the selected output device
(video monitor, laser printer, etc.). Scanning a structure list and sending the
graphical output to a workstation is called traversal. A list of current attribute
values for primitives is stored in a data structure called a traversal state list. As
changes are made to posted structures, both the system structure list and the tra-
versal state list are updated. This automatically modifies the display of the
posted structures on the workstation.

To remove the display of a structure from a particular output device, we in-
voke the function

unpostStructure 1ws, id)

This deletes the structure from the active list of structures for the designated out-
put device, but the system structure list is not affected. On a raster system, a
structure is removed from the display by redrawing the primitives in the back-
ground color. This process, however, may also affect the display of primitives
from other structures that overlap the structure we want to erase. To remedy this,
we can use the coordinate extents of the various structures in a scene to deter-

mine which ones overlap the structure we are erasing. Then we can simply re- Section 7-1
draw these overlapping structures after we have erased the structure that is tobe Structure Concepts
unposted. All structures can be removed from a selected output device with

unpostAllStructures (ws}

If we want to remove a particular structure from the system structure list,
we accomplish that with the function

deleteStructure (id)

Of course, this also removes the display of the structure from all posted output
devices. Once a structure has been deleted, its name can be reused for another set
of primitives. The entire system structure list can be cleared with

deleteAllStructures

It is sometimes useful to be able to relabel a structure. This is accomplished
with

crangeStructureldentifier (0l1dID, newlD)

One reason for changing a structure label is to consolidate the numbering of the
structures after several structures have been deleted. Another is to cycle through
a set of structure labels while displaying a structure in multiple locations to test
the structure positioning.

Setting Structure Attributes

We can set certain display characteristics for structures with workstation filters.
The three properties we can set with filters are visibility, highlighting, and the ca-
pability of a structure to be selected with an interactive input device.

Visibility and invisibility settings for structures on a particular workstation
for a selected device are specified with the function

setInvisibilityFilter (ws, devCode, invisSet, visSet)

where parameter invisSet contains the names of structures that will be invisi-
ble, and parameter visSet contains the names of those that will be visible. With
the invisibility filter, we can turn the display of structures on and off at selected
workstations without actually deleting them from the workstation lists. This al-
lows us, for example, to view the outline of a building without all the interior de-
tails; and then to reset the visibility so that we can view the building with all in-
ternal features included. Additional parameters that we can specify are the
number of structures for each of the two sets. Structures are made invisible on a
raster monitor using the same procedures that we discussed for unposting and
for deleting a structure. The difference, however, is that we do not remove the
structure from the active structure list for a device when we are simply making it
invisible.

Highlighting is another convenient structure characteristic. In a map dis-
play, we could highlight all cities with populations below a certain value; or fora

253

Chapter 7

254

Structures and Hierarchical
Modeling

landscape layout, we could highlight certain varieties of shrubbery; or in a circuit
diagram, we could highlight all components within a specific voltage range. This
is done with the function

setHighlightingFilter (ws, devCode, highlightset,
nohighlightSet)

Parameter highlightSet contains the names of the structures that are to be
highlighted, and parameter nohighlightSet contains the names of those that
are not to be highlighted. The kind of highlighting used to accent structures de-
pends on the type and capabilities of the graphics system. For a color video mon-
itor, highlighted structures could be displayed in a brighter intensity or in a color
reserved for highlighting. Another common highlighting implementation is to
turn the visibility on and off rapidly so that blinking structures are displayed.
Blinking can also be accomplished by rapidly alternating the intensity of the
highlighted structures between a low value and a high value.

The third display characteristic we can set for structures is pickability. This
refers to the capability of the structure to be selected by pointing at it or position-
ing the screen cursor over it. If we want to be sure that certain structures in a dis-
play can never be selected, we can declare them to be nonpickable with the pick-
ability filter. In the next chapter, we take up the topic of input methods in more
detail.

7-2
EDITING STRUCTURES

Often, we would like to modify a structure after it has been created and closed.
Structure modification is needed in design applications to try out different graph-
ical arrangements, or to change the design configuration in response to new test
data.

If additional primitives are to be added to a structure, this can be done by
simply reopening the structure with the openStructure wncon and append-
ing the required statements. As an example of simple appending, the following
program segment first creates a structure with a singie fill area and then adds a
second fill area to the structure:

openStructure (shape});
setInteriorStyle (30l1id);
setInteriorColourlIndex (4):
fillArea (n., vertsl);
closeStructure;

openStructure ({shape);
setIntericrStyle (hollow);
fillArea (n2, verts?2);
closeStructure;

This sequence of operations is equivalent to initially creating the structure with
both fill areas:

openStructure (shape):
setIntericrStyle (solid);
setInteriorColourIndex (4);
fillArea {(nl, vertsl);
setInteriorStyle {(hollow):
fillArea (n2, verts2);
closeStructure;

In addition to appending, we may also want sometimes to delete certain
items in a structure, to change primitives or attribute settings, or to insert items at
selected positions within the structure. General editing operations are carried out
by accessing the sequence numbers for the individual components of a structure
and setting the edit mode.

Structure Lists and the Element Pointer

Individual items in a structure, such as output primitives and attribute values,
are referred to as structure elements, or simply elements Each element is as-
signed a reference position value as it 15 entered into the structure. Figure 7-1
shows the storage of structure elements and associated position numbers created
by the following program segment.

openStructure {gizmo) ;
setLinetype (1tl);
setPolylineColourIndex (lcl);
polyline (nl, ptsl);
setlLinetype (1lt2):
setPolylineColcurIndex (lc2):
polyline (n2, pts2);

closeStructure;

Structure elements are numbered consecutively with integer values starting
at 1, and the value 0 indicates the position just before the first element. When a
structure is opened, an element pointer is set up and assigned.a position value
that can be used to edit the structure. If the opened structure is new (not already
existing in the system structure list), the element pointer is set to 0. If the opened
structure does already exist in the system list, the element pointer is set to the po-
sition value of the last element in the structure. As elements are added to a struc-
ture, the element pointer is incremented by 1.

We can set the value of the element pointer to any position within a struc-
ture with the function

setzlementPointer (k)

glzmo structure

setLinetype (1tl)

setPolylineColourIndex (lcl)

0

1

2

3| polyline (nl, ptsl)

4} getLinetype (1t2)

5
—6

Figure 7-4

setPolylineColourIndex (le2) .
element : Element position values for
pointer polyline (n2. pts2) structure gizmo.

Section 7-2

Editing Structures

255

Chapter 7

256

Structures and Hierarchical
Modeling

where parameter k can be assigned any integer value from 0 to the maximum
number of elements in the structure. It is also possible to position the element
pointer using the following offset function that moves the pointer relative to the
current position:

offsetElementPo.nter (dk}

with dk assigned a positive or negative integer offset from the present position of
the pointer. Once we have positioned the element pointer, we can edit the struc-
ture at that position.

Setting the Edit Mode

Structures can be modified in one of two possible modes. This is referred to as
the edit mode of the structure. We set the value of the edit mode with

setEd:tMode (moce)

where parameter mode is assigned either the value insert, or the value replace.

Inserting Structure Elements

When the edit mode is set to insert, the next item entered into a structure will be
placed in the position immediately following the element pointer. Elements in
the structure list following the inserted item are then automatically renumbered.
To illustrate the insertion operation, let's change the standard line width
currently in structure g: zmo (Fig. 7-2) to some other value. We can do this by in-
serting a line width statement anywhere before the first polyline command:

openStructure (gizmo);
setEditMcde (insert):
setElemertPointer (0);
setLinewidth (lw);

closeStructure;

Figure 7-2 shows the maodified element list of gizmo, created by the previous in-
sert operation. After this insert, the element pointer is assigned the value 1 (the
position of the new line-width attribute). Also, all elements after the line-width
statement have been renumbered, starting at the value 2.

0 gizmo structure
element - :
pointer — 1| setLinewidth (1w}
2| setLinetype (lt1)
3| setPolylineColourIndex (lcl) .
4{ polyline (nl tsl) Figure 7-2
5 y_ '1p2 Modified element list and position
Ee”‘met{me fe2) ‘ of the element pointer after
6| setPolylineColourindex (1c¢2) inserting a line-width attribute
7] polyline (n2, pts2) into structure gizmo.

When a new structure 1s created, the edit mode is automatically ‘ et to the
value insert. Assuming the edit mode has not been changed from this iefault
value before we reopen this structure, we can append items at the end of the ele-
ment list without setting values for either the edit mode or element pointer, as
demonstrated at the beginning of Section 7-2. This is because the edit mode re-
mains at the value insert and the element pointer for the reopened structure
points to the last element in the list.

Replacing Structure Elements

When the edit mode is set to the value replace, the next item entered into a struc-
ture is placed at the position of the element pointer. The element originally at that
position is deleted, and the value of the element pointer remains unchanged.

As an example of the replace operation, suppose we want to change the
color of the second polyline in structure gizmo (Fig. 7-1). We can do this with the
sequence:

openStructure (gizme);
setEditMode (replace);
setElementPointer (5);
setPolvlineColourIndex (lcZNew);

closeStructure;

Figure 7-3 shows the element list of gizmo with the new color for the second
polyline. After the replace operation, the element pointer remains at position 5
(the position of the new line color attribute).

Deleting Structure Elements

We can delete the element at the current position of the element pointer with the
function

deleteElement

This removes the element from the structure and sets the value of the element
pointer to the immediately preceding element.

As an example of element deletion, suppose we decide to have both poly-
lines in structure gizmo (Fig. 7-1) displayed in the same color. We can accom-
plish this by deleting the second color attribute:

glizmo structure

setLinetype (ltl)

setPolylineColourIndex (1cl) —
Figure 7-3

Modified element list and position
of the element pointer after
changing the color of the second
polyline in structure gizmo.

polyline (nl, ptsi)

element

pointer setPolylineColourindex {1c2New)

0

1

2

3

4} setLinetype (1t2)
—5

6

polyline (n2, pts2)

Section 7-2

Editing Structures

257

Chapter 7

258

Structures and Hierarchical
Modeling

openStructure (gizmo};
setElementFointer (5);
deleteElement;

closeStructure;

The element pointer is then reset to the value 4 and all following elements are
renumbered, as shown in Fig. 7-4.
A contiguous group of structure elements can be deleted with the function

deleteElementRarge (k1, k2)

where integer parameter k1 gives the beginning position number, and k2 speci-
fies the ending position number. For example, we can delete the second polyline
and associated attributes in structure gizmo with

deleteElementRange (4, 6)
And all elements in a structure can be deleted with the function

emptyStructure (id)

Labeling Structure Elements

Once we have made a number of modifications to a structure, we could easily
lose track of the element positions. Deleting and inserting elements shift the ele-
ment position numbers. To avoid having to keep track of new position numbers
as modifications are made, we can simply label the different elements in a struc-
ture with the function

label (k)

where parameter k is an integer position identifier. Labels can be inserted any-
where within the structure list as an aid to locating structure elements without re-
ferring to position number. The label function creates structure elements that
have no effect on the structure traversal process. We simply use the labels stored
in the structure as editing references rather than using the individual element po-
sitions. Also, the labeling of structure elements need not be unique. Sometimes it
is convenient to give two or more elements the same label value, particularly if
the same editing operations are likely to be applied to several positions in the
structure.

gizmo structure

0

1| setLinetype (ltl}

2} setPolylineColourIndex {1lcl)

3| polyline (ni, ptél)
—4

5

Figure 7-4

Modified element list and position
of the element pointer after deleting
the color-attribute statement for the
second polyline in structure gizmo.

element

pointer setLinetype (1t2)

polyline (nz, pts2)

To illustrate the use of labeling, we create structure labeledGizmo in the
following routine that has the elements and position numbers as shown in Fig. 7-5.

openStructure (labeledGizmo);
label (objectllLinetype);
setLinetype {(1tl);
label (objectlColor):
setPolylineColourIndex (lcl);
label (objectl);
polyline (nl, ptsl};
label (object2Linetype);
setLinetype (1t2);
label (object2Color);
setPolylineColourIndex (1c2);
label (object2);
polyline (n2, pts2);
closeStructure;

Now if we want to change any of the primitives or attributes in this structure, we
can do it by referencing the labels. Although we have labeled every item in this
structure, other labeling schemes could be used depending on what type and
how much editing is anticipated. For example, all attributes could be lumped
under one label, or all color attributes could be given the same label identifier.

A label is referenced with the function

setElementPointerAtLabel (k)

which sets the element pointer to the value of parameter k. The search for the
label begins at the current element-pointer position and proceeds forward
through the element list. This means that we may have to reset the pointer when
reopening a structure, since the pointer is always positioned at the last element in
a reopened structure, and label searching is not done backward through the ele-
ment list. If, for instance, we want to change the color of the second object in
structure labeledGizmo, we could reposition the pointer at the start of the ele-
ment list after reopening the structure to search for the appropriate color at-
tribute statement label:

labeledGizmo structure
label (objectilLinetype)
setLinetype (ltl)

label (objectiColor)
setPolylineColourIndex (1lcl)
label (objectl)

polyline (nl, ptsl)

label (object2Linetype)

W N YW N O

getLinetype (1t2)
label (object2Color)
10} setPolylineColourindex (1c2)

11} label (object2)

element
g — 12
pointer :

W

Figure 7-5

A set of labeled objects and
associated position numbers stored
in structure labeledGizmo.

polyline (n2, pts2)

Section 7-2

Editing Structures

259

Chapter 7

260

Structures and Hierarchical
Modeling

openStructure (iabeledGizmo);
setElementPointer (0);
setEditMode (replace);
setElementPointerAtlLabel (object2Color);
cffsetElementPointer (1);
setPolylineColourindex (1c2New);

closeStructure;

Deleting an item referenced with a label is similar to the replacement opera-
tion illustrated in the last openStructure routine. We first locate the appropri-
ate label and then offset the pointer. For example, the color attribute for the sec-
ond polyline in structure 1abeledGizmo can be deleted with the sequence

openStructure {labeledGizmo);
setElementPointer (0);
setEditMode (replace);
setElementPointerAtLabel (object2Color);
offsetElementPointer (1};
deleteElement;

closeStructure;

We can also delete a group of structure elements between specified labels with
the function

deleteElementsBetweenlabels (kl, k2)
After the set of elements is deleted, the element pointer is set to position k1.
Copying Elements from One Structure to Another
We can copy all the entries from a specified structure into an open structure with
copyAllElementsFromStructure {id)
The elements from structure id are inserted into the open structure starting at
the position immediately following the element pointer, regardless of the setting

of the edit mode. When the copy operation is complete, the element pointer is set
to the position of the last item inserted into the open structure.

7-3
BASIC MODELING CONCEPTS

An important use of structures is in the design and representation of different
types of systems. Architectural and engineering systems, such as building lay-
outs and electronic circuit schematics, are commonly put together using com-
puter-aided design methods. Graphical methods are used also for representing
economic, financial, organizational, scientific, social, and environmental systems.
Representations for these systems are often constructed to simulate the behavior

of a system under various conditions. The outcome of the simulation can serve as
an instructional tool or as a basis for making decisions about the system. To be ef-
fective in these various applications, a graphics package must possess efficient
methods for constructing and manipulating the graphical system representations.
The creation and manipulation of a system representation is termed model-
ing. Any single representation is called a model of the system. Models for a sys-
tem can be defined graphically, or they can be purely descriptive, such as a set of
equations that defines the relationships between system parameters. Graphical
models are often referred to as geometric models, because the component parts
of a system are represented with geometric entities such as lines, polygons, or cir-
cles. We are concerned here only with graphics applications, so we will use the
term model to mean a computer-generated geometric representation of a system.

Model Representations

Figure 7-6 shows a representation for a logic circuit, illustrating the features com-
mon to many system models. Component parts of the system are displayed as
geometric structures, called symbols, and relationships between the symbols are
represented in this example with a network of connecting lines. Three standard
symbols are used to represent logic gates for the Boolean operations: and, or, and
not. The connecting lines define relationships in terms of input and output flow
(from left to right) through the system parts. One symbol, the and gate, is dis-
played at two different positions within the logic circuit. Repeated positioning of
a few basic symbols is a common method for building complex models. Each
such occurrence of a symbol within a model is called an instance of that symbol.
We have one instance for the or and not symbols in Fig. 7-6 and two instances of
the and symbol.

In many cases, the particular graphical symbols choser. to represent the
parts of a system are dictated by the system description. For circuit models, stan-
dard electrical or logic symbeols are used. With models representing abstract con-
cepts, such as political, financial, or economic systems, symbols may be any con-
venient geometric pattern,

Information describing a model is usually provided as a combination of
geometric and nongeometric data. Geometric information includes coordinate
positions for locating the component parts, output primitives and attribute func-
tions to define the structure of the parts, and data for constructing connections
between the parts. Nongeometric information includes text labels, algorithms de-
scribing the operating characteristics of the model, and rules for determining the
relationships or connections between component parts, if these are not specified
as geometric data.

Figure 7-6
Model of a logic drcuit.

Section7-3

Basic Modeling Concepts

261

Chapter 7

262

Structures and Hierarchical
Modeling

There are two methods for specifying the information needed to construct
and manipulate a model. One method is to store the infomation in a data struc-
ture, such as a table or linked list. The other method is to specify the information
in procedures. In general, a model specification will contain both data structures
and procedures, although some models are defined completely with data struc-
tures and others use only procedural specifications. An application to perform
solid modeling of objects might use mostly information taken from some data
structure to define coordinate positions, with very few procedures. A weather
model, on the other hand, may need mostly procedures to calculate plots of tem-
perature and pressure variations.

As an example of how combinations of data structures and procedures can
be used, we consider some alternative model specifications for the logic circuit of
Fig. 7-6. One method is to define the logic components in a data table (Table 7-1),
with processing procedures used to specify how the network connections are to
be made and how the circuit operates. Geometric data in this table include coor-
dinates and parameters necessary for drawing and positioning the gates. These
symbols could all be drawn as polygon shapes, or they could be formed as com-
binations of straight-line segments and elliptical arcs. Labels for each of the com-
ponent parts also have been included in the table, aithough the labels could be
omitted if the symbols are displayed as commeonly recognized shapes. Proce-
dures would then be used to display the gates and construct the connecting lines,
based on the coordinate positions of the gates and a specified order for connect-
ing them. An additional procedure is used to produce the circuit output (binary
values) for any given input. This procedure could be set up to display only the
final output, or it could be designed to display intermediate output values to il-
lustrate the internal functioning of the circuit.

Alternatively, we might specify graphical information for the circuit model
in data structures. The connecting lines, as well as the gates, could then be de-
fined in a data table that explicitly lists endpoints for each of the lines in the cir-
cuit. A single procedure might then display the circuit and calculate the output.
At the other extreme, we could completely define the model in procedures, using
no external data structures.

Symbol Hierarchies

Many models can be organized as a hierarchy of symbols. The basic “building
blocks” for the model are defined as simple geometric shapes appropriate to the
type of model under consideration. These basic symbols can be used to form
composite objects, called modules, which themselves can be grouped to form
higher-level modules, and so on, for the various components of the model. In the

TABLE 7-1
A DATA TABLE DEFINING THE STRUCTURE AND
POSITION OF EACH GATE IN THE CIRCUIT OF FIG. 7-6

Symbol Geometric Identifying
Code Description Label
Gate 1 Coordinates and other paramete-s1 and
Cate 2 : or
Gate 3 : not

Gate 4 : and

simplest case, we can describe a model by a one-level hierarchy of component
parts, as in Fig. 7-7. For this circuit example, we assume that the gates are posi-
tioned and connected to each other with straight lines according to connection
rules that are specified with each gate description. The basic symbols in this hier-
archical description are the logic gates. Although the gates themselves could be
described as hierarchies—formed from straight lines, elliptical arcs, and text—
that sort of description would not be a convenient one for constructing logic cir-
cuits, in which the simplest building blocks are gates. For an application in which
we were interested in designing different geometric shapes, the basic symbols
could be defined as straight-line segments and arcs.

An example of a two-level symbol hierarchy appears in Fig. 7-8. Here a fa-
cility layout is planned as an arrangement of work areas. Each work area is out-
fitted with a collection of furmiture. The basic symbols are the furniture items:
worktable, chair, shelves, file cabinet, and so forth. Higher-order objects are the
work areas, which are put together with different furniture organizations. An in-
stance of a basic symbol is defined by specifying its size, position, and orientation
within each work area. For a facility-layout package with fixed sizes for objects,
only position and orientation need be specified by a user. Positions are given as
coordinate locations in the work areas, and orientations are specified as rotations
that determine which way the symbols are facing. At the second level up the hi-
erarchy, each work area is defined by specifying its size, position, and orientation
within the facility layout. The boundary for each work area might be fitted with a
divider that encloses the work area and provides aisles within the facility.

More complex symbol hierarchies are formed by repeated grouping of sym-
bol clusters at each higher level. The facility layout of Fig. 7-8 could be extended
to include symbol clusters that form different rooms, different floors of a build-
ing, different buildings within a complex, and different complexes at widely sep-
arated physical locations.

Modeling Packages

Some general-purpose graphics systems, GKS, for example, are not designed to
accommodate extensive modeling applications. Routines necessary to handle
modeling procedures and data structures are often set up as separate modeling
packages, and graphics packages then can be adapted to interface with the mod-
eling package. The purpose of graphics routines is to provide methods for gener-

tigure /-7
A one-level hierarchical description of a circuit formed with logic gates.

Section 7-3

Basic Modeling Concepts

263

264

Figure 7-8

A two-level hierarchical description of a facility layout.

ating and manipulating final output displays. Modeling routines, by contrast,
provide a means for defining and rearranging model representations in terms of
symbol hierarchies, which are then processed by the graphics routines for dis-
play. Systems, such as PHIGS and Graphics Library (GL) on Silicon Graphics
equipment, are designed so that modeling and graphics functions are integrated
into one package.

Symbols available in an application modeling package are defined and
structured according to the type of application the package has been designed to
handle. Modeling packages can be designed for either two-dimensional or three-
dimensional displays. Figure 7-9 illustrates a two-dimensional layout used in cir-
cuit design. An example of three-dimensional molecular modeling is shown in
Fig. 7-10, and a three-dimensional facility layout is given in Fig. 7-11. Such three-
dimensional displays give a designer a better appreciation of the appearance of a
layout. In the following sections, we explore the characteristic features of model-
ing packages and the methods for interfacing or integrating modeling functions
with graphics routines.

Figure 7-9
Two-dimensional modeling layout used in circuit
design. (Courtesy of Summagraphics)

Figure 7-10

One-half of a stereoscopic image
pair showing a three-dimensional
molecular model of DNA. Data
supplied by Tamar Schlick, NYU,
and Wilma K. Olson, Rutgers
University; visualization by Jerry
Greenberg, SDSC. (Courtesy of
Stephanie Stdes, San Diego Supercomputer
Center.)

Figure 7-11
A three-dimensional view of an office layout. Courtesy of
Intergraph Corporation.

7-4
HIERARCHICAL MODELING WITH STRUCTURES

A hierarchical model of a system can be created with structures by nesting the
structures into one another to form a tree organization. As each structure is
placed into the hierarchy, it is assigned an appropriate transformation so that it
will fit properly into the overall model. One can think of setting up an office facil-
ity in which furniture is placed into the various offices and work areas, which in
turn are placed into departments, and so forth on up the hierarchy.

Local Coordinates and Modeling Transformations

In many design applications, models are constructed with instances {transformed
copies) of the geometric shapes that are defined in a basic symbol set. Instances
are created by positioning the basic symbols within the world-coordinate refer-
ence of the model. The various graphical symbols to be used in an application are
each defined in an independent coordinate reference called the modeling-coordi-
nate system. Modeling coordinates are also referred to as local coordinates, or
sometimes master coordinates. Figure 7-12 illustrates local coordinate definitions

Section 7-4

Hierarchical Modeling with
Structures

265

Chapter 7

Structures and Hierarchical

Arrays for Chair
Coordinates

x Chair

Mo W W W W

¥ Chair

Modeling

(=]
T

afrTTrr

s

for two symbols that could be used in a two-dimensional facility-layout applica-
tion. '

To construct the component parts of a graphical model, we apply transfor-
mations to the local-coordinate definitions of symbols to produce instances of the
symbols in world coordinates. Transformations applied to the modeling-coordi-
nate definitions of symbols are referred to as modeling transformations. Typi-
cally, modeling transformations involve translation, rotation, and scaling to posi-
tion a symbol in world coordinates, but other transformations might also be used
in some applications.

Modeling Transformations

We obtain a particular modeling-transformation matrix using the geometric-
transformation functions discussed in Chapter 5. That is, we can set up the indi-
vidual transformation matrices to accomplish the modeling transformation, or
we can input the transformation parameters and allow the system to build the
matrices. In either case, the modeling package concatenates the individual trans-
formations to construct a homogeneous-coordinate modeling transformation ma-
trix, MT. An instance of a symbol in world coordinates is then produced by ap-
plying MT to modeling-coordinate positions (P,.) to generate corresponding
world-coordinate positions (P,,):

P,=MT: P, -1

Structure Hierarchies

As we have seen, modeling applications typically require the composition of
basic symbols into groups, called modules; these modules may be combined into

Arrays for

10 — Waorktable Coordinates
t x Waorktable y Waorktable "

o 0

B 0
§d

8 6
8 -10 |

0 =10
I I

S Y Y T O T O
-10 -5 0 5 0

Workable
i)

Figure 7-12

Objects defined in local coordinates.

266

higher-level modules; and so on. Such symbol hierarchies can be created by em-
bedding structures within structures at each successive level in the tree. We can
first define a module (structure) as a list of symbol instances and their transfor-
mation parameters. At the next level, we define each higher-level module as a list
of the lower-module instances and their transformation parameters. This process
is continued up to the root of the tree, which represents the total picture in world
coordinates.
A structure is placed within another structure with the function

executeStructure (id)

To properly orient the structure, we first assign the appropriate local transforma-
tion to structure id. This is done with

setlocalTransformation (mlt, type)

where parameter mlt specifies the transformation matrix. Parameter type is as-
signed one of the following three values: pre, post, or replace, to indicate the type
of matrix composition to be performed with the current modeling-transformation
matrix. If we simply want to replace the current transformation matrix with imt,
we set parameter type to the value replace. If we want the current matrix to be
premultipled with the local matrix we are specifying in this function, we choose
pre; and similarly for the value post. The following code section illustrates a se-
quence of modeling statements to set the first instance of an object into the hier-
archy belew the root node.

createStructure (id0j;
setLocalTransformation {lmt, type: -
executeStructure (idl);

closeStructure;

The same procedure is used to instance other objects within structure 1d0
to set the other nodes into this level of the hierarchy. Then we can create the next
level down the tree by instancing objects within structure idl and the other
structures that are in 1d0. We repeat this process until the tree is complete. The
entire tree is then displayed by posting the root node: structure 1d0 in the previ-
ous example. In the following procedure, we illustrate how a hierarchical struc-
ture can be used to model an object.

void main {)

enum { Frame, Wheel, Bicycle };

int nPrs;

WwCPL2 pts([256);

pMatrix3 m;
[/* Routines to generate geometry */
| extern void getWheelVertices {(int * nPts, wcPt2 pts);
‘ extern void getFrameVertices (int * nPts, wcPt2 pts);
|
|

/* HMake the wheel structure */

Section 7-4

Hierarchical Modeling with
Structures

267

268

getWheelVertices nPts, prs);
openStructure (Wreel);
setLineWidth (2.1);

poelyline (nPts, fts);
closeStructure;

/* Make the frame structure */
getFrameVertices (nPts, pts};
openStructure (Frame);
setLineWidth (2.41):

polyline (nPts. pts);
closeStructure:-

/* Make the bicyile */

openStructure (Bicycle);

/* Include the frame *.,

executeStructure (Framej;

’* Position and :nclude rear wheel *°
matrixSetIdentity m);

m(0,2] := -1.0; =[%.2] := -0.5;
setLocalTranstormationMatrix (m, REPLACE);
executeStructure (Wheel);

/* Position and iaclude front wheel */
m(0,2] :- 1.0; mfl,2) := -0.5;
setLocalTransformationmatrix {m, REPLACE);
executeStructure (wheel);

closeStructure;

We delete a hierarchy with the function
deleteStructurelNetwork i1d}

Where parameter id reterences the root structure of the tree. This deletes the root
node of the hierarchy and all structures that have been placed below the root
using the executeStricture function, assuming that the hierarchy is orga-
nized as a tree.

SUMMARY

A structure (also called a segment or an object in some systems) is a labeled
group of output statements and associated attributes. Bv designing pictures as
sets of structures, we can easily add, delete, or manipwate picture components
independently of each another. As structures are created, they are entered into a
central structure store. Structures are then displayed by posting them to various
output devices with assigned priorities. When two structures overlap, the struc-
ture with the higher priority is displayed over the structure with the lower prior-
ity

We can use workstation filters to set attributes, such as visibility and high-
lighting, for structures. With the visibility filter, we can turn off the display of a
structure while retaining it in the structure list. The highlighting filter is used to
emphasize a displayed structure with blinking, color, or high-intensity patterns.

Various editing op=rations can be applied to structures. We can reopen
structures to carry out append, insert, or delete operations. Locations in a struc-
ture are referenced with the element pointer. In addinon. we individually label
the primitives or attributes in a structure.

The term model, in graphics applications, refers to a graphical representa-
tion for some system. Components of the system are represented as symbols, de-
fined in local (modeling) coordinate reference frames. Many models, such as elec-
trical circuits, are constructed by placing instances of the svmbols at selected
locations.

Many models are constructed as symbol hierarchies. A bicycle, for instance,
can be constructed with a bicycle frame and the wheels. The frame can include
such parts as the handlebars and the pedals. And the wheels contain spokes,
rims, and tires. We can construct a hierarchial model by nesting structures. For
example, we can set up a bike structure that contains a frame structure and a
wheel structure. Both the frame and wheel structures can then contain primitives
and additional structures. We continue this nesting down to structures that con-
tain only output primitives (and attributes).

As each structure is nested within another structure, an associated model-
ing transformation can be set for the nested structure. This transformation de-

scribes the operations necessary to properly orient and scale the structure to fit
into the hierarchyv.

REFERENCES

Structure operations and hierarchical modeling in PHIGS are discussed in Hopgood and
Duce (1691, Howard et al. (1991), Gaskins (1992), and Blake (1993).

For information on GGKS segment operations see Hopgood 113983) and Enderle et at (1984)

EXERCISES

7-1. Wirite a procedure for creating and manipulating the information in a central structure
store. This procedure is to be invoked by functions such as openStructure,
deleteStructure, and changeStructureldent ifier.

-2 Write a routine for storing information in a traversal state list.

7-3. Wirite a routine for erasing a specified structure on a raster system, given the coordi-
nate extents for all displayed structures in a scene

. Wrile a procedure to implement the unoost Structure function on a raster system.
. Write a procedure to implement the deleteStructure function on a raster system.
. Write a procedure to implement highlighting as a blinking operation.

. Write a set of routines for editing structures. Your routines should provide for the fol-

lowing types of editing: appending, inserting, replacing, and deleting structure ele-
ments.

[N SRV

7B Discuss model representations that would be appropriate for several distinctly difter-
ent kinds of systems. Also discuss how graphical representations might be imple-
mented for eack system.

7-9 For alogic-circuit modeling application, such as that in Fig. 7-6, give a detailed graph-
cal deseription of the standard logic symbols to be used in constructing a display of a
circuit.

7-10. Develop a modeling package for electrical design that will allow a user to position
clectrical symbols within a circuit network. Only tianslations need be applied to place
an instance of one of the electrical menu shapes intc the network. Once a component

has been placed in the network, it is 1o be connected to other specified components
with straight line segments.

71t Devise a two-dimensional facility-layout package. A menu of furniture shapes is to be

Exercises

269

Chapter 7

D

70

Structures and Hierarchical
Modeling

7-12.

pravided to a des.gner, who can place the objects in any location within a single room
(one-level hierarchy . Instance transformations can be himited to translations and rota-
tions.

Devise a two-dimensional facility-layout package that presents a menu of furniture
shapes. A two-level hierarchy is to be used so that turniture items can be placed into
various work areas. and the work areas can be arranged within a larger area. Instance
transformations may be limited to translations and rotaticons, but scaling could be used
if furniture 1items of different sizes are to be available.

CHAPTER =

Graphical User Interfaces

and Interactive Input
Methods

272

T he human—compater interface for most systems invalves extensive graph-
ics, regardless ot the application. Typically, general svstems now consist of
windows, pull-down and pop-up menus, icons, and pointing devices, such as a
mouse or spaceball, for positioning the screen cursor. Papular graphical user in-
terfaces include X Windows, Windows, Macintosh, OpenLook, and Motif. These
interfaces are used in a variety of applications, including word processing,
spreadsheets, databases and file-management systems, presentation systems, and
page-layout systems. In graphics packages, specialized interactive dialogues are
designed for individual applications, such as engineering design, architectural
design, data visualization, drafting, business graphs, and artist’s paintbrush pro-
grams. For general graphics packages, interfaces are usually provided through a
standard system. An example is the X Window System interface with PHIGS. In
this chapter, we take a look at the basic elements of graphical user interfaces and
the techniques for interactive dialogues. We also consider how dialogues in
graphics packages, in particular, can allow us to construct and manipulate pic-
ture components, select menu options, assign parameter values, and select and
position text strings. A variety of input devices exists, and general graphics
packages can be designed to interface with various devices and to provide exten-
sive dialogue capabilities.

8-1
THE USER DIALOGUE

For a particular application, the user’s model serves as the basis for the design of
the dialogue. The user’s model describes what the system is designed to accom-
plish and what graphics operations are available. [t states the type of objects that
can be displayed and how the objects can be manipulated. For example, if the
graphics system is to be used as a tool for architectural design, the model de-
scribes how the package can be used to construct and display views of buildings
by positioning walls, doors, windows, and other building, components. Similarly,
for a facility-layout system, objects could be defined as a set of furniture items
(tables, chairs, etc.), and the available operations would include those for posi-
tioning and removing different pieces of furniture within the facility layout. And
a circuit-design progran, might use electrical or logic clements for objects, with
positioning operations available for adding or deletirg clements within the over-
all circuit design

All information in the user dialogue is then presented in the language of the Section 8-1
application. In an architectural design package, this means that all interactions The User Dialogue
are described only in architectural terms, without reference to particular data
structures or other concepts that may be unfamiliar to an architect. In the follow-
ing sections, we discuss some of the general considerations in structuring a user
dialogue.

Windows and lcons

Figure 8-1 shows examples of common window and icon graphital interfaces. Vi-
sual representations are used both for objects to be manipulated in an application
and for the actions to be performed on the application objects.

A window system provides a window-manager interface for the user and
functions for handling the display and manipulation of the windows. Common
functions for the window system are opening and closing windows, reposition-
ing windows, resizing windows, and display routines that provide interior and
exterior clipping and other graphics functions. Typically, windows are displayed
with sliders, buttons, and menu icons for selecting various window options.
Some general systemns, such as X Windows and NeWS, are capable of supporting
multiple window managers so that different window styles can be accommo-
dated, each with its own window manager. The window managers can then be
designed for particular applications. In other cases, a window system is designed
for one specific application and window style.

Icons representing objects such as furniture items and circuit elements are
often referred to as application icons. The icons representing actions, such as ro-
tate, magnify, scale, clip, and paste, are called control icons, or command icons.

Accommodating Mulliple Skill Levels

Usually, interactive graphical interfaces provide several methods for selecting ac-
tions. For example, options could be selected by pointing at an icon and clicking
different mouse buttons, or by accessing pull-down or pop-up menus, or by typ-
ing keyboard commands. This allows a package to accommodate users that have
different skill levels.

For a less experienced user, an interface with a few easily understood oper-
ations and detailed prompting is more effective than one with a large, compre-

i) (D))

Figure 8-1
Examples of screen layouts using window systems and icons. (Courtesy of (a) Intergraph
Corporation, (b} Visual Numerics, Inc., and (c) Sun Microsystems.)

273

Chapter 8

Craplucal User interiaces and

Interact ve fapat Methods

hensive operation set A simplihied set of menus and options is casy to learn and
remember, and the user can concentrate on the application imstead of on the de-
tails of the intertace. Sincple point-and-click operations are often easiest for an in-
experienced user of an applications package. Therefore, mterfaces typicallv pro-
vide a means for maskirg the complexity of a package. =, that beginners can use
the svstem without bu.n;: overwhelmed swith too much detail

'Experienced user- on the other hand, tvpicallv want speed. This means
fewer prompts and mere input from the kevboard or with multiple mouse-but-
ton clicks. Actions are selected with tunction keys or with simultaneous combina-
tions of keyboard keys, -ince experienced users will remcmber these shorteuts for
commonly used actions

Similarly, help tacinties can be designed on several levels so that beginners
can carry on a detailed dialogue. while more experienced nsers can reduce or
eliminate prompts and messages. Help facilitics can also include one or more tu-
torial applications, which provide users with an introduction to the capabilities
and use of the svstem.

Consistenacs

An important design consideration in an intertace is consistencv. For example, a
particular icon shape should alwavs have a single mearing, rather than serving
to represent different actions or ob;mts depending on the context. Some other ex-
amples of consistency ate alwavs placing menus in the same relative positions so
that a user does not have to hunt for a particular option. alwave using a particu-
lar combination of keyboard keys for the same action, and alwavs color coding so
that the same color does not have different meanings in ¢ifferent situations.
Generally, a complicated, inconsistent model is difticult for a user to under-
stand and to work with 10 an effective wav. The objects and operations provided
should be designed to form a minimum and consistent et so that the svstem is
easy to learn, but not oy ersimplified to the point where it 1 ditficult to applv.

Atiimizing Memornzation

Operations in an interface should also be structured so that thev are easy to un-
derstand and to rememoer. Obscure, complicated, incorsistent, and abbreviated
command formats lead “0 confusion and reduction 1n the cffectiveness of the use
of the package. One kev or button used for all delete operations, for example, is
easier to remember than a number of different kevs for different tvpes of delete
operations.

Icons and window systems also aid in minimizing memorization. Different
kinds of information can be separated into different windows, so that we do not
have to rely on memorization when different information displays overlap. We
can simply retain the multiple information on the screen in different windows,
and switch back and forth between window areas. lcons are used to reduce mem-
orizing by displaying casily recognizable shapes for various objects and actions.
To select a particular action, we simply select the icon that resembles that action.

Backup anil Frior Handiae

A mechanism tor backing up, or aborting, during a sequence ot operations is an-
other common teature of an interface. Often an operation can be canceled before

execution is completed, with the system restored to the state it was in before the
operation was started. With the ability to back up at any point, we can confi-
dently explore the capabilities of the system, knowing that the effects of a mis-
take can be erased.

Backup can be provided in many forms. A standard undo key or command
is used to cancel a single operation. Sometimes a system can be backed up
through several operations, allowing us to reset the system to some specified
point. In a system with extensive backup capabilities, all inputs could be saved
so that we can back up and “replay” any part of a session.

Sometimes operations cannot be undone. Once we have deleted the trash in
the desktop wastebasket, for instance, we cannot recover the deleted files. In this
case, the interface would ask us to verify the delete operation before proceeding.

Good diagnostics and error messages are designed to help determine the
cause of an error. Additionally, interfaces attempt to minimize error possibilities
by anticipating certain actions that could lead to an error. Exampies of this are
not allowing us to transform an object position or to delete an object when no ob-
ject has been selected, not allowing us to select a line attribute if the selected ob-
ject is not a line, and not allowing us to select the paste operation if nothing is in
the clipboard.

Feedback

Interfaces are designed to carry on a continual interactive dialogue so that we are
informed of actions in progress at each step. This is particularly important when
the response time is high. Without feedback, we might begin to wonder what the
system is doing and whether the input should be given again.

As each input is received, the system normally provides some type of re-
sponse. An object is highlighted, an icon appears, or a message is displayed. This
not only informs us that the input has been received, but it also tells us what the
system is doing. If processing cannot be completed within a few seconds, several
feedback messages might be displayed to keep us informed of the progress of the
system. In some cases, this could be a flashing message indicating that the system
is still working on the input request. It may also be possible for the system to dis-
play partial results as they are completed, so that the final display is built up a
piece at a time. The system might also allow us to input other commands or data
while one instruction is being processed.

Feedback messages are normally given clearly enough so that they have lit-
tle chance of being overlooked, but not so overpowering that our concentration is
interrupted. With function keys, feedback can be given as an audible click or by
lighting up the key that has been pressed. Audio feedback has the advantage that
it does not use up screen space, and we do not need to take attention from the
work area to receive the message. When messages are displayed on the screen, a
fixed message area can be used so that we always know where to look for mes-
sages. In some cases, it may be advantageous to place feedback messages in the
work area near the cursor. Feedback can also be displayed in different colors to
distinguish it from other displayed objects.

To speed system response, feedback techniques can be chosen to take ad-
vantage of the operating characteristics of the type of devices in use. A typical
raster feedback technique is to invert pixel intensities, particularly when making
menu selections. Other feedback methods include highlighting, blinking, and
color changes.

Section 8-1

The User Dialogue

275

Chapter 8

e
~J

Graphical User Interfaces and
Interactive Input Methods

Special symbols are designed for different types of feedback. For example, a
cross, a frowning face, or a thumbs-down symbol is often used to indicate an
error; and a blinking “at work” sign is used to indicate that processing is in
progress. This type of feedback can be very effective with a more experienced
user, but the beginner may need more detailed feedback that not only clearly in-
dicates what the system is doing but also what the user should input next.

With some types of input, echo feedback is desirable. Typed characters can
be displayed on the screen as they are input so that we can detect and correct er-
rors immediately. Button and dial input can be echoed in the same way. Scalar
values that are selected with dials or from displayed scales are usually echoed on
the screen to let us check input values for accuracy. Selection of coordinate points
can be echoed with a cursor or othersymbol that appears at the selected position.
For more precise echoing of selected positions, the coordinate values can be dis-
played on the screen.

§-2
INPUT OF GRAPHICAL DATA

Graphics programs use several kinds of input data. Picture specifications
need values for coordinate positions, values for the character-string parameters,
scalar values for the transformation parameters, values specifving menu options,
and values for identification of picture parts. Any of the input devices discussed
in Chapter 2 can be used to input the various graphical data types, but some de-
vices are better suited for certain data types than others. To make graphics pack-
ages independent of the particular hardware devices used, input functions can be
structured according to the data description to be handled by each function. This
approach provides a logical input-device classification in terms of the kind of
data to be input by the device.

Logical Classification of Input Devices

The various kinds of input data are summarized in the following six logical de-
vice classifications used by PHIGS and GKS:

LOCATOR~—a device for specitying a coordinate position (x, y)
STROKE--a device for specifving a series of coordinate positions
STRING--a device for specifying text input

VALUATOR—a device for specifying scalar values

CHOICE—a device for selecting menu options

PICK—a device ter selecting picture components

In some packages, a single logical device is used tor both focator and stroke
operations. Some other mechanism, such as a switch, can then be used to indicate
whether one coordinate position or a “stream’ of positions 1s to be input.

Each of the six logical input device classifications can be implemented with
any of the hardware devices, but some hardware devices are more convenient for
certain kinds of data than others. A device that can be pointed at a screen posi-
tion is more convenient for entering coordinate data than a kevboard, for exam-
ple. In the following sections, we discuss how the vanous phvsical devices are
used to provide input within each of the loyical classificetions.

Locator Devices

A standard method for interactive selection of a coordinate point is by position-
ing the screen cursor. We can do this with a mouse, joystick, trackball, spaceball,
thumbwheels, dials, a digitizer stylus or hand cursor, or some other cursor-posi-
tioning device. When the screen cursor is at the desired location, a button is acti-
vated to store the coordinates of that screen point.

Keyboards can be used for locator input in several ways. A general-purpose
keyboard usually has four cursor-control keys that move the screen cursor up,
down, left, and right. With an additional four keys, we can move the cursor diag-
onally as well. Rapid cursor movement is accomplished by holding down the se-
lected cursor key. Alternatively, a joystick, joydisk, trackball, or thumbwheels can
be mounted on the keyboard for relative cursor movement. As a last resort, we
could actually type in coordinate values, but this is a slower process that also re-
quires us to know exact coordinate values.

Light pens have also been used to input coordinate positions, but some spe-
cial implementation considerations are necessary. Since light pens operate by de-
tecting light emitted from the screen phosphors, some nonzero intensity level
must be present at the coordinate position to be selected. With a raster system,
we can paint a color background onto the screen. As long as no black areas are
present, a light pen can be used to select any screen position. When it is not pos-
sible to eliminate all black areas in a display (such as on a vector system, for ex-
ample), a light pen can be used as a locator by creating a small light pattern for
the pen to detect. The pattern is moved around the screen until it finds the light
pen.

Stroke Devices

This class of logical devices is used to input a sequence of coordinate positions.
Stroke-device input is equivalent to multiple calls to a locator device. The set of
input points is often used to display line sections.

Many of the physical devices used for generating locator input can be used
as stroke devices. Continuous movement of a mouse, trackball, joystick, or tablet
hand cursor is translated into a series of input coordinate values. The graphics
tablet is one of the more common stroke devices. Button activation can be used to
place the tablet intv “continuous” mode. As the cursor is moved across the tablet
surface, a stream of coordinate values is generated. This process is used in paint-
brush systems that allow artists to draw scenes on the screen and in engineering
systems where layouts can be traced and digitized for storage.

String Devices

The primary physical device used for string input is the keyboard. Input charac-
ter strings are typically used for picture or graph labels.

Other physical devices can be used for generating character patterns in a
“text-writing” mode. For this input, individual characters are drawn on the
screen with a stroke or locator-type device. A pattern-recognition program then
interprels the characters using a stored dictionary of predefined patterns.

Valuator Devices

This logical class of devices is employed in graphics systems to input scalar val-
ues. Valuators are used for setting various graphics parameters, such as rotation

Section 8-2

Input of Graphical Data

277

Chapter 8

Graphical User Interfaces and

278

Interactive Input Methods

angle and scale factors, and for setting physical parameters associated with a par-
ticular application (temperature settings, voltage levels, stress factors, etc.).

A typical physical device used to provide valuator input is a set of control
dials. Floating-point nimbers within any predefined range are input by rotating
the dials. Dial rotations in one direction increase the numeric input value, and
opposite rotations decrease the numeric value. Rotary potentiometers convert
dial rotation into a corresponding voltage. This voltage is then translated into a
real fidthber within a defined scalar range, such as —10.5 to 25.5. Instead of dials,
slide potentiometers are sometimes used to convert linear movements into scalar
values.

Any keyboard with a set of numeric keys can be used as a valuator device.
A user simply types the numbers directly in floating-point format, although this
is a slower itiethod than using dials or slide potentiometers.

Joysticks, trackballs, tablets, and other interactive devices can be adapted
for valuator input by interpreting pressure or movement of the device relative to
a scalar range. For one direction of movement, say, left to right, increasing scalar
values can be input. Movement in the opposite direction decreases the scalar
input value.

Another technique for providing valuator input is to display sliders, but-
tons, rotating scales, and menus on the video monitor. Figure 8-2 illustrates some
possibilities for scale representations. Locator input from a mouse, joystick,
spaceball, or other device is used to select a coordinate position on the display,
and the screen coordinate position is then converted to a numeric input value. As
a feedback mechanism for the yser, the selected position on a scale can be
marked with some symbol. Numeric values may also be echoed somewhere on
the screen to confirm the selections.

[g B s uster [~ L3

Figure 8-2

Scales displayed on a video monitor for interactive selection of
parameter values. In this display, sliders are provided for selecting
scalar values for superellipse parameters, s1 and s2, and for individual
R, G, and B color values. In addition, a small circle can be positioned on
the color wheel for selection of a combined RGB color, and buttons can
be activated to make small changes in color values.

Choice Devices

Graphics packages use menus to select programming options, parameter values,
and object shapes to be used in constructing a picture (Fig. 8-1). A choice device
is defined as one that enters a selection from a list (menu) of alternatives. Com-
monly used choice devices are a set of buttons; a cursor positioning device, such
as a mouse, trackball, or keyboard cursor keys; and a touch panel.

A function keyboard, or “button box”, designed as a stand-alone unit, is
often used to enter menu selections. Usually, each button is programmable, so
that its function can be altered to suit different applications. Single-purpose but-
tons have fixed, predefined functions. Programmable function keys and fixed-
function buttons are often included with other standard keys on a keyboard.

For screen selection of listed menu options, we can use cursor-control de-
vices. When a coordinate position (x, y) is selected, it is compared to the coordi-
nate extents of each listed menu item. A menu item with vertical and horizontal
boundaries at the coordinate values Xqin, Xmaw Ymune aNd Yo is selected if the
input coordinates (x, y) satisfy the inequalities

Xpnin =X = Xmaxs Ymin = Yy = ymax (8'1)

For larger menus with a few options displayed at a time, a touch panel is
commenly used. As with a cursor-control device, such as a mouse, a selected
screen position is compared to the area occupied by each menu choice.

Alternate methods for choice input include keyboard and voice entry. A
standard keyboard can be used to type in commands or menu options. For this
method of choice input, some abbreviated format is useful. Menu listings can be
numbered or given short identifying names. Similar codings can be used with
voice-input systems. Voice input is particularly useful when the number of op-
tions is small (20 or less).

Pick Devices

Graphical object selection is the function of this logical class of devices. Pick de-
vices are used to select parts of a scene that are to be transformed or edited in
some way.

Typical devices used for object selection are the same as those for menu se-
lection: the cursor-positioning devices, With a mouse or joystick, we can position
the cursor over the primitives in a displayed structure and press the selection
button. The position of the cursor is then recorded, and several levels of search
may be necessary to locate the particular object (if any) that is to be selected.
First, the cursor position is compared to the coordinate extents of the various
structures in the scene. If the bounding rectangle of a structure contains the cur-
sor coordinates, the picked structure has been identified. But if two or more
structure areas contain the cursor coordinates, further checks are necessary. The
coordinate extents of individual lines in each structure can be checked next. If the
cursor coordinates are determined to be inside the coordinate extents of only one
line, for example, we have identified the picked object. Otherwise, we need addi-
tional checks to determine the closest line to the cursor position.

One way to find the closest line to the cursor position is to calculate the dis-
tance squared from the cursor coordinates (x, y) to each line segment whose
bounding rectangle contains the cursor position (Fig. 8-3). For a line with end-
points (x|, y,) and (x,, y,), distance squared from (x, y) to the line is calculated as

Section 8-2

Input of Grapbical Data

279

280

Figure 8-3
Distances to line segments from the
pick position.

_ [axy—y) - Ay(x —x)
CAx?T+Ay?

dZ

(8-2)

where Ax=x,—x,, and Ay=y,~y, Various approximations can be used to speed
up this distance calculation, or other identification schemes can be used.

Another method for finding the closest line to the cursor position is to spec-
ify the size of a pick window. The cursor coordinates are centered on this win-
dow and the candidate lines are dipped to the window, as shown in Fig. 8-4. By
making the pick window small enough, we can ensure that a single line will
cross the window. The method for selecting the size of a pick window is de-
scribed in Section 8-4, where we consider the parameters associated with various
input functions.

A method for avoiding the calculation of pick distances or window clipping
intersections is to highlight the candidate structures and allow the user to resolve
the pick ambiguity. One way to do this is to highlight the structures that overlap
the cursor position one bv one. The user then signals when the desired structure
is highlighted.

An alternative to cursor positioning is to use button input to highlight suc-
cessive structures. A second button is used to stop the process when the desired
structure is highlighted. If very many structures are to be searched in this way,
the process can be speeded up and an additional button is used to help identify
the structure, The first button can initiate a rapid successive highlighting of struc-
tures. A second button can again be used to stop the process, and a third button
can be used to back up more slowly if the desired structure passed before the op-
erator pressed the stop button.

Finally, we could use a keyboard to type in structure names. This is a
straightforward, but less interactive, pick-selection method. Descriptive names
can be used to help the user in the pick process, but the method has several
drawbacks. It is generally slower than interactive picking on the screen, and a
user will probably need prompts to remember the various structure names. In
addition, picking structure subparts from the keyboard can be more difficult than
picking the subparts on the screen.

X, vl o N o
Tigure 8-4
A pick window, centered on pick
e " coordinates (x,, y,). used to resolve
W

i pick object overlaps.

8-3
INPUT FUNCTIONS

Graphical input functions ..1. be set up to allow users to specify the following
options:

* Which physical devices are to provide input within a particular logical clas-
sification (for example, a tablet used as a stroke device).

¢ How the graphics program and devices are to interact (input mode). Either
the program or the devices can initiate dat.. entry, or both can operate si-
multaneously.

* When the data are to be input and which device is to be used at that time to
deliver a particular input type to the specified data variables.

Input Modes

Functions to provide input can be structured to operate in various input modes,
which specify how the program and input devices interact. Input could be initi-
ated by the program, or the program and input devices both could be operating
simultaneously, or data input could be initiated by the devices. These three input
modes are referred to as request mode, sample mode, and event mode.

In request mode, the application program initiates data entry. Input values
are requested and processing is suspended until the required values are received.
This input mode corresponds to typical input operation in a general program-
ming language. The program and the input devices operate alternately. Devices
are put into a wait state until an input request is made; then the program waits
until the data are delivered.

In sample mode, the application program and input devices operate inde-
pendently. Input devices may be operating at the same time that the program is
processing other data. New input values from the input devices are stored, re-
placing previously input data values. When the program requires new data, it
samples the current values from the input devices.

In event mode, the input devices initiate data input to the application pro-
gram. The program and the input devices again operate concurrently, but now
the input devices deliver data to an input queue, All input data are saved. When
the program requires new data, it goes to the data queue.

Any number of devices can be operating at the same time in sample and
event modes. Some can be operating in sample mode, while others are operating
in event mode. But only one device at a time can be providing input in request
mode.

An input mode within a logical class for a particular physical device operat-
ing on a specified workstation is declared with one of six input-class functions of
the form

set ... Moce {(ws, deviceCode, inputMode, echoFlag)

where deviceCode is a positive integer; inputMode is assigned one of the val-
ues: request, samplz, or event; and parameter echoFlag is assigned either the
value echo or the value noecho. How input data will be echoed on the display de-
vice is deterrnined by parameters set in other input functions to be described
later in this section.

Section 8-3

Input Functions

287

Graphical User Interfaces and
Interactive Input Methods

282

TABLE 8-1
ASSIGNMENT OF INPUT-DEVICE
CODES

Device Code Physical Device Type

Keyboard
Graphics Tablet
Mouse

Jovstick
Trackball
Button

U b N —

Device code assignment is installation-dependent. One possible assignment
of device codes is shown in Table 8-1. Using the assignments in this table, we
could make the following declarations:

setLocatorMode (1, 2, sample, noecho)
setTextMode (2, 1, reqguest, echo)
setPickMode {4, 3, event, echo)

Thus, the graphics tablet is declared to be a locator device in sample mode on
workstation 1 with no input data feedback echo; the keyboard is a text device in
request mode on workstation 2 with input echo; and the mouse is declared to be
a pick device in event mode on workstation 4 with input echo.

Request Mode

Input commands used in this mode correspond to standard input functions in a
high-level programming language. When we ask for an input in request mode,
other processing is suspended until the input is received. After a device has been
assigned to request mode. as discussed in the preceding section, input requests
can be made to that device using one of the six logical-class functions represented
by the following:

request ... (ws, deviceCode, status, ...)

Values input with this function are the workstation code and the device code. Re-
turned values are assigned to parameter status and to the data parameters cor-
responding to the requested logical class.

A value of ok or none is returned in parameter status, according to the va-
lidity of the input data. A value of none indicates that the input device was acti-
vated so as to produce invalid data. For locator input, this could mean that the
coordinates were out of range. For pick input, the device could have been acti-
vated while not pointing at a structure. Or a “break” button on the input device
could have been pressed. A returned value of none can be used as an end-of-data
signal to terminate a programming sequence.

Locator and Stroke Input in Request Mode
The request functions for these two logical input classes are

requestbLocator (ws, devCode, status, viewlncex, pt)
requestStroke (ws, devCcde, nMax, status, viewIndex, n, pis)

For locator input, pt is the world-coordinate position selected. For stroke input,
pts is a list of n coordinate positions, where parameter nMax gives the maxi-
mum number of points that can go in the input list. Parameter viewIndex is as-
signed the two-dimensional view index number.

Determination of a world-coordinate position is a two-step process: (1) The
physical device selects a point in device coordinates (usually from the video-dis-
play screen) and the inverse of the workstation transformation is performed to
obtain the corresponding point in normalized device coordinztes. (2) Then, the
inverse of the window-to-viewport mapping is carried out to get to viewing co-
ordinates, then to world coordinates.

Since two or more views may overlap on a device, the correct viewing
transformation is identified according to the view-transformation input priority
number. By default, this is the same as the view index number, and the lower the
number, the higher the priority. View index 0 has the highest priority. We can
change the view priority relative to another (reference) viewing transformation
with

setViewTransformationInputPriority (ws, viewlIndex,
refViewlndex, prior:ty)

where viewIndex identifies the viewing transformation whose priority is to be
changed, refviewIndex identifies the reference viewing transformation, and
parameter priority is assigned either the value lower or the value higher. For
example, we can alter the priority of the first four viewing transformations on
workstation 1, as shown in Fig. 8-5, with the sequence of functions:

setViewTransformationInputPriority {i 3, 1, higher)
setViewTransformationInputPriority (1, 0, 2, lower)

String Input in Request Mode
Here, the request input function is
requestString (ws, devCode, status, nChars, str)

Parameter str in this function is assigned an input string. The number of charac-
ters in the string is given in parameter nChars.

Original Fina)
Priority Ordering Priority Ordering

Figure 8-5
Rearranging viewing priorities.

Section 8-3

tnput Functions

283

Chapter 8

Graphical User Interfaces and

284

Interactive Input Methods

Valuator Input in Request Mode

A numerical value is input in request mode with
regquestValuator (ws, devCode, status, value)

Parameter value car be assigned any real-number value.

Choice Input in Request Mode

We make a menu selection with the following request function:
requestChoice (ws, devCode, status, itemNum}

Parameter itemNum is assigned a positive integer value corresponding to the
menu item selected.

Pick Input in Request Mode

For this mode, we obtain a structure identifier number with the function

reguestPick (ws, devCode, maxPathDepth, status, pathDepth,
pickPath)

Parameter pickPath is a list of information identifying the primitive selected.
This list contains the structure name, pick identifier for the primitive, and the ele-
ment sequence number. Parameter pickDepth is the number of levels returned
in pickPath, and maxPathDepth is the specified maximum path depth that
can be included in pickPath.

Subparts of a structure can be labeled for pick input with the following
function:

setPickIdentifier (pickID)

An example of sublabeling during structure creation is given in the following
programming sequence:

openStructure {(id):;
for (k = 0; k < n; k#++){
setPickIdentifier (k);

}
closeStructure;

Picking of structures and subparts of structures is also controlled by some work-
station filters (Section 7-1) Obijects cannot be picked if they are invisible. Also, we
can set the ability to pick objects independently of their visibility. This is accom-
plished with the pick filter:

setPickFilter (ws, devCode, pickables, nonp.ckab.es)

where the set pickables contains the names of objects (structures and primi-
tives) that we may want to select with the specitied pick device. Similarly, the set
nonpickables contains the names of objects that we do not want to be avail-
able for picking with this input device.

Sample Mode

Once sample mode has been set for one or more physical devices, data input be-
;ins without waiting for program direction. If a joystick has been designated as a
ocator device in sample mode, coordinate values for the current position of the
activated joystick are immediately stored. As the activated stick position changes,
the stored values are continually replaced with the coordinates of the current
stick position.

Sampling of the current values from a physical device in this mode begins
when a sample command is encountered in the application program. A locator
device is sampled with one of the six logical-class functions represented by the
following:

sample ... (ws, deviceCode, ...)

Some device classes have a status parameter in sample mode, and some do not.
Other input parameters are the same as in request mode.

As an example of sample input, suppose we want to translate and rotate a
selected object. A final translation position for the object can be obtained with a
locator, and the rotation angle can be supplied by a valuator device, as demon-
strated in the following statements.

samplelLocator (wsl, devl, viewIndex, pt)
sampleValuator (ws2, dev2, angle)

tvent Mode

When an input device is placed in event mode, the program and device operate
simultaneously. Data input from the device is accumulated in an event queue, or
input queue. All input devices active in event mode can enter data (referred to as
“events”) into this single-event queue, with each device entering data values as
they are generated. At any one time, the event queue can contain a mixture of
data types, in the order they were input. Data entered into the queue are identi-
fied according to logical class, workstation number, and physical-device code.

An application program can be directed to check the event queue for any
input with the function

awaitEvent (time , ws, deviceClass, deviceCode)

Parameter time is used to set a maximum waiting time for the application pro-
gram. If the queue happens to be empty, processing s suspended untit either the
number of seconds specified in time has elapsed or an input arrives. Should the
waiting time run out before data values are input, the parameter aeviceClass
is assignad the value rione. When time is given the value 0, the program checks
the queue and immediately returns to other processing if the queue is empty.

Section 8-3

Input Functions

285

Chapter 8

286

Craphical User Interfaces and
Interactive Input Methads

If processing is directed to the event queue with the awaitEvent function
and the queue is not empty, the first event in the queue is transferred to a current
event record. The particular logical device class, such as locator or stroke, that
made this input is stored in parameter deviceClass. Codes, identifying the
particular workstation and physical device that made the input, are stored in pa-
rameters ws and deviceCode, respectively.

To retrieve a data input from the current event record, an event-mode input
function is used. The functions in event mode are similar to those in request and
sample modes. However, no workstation and device-code parameters are neces-
sary in the commands, since the values for these parameters are stored in the
data record. A user retrieves data with

get ... { ...)

For example, to ask for locator input, we invoke the function

getLocator (viewIndex, pt)

In the following program section, we give an example of the use of the
awaitEvent and get functions. A set of points from a tablet (device code 2) on
workstation 1 is input to plot a series of straight-line segments connecting the
input coordinates:

setStrokeMode (1, z, event, noecho);
do

awaitEvent (0, ws, deviceClass,
} while (deviceClass stroke) ;
getStroke (nMax, viewIndex, n, pts);

polyline (n, pts});

deviceCode)

The repeat-until loop bypasses any data from other devices that might be in
the queue. If the tablet is the only active input device in event mode, this loop is
not necessary.

A number of devices can be used at the same time in event mode for rapid
interactive processing of displays. The following statements plot input lines from
a tablet with attributes specified by a button box:

setPolylineIndex (1) ;
/* set tablet to stroke device,
setStrokeMcde (1, 2, event,

event mode */
noecho) ;

/* set buttons to choice device,
setChoiceMode (1, 6, event,

event mode */

noecho) ;

do {
awaitEvent
if

(60, deviceClass,
(deviceClass choice) {

getChoice (status, option);

setPolylineIndex (option);

WS,

deviceCode) ;

}
else
if ==

(deviceClass
getStroke (nMax,
polyline (n,

}
} while

stroke) {
viewIndex,
pts);

n, pts);

ideviceClass != none):

Some additional housekeeping functions can be used in event mode. Func-
tions for clearing the event queue are useful when a process is terminated and a
new application is to begin. These functions can be set to clear the entire queue or
to clear only data associated with specified input devices and workstations.

Concurrent Use of Input Modes

An example of the simultaneous use of input devices in different modes is given
in the following procedure. An object is dragged around the screen with a
mouse. When a final position has been selected, a button is pressed to terminate
any further movement of the Ubject. The mouse positions are obtained in sample
mode, and the button input is sent to the event queue

T /* drags object in response to mouse input */
/* terminate processing by button press *’
setlLocatorMode (1, 3, sample, echo);
setChoiceMode (1, 6, event, noecho);
do {

sanpleLocator (1, 3, viewIndex, pt}:

/* translate object centroid to position pt and draw */

awaitEvent (0, ws, class, code);
} while (class != choice);

8-4
INITIAL VALUES FOR INPUT-DEVICE PARAMETERS

Quite a number of parameters can be set for input devices using the initial-
ize function for each logical class:

initialize ... (ws, deviceCode, ... , p2, coordExt, dataRec)

Parameter pe is the prompt and echo type, parameter coordExt is assigned a
set of four coordinate values, and parameter dataRec is a record of various con-
trol parameters.

For locator input, some values that can be assigned to the prompt and echo
parameter are

pe = 1: installation defined

pe = 2: crosshair cursor centered at current position
pe = 3: line from initial position to current position
pe = 4: rectangle defined by current and initial points

Several other options are also available.
For structure picking, we have the following options:

pe = 1: highlight picked primitives
pe = 2: highlight all primitives with value of pick id
pe = 3: highlight entire structure

as well as several others.

Section 8-4

initial Values for Input-Device
Parameters

287

Chapter 8

Graphical User [nterfaces and

288

Interactive Input Methods

When an echo of the input data is requested, it is displayed within the
bounding rectangle specified by the four coordinates in parameter coordext.
Additional options can also be set in parameter dataRec. For example, we can
set any of the following:

¢ size of the pick window

¢ minimum pick distance

e type and size of cursor display

e type of structure highlighting during pick operations
¢ range (min and max) for valuator input

* resolution (scale) for valuator input

plus a number of other options.

8-5
INTERACTIVE PICTURE-CONSTRUCTION TECHNIQUES

There are several techniques that are incorporated into graphics packages to aid
the interactive construction of pictures. Various input options can be provided, so
that coordinate information entered with locator and stroke devices can be ad-
justed or interpreted according to a selected option. For example, we can restrict
all lines to be either horizontal or vertical. Input coordinates can establish the po-
sition or boundaries for objects to be drawn, or they can be used to rearrange pre-
viously displayed obijects.

Basic Positioning Methods

Coordinate values supplied by locator input are often used with positioning
methods to specify a location for displaying an object or a character string, We in-
teractively select coordinate positions with a pointing device, usually by posi-
tioning the screen cursor. Just how the object or text-string positioning is pe-
formed depends on the selected options. With a text string, for example, the
screen point could be taken as the center string position, or the start or end posi-
tion of the string, or any of the other string-positioning options discussed in
Chapter 4. For lines, straight line segments can be displayed between two se-
lected screen positions.

As an aid in positioning objects, numeric values for selected positions can
be echoed on the screen. Using the echoed coordinate values as a guide, we can
make adjustments in the selected location to obtain accurate positioning.

Constraints

With some applications, certain types of prescribed orientations or object align-
ments are useful. A constraint is a rule for altering input-coordinate vajues to
produce a specified vrientation or alignment of the displayed coordinates. There
are many kinds of constraint functions that can be specified, but the most com-
mon constraint is a horizontal or vertical alignment of straight lines. This type of
constraint, shown in Figs. 8-6 and 8-7, is useful in forming network layouts. With
this constraint, we can create horizontal and vertical lines without worrying
about precise specification of endpoint coordinates.

=

Select First Select
Endpoint Position Second Endpoint
Position Along
Approximate

Horizontal Path
Figure 8-6
Horizontal line constraint.

+

+
Selact First Select
Endpoint Position Second Endpaoint
Position Along
Approximate
Vertical Path
Figure 5-7

Vertical line constraint.

A harizontat or vertical constraint is implemented by determining whether
any two input coordinate endpoints are more nearly horizontal or more nearly
vertical. If the difference in the y values of the two endpoints is smaller than the
difference in x values, a horizontal line is displayed. Otherwise, a vertical line is
drawn. Other kinds of constraints can be applied to input coordinates to produce
a variety of alignments. Lines could be constrained to have a particular slant,
such as 45°, and input coordinates could be constrained to lie along predefined
paths, such as circular arcs.

Grids

Another kind of constraint is a grid of rectangular lines displayed in some part of
the screen area. When a grid is used, any input coordinate position is rounded to
the nearest intersecton of two grid lines. Figure 8-8 illustrates line drawing with a
grid. Each of the two cursor positions is shifted to the nearest grid intersection
point, and the line is drawn between these grid points. Grids facilitate object con-
structions, because a new line can be joined easily to a previously drawn line by
selecting any position near the endpoint grid intersection of one end of the dis-
played lire. :

Section 8-5

interactive Picture-Construction
Techniques

Select First Endpoint
Position Near a
Grid Intersection

Select a Position
Near a Second
Grid Intersection

Figure 8-8
Line drawing using a grid.

289

Chapter 8

Graphical User Interfaces and
Interactive Input Methods

Figure 8-9

Gravity field around a line.
Any selected point in the
shaded area is shifted to a
position on the line.

290

Spacing between grid lines is often an option that can be set by the user.
Similarly, grids can be turned on and off, and it is sometimes possible to use par-
tial grids and grids of different sizes in different screen areas.

Gravity Field

In the construction of figures, we sometimes need to connect lines at positions be-
tween endpoints. Since exact positioning of the screen cursor at the connecting
point can be difficult, graphics packages can be designed to convert any input
position near a line to a position on the line.

This conversion of input position is accomplished by creating a gravity field
area around the line. Any selected position within the gravity field of a line is
moved (“gravitated”) to the nearest position on the line. A gravity field area
around a line is illustrated with the shaded boundary shown in Fig. 8-9. Areas
around the endpoints are enlarged to make it easier for us to connect lines at
their endpoints. Selected positions in one of the circular areas of the gravity field
are attracted to the endpoint in that area. The size of gravity fields is chosen large
enough to aid positioning, but small enough to reduce chances of overlap with
other lines. If many lines are displayed, gravity areas can overlap, and it may be
difficult to specify points correctly. Normally, the boundary for the gravity field is
not displayed.

Rubber-Band Methads

Straight lines can be comstructed and positioned using rubber-band methods,
which stretch out a line from a starting position as the screen cursor is moved.
Figure 8-10 demonstrates the rubber-band method. We first select a screen posi-
tion for one endpoint of the line. Then, as the cursor moves around, the line is
displayed from the start position to the current position of the cursor. When we
finally select a second screen position, the other line endpoint 1s set.

Rubber-band methods are used to construct and position other objects be-
sides straight lines. Figure 8-11 demonstrates rubber-band construction of a rec-
tangle, and Fig. 8-12 shows a rubber-band circle construction.

—

. L —
L__//

Select As the Cursor Line Follows
First Moves, A Line Cursor Position
Line Stretches out until the Second
Endpoint from the Initiai Endpoint Is
Point Selected
Figure 8-10
Rubber-band method for drawing and positioning a straight line

segment.

)

Select Rectangle Select Final
Position Stretches Out Position for
for One Corner As Cursor Moves Opposite Corner

of the Rectangle

of the Rectangle

Figure 8-11
Rubber-band method for constructing a rectangle.

Dragging

A technique that is often used in interactive picture construction is to move ob-
jects into position by dragging them with the screen cursor. We first select an ob-
ject, then move the cursor in the direction we want the object to move, and the se-
lected object follows the cursor path. Dragging objects to various positions in a
scene is useful in applications where we might want to explore different possibil-
ities before selecting a final location.

Painting and Drawing

Options for sketching, drawing, and painting come in a variety of forms. Straight
lines, polygons, and circles can be generated with methods discussed in the pre-
vious sections. Curve-drawing options can be provided using standard curve
shapes, such as circular arcs and splines, or with freehand sketching procedures.
Splines are interactively constructed by specifying a set of discrete screen points
that give the general shape of the curve. Then the system fits the set of points
with a polynomial curve. In freehand drawing, curves are generated by follow-
ing the path of a stylus on a graphics tablet or the path of the screen cursor on a
video monitor. Once a curve is displayed, the designer can alter the curve shape
by adjusting the positions of selected points along the curve path.

e

Select Position Circle Stretches Select the
for the Circle Out as the Final Radius
Center Cursor Moves of the Circle
Figure 8-12

Constructing a circle using a rubber-band method.

291

Chapter 8

Graphical User Interfaces and

292

Interactive Input Methods

Figure 8-13

A screen layout showing one type
of interface to an artist's painting
package. (Courtesy of Thomson Digital
Image.)

Line widths, line styles, and other attribute options are also commonly
found in-painting and drawing packages. These options are implemented with
the methods discussed in Chapter 4. Various brush styles, brush patterns, color
combinations, object shapes, and surface-texture patterns are also available on
many systems, particularly those designed as artist’s wurkstations. Some paint
systems vary the line width and brush strokes according to the pressure of the
artist’s hand .on the stylus. Figure 8-13 shows a window and menu system used
with a painting package that allows an artist to select variations of a specified ob-
ject shape, different surface textures, and a variety of lighting conditions for a
scene,

8-6
VIRTUAL-REALITY ENVIRONMENTS

A typical virtual-reality environment is illustrated in Fig. 8-14. Interactive input
is accomplished in this environment with a data glove (Section 2-5), which is ca-
pable of grasping and moving objects displayed in a virtual scene. The computer-
generated scene is displayed through a head-mounted viewing system (Section
2-1) as a stereoscopic projection. Tracking devices compute the position and ori-
entation of the headset and data glove relative to the object positions in the scene.
With this system, a user can move through the scene and rearrange object posi-
tions with the data glove.

Another method for generating virtual scenes is to display stereoscopic pro-
jections on a raster monitor, with the two stereoscopic views displayed on alter-
nate refresh cycles. The scene is then viewed through stereoscopic glasses. Inter-
active object manipulations can again be accomplished with a data glove and a
tracking device to monitor the glove position and orientation relative to the posi-
tion of objects in the scene.

Figure 8-14

Using a head-tracking stereo
display, called the BOOM (Fake
Space Labs, Inc.), and a Dataglove
(VPL, Inc.), a researcher
interactively manipulates
exploratory probes in the unsteady
flow around a Harrier jet airplane.
Software developed by Steve
Bryson; data from Harrier. (Courtesy
of Sam Uselton, NASA Ames Research
Center)

SUMMARY

A dialogue for an applications package can be designed from the user’s model,
which describes the functions of the applications package. All elements of the di-
alogue are presented in the language of the applications. Examples are electrical
and architectural design packages.

Graphical interfaces are typically designed using windows and icons. A
window system provides a window-manager interface with menus and icons
that allows users to open, close, reposition, and resize windows. The window
system then contains routines to carry out these operations, as well as the various
graphics operations. General window systems are designed to support multiple
window managers. Icons are graphical symbols that are designed for quick iden-
tification of application processes or control processes.

Considerations in user-dialogue design are ease of use, clarity, and flexibil-
ity. Specifically, graphical interfaces are designed to maintain consistency in user
interaction and to provide for different user skill levels. In addition, interfaces are
designed to minimize user memorization, to provide sufficient feedback, and to
provide adequate backup and error-handling capabilities.

Input to graphics programs can come from many different hardware de-
vices, with more than one device providing the same general class of input data.
Graphics input functions can be designed to be independent of the particular
input hardware in use, by adopting a logical classification for input devices. That
is, devices are classified according to the type of graphics input, rather than a

Summary

293

Chapter 8

o]

4

Graphecal Lser interfaces and
Interaztive Input Methods

hardware designation, such as mouse or tablet. The six logical devices in com-
mon use are locator, stroke, string, valuator, choice, and pick. Locator devices are
any devices used by a program to input a single coordinate position. Stroke de-
vices input a stream of coordinates. String devices are used to input text. Valuator
devices are any input devices used to enter a scalar value. Choice devices enter
menu selections. And pick devices input a structure name.

Input functions available in a graphics package can be defined in three
input modes. Request mode places input under the control of the application
program. Sample mode allows the input devices and program to operate concur-
rently. Event mode allows input devices to initiate data entry and control pro-
cessing of data. Once a mode has been chosen for a logical device class and the
particular physical device to be used to enter this class of data, input functions in
the program are used to enter data values into the program. An application pro-
gram can make simultaneous use of several physical input devices operating in
different modes.

Interactive picture-construction methods are commonly used in a variety of
applications, including design and painting packages. These methods provide
users with the capability to position objects, to constrain figures to predefined
orientations or alignments, to sketch figures, and to drag objects around the
screen. Grids, gravity fields, and rubber-band methods are used to aid in posi-
tioning and other picture-construction operations.

REFERENCES

Guidelines for user-intertace design are presented in Apple (1987, Bleser (1988, Digital
(1989), and OSF-MOTIF 1989). For information on the X \Window Svstem, see Young
(1990) and Cutler Gilly, and Reilly (1992). Additional discussions of interface design can
be found in Philhips (19771, Goodman and Spence (1978), Lodding 1983), Swezey and
Davis (1983), Carroll and Carrithers (1984), Foley, Wallace, and Chan :1984), and Good et
al. (1984).

The evolution of the concept of logical (or virtuah input devices is discussed in Wallace
(1976) and in Rosenthal et al. (1982). An early discussion of input-device classifications is
to be found in Newman (1968).

Input operations in PHIGS can be found in Hopgood and Duce (1991}, Howard et al.
(1991}, Gaskins (1992), and Blake (1993). For information on GKS input functions, see
Hopgood et al. (1983} and Enderle, Kansy, and Pfati {1984),

EXERCISES

8-1. Select sume graphics application with which you are farmliar and set up a user model
that will serve as the basis for the design of a user interface tor graphics applications in
that area.

8-2. List possible help facilites that can be provided in a user interface and discuss which
types of help would be appropriate for different fevels ¢f users.

8-3. Summarize the possibiz ways of handling backup and errors. State which approaches
are more suitable for the beginner and which are better suited to the experienced user.

8-4. List the possible formats for presenting menus to a user ard explain under what cir-
cumstances each might be appropriate.

8-5. Discuss alternatives ‘or feedback in terms of the various levels of users.

8-6. List the tunctions that must be performed by a window manager in handling screen
layouts with multiple overbapping windows.

8-7.
3-8.
8-9.

8-10.

8-12.

8-17.

8-18.

8-24.

8-25.
8-26.

8-27.

Set up a design for a window-manager package.
Design a user interface for a painting program.
Design a user interface for a two-level hierarchical modeling package.

For any area with which you are familiar, design a complete user interface to a graph-
ics package providing capabilities to any users in that area.

. Develop a program that allows objects to be positioned on the screen using a locator

device. An object menu of geometric shapes is 10 be presented to a user who is to se-
lect an object and a placement position. The program should allow any number of ob-
jecls to be positioned until a “terminate” signal is given.

Extend the program of the previous exercise so that selected objects can be scaled and
rotated before positioning. The transformation chcices and transformation parameters
are 1o be presented to the user as menu options.

Write a program that allows a user 1o interactively sketch pictures using a stroke de-
vice.

. Discuss the methods that could be employed in a pattern-recognition procedure to

match input characters against a stored library of shapes.

. Write a routine that displays a linear scale and a slider on the screen and allows nu-

meric values to be selected by positioning the slider along the scale line. The number
value selected is to be echoed in a box displayed near the linear scale.

. Write a routine that displays a circular scale and a pointer or a slider that can be

moved around the circle 1o select angles (in degrees). The angular value selected is to
be echoed in a box displayed near the circular scale.

Write a drawing program that allows users to create a picture as a set of line segments
drawn between specified endpoints. The coordinates of the individual line segments
are 10 be selected with a locator device.

Write a drawing package that allows pictures to be created with straight line segments
drawn between specified endpoints. Set up a gravity field around each line in a pic-
lure, as an aid in connecting new lines to existing lines.

. Modify the drawing package in the previous exercise that allows lines to be con-

strained horizontally or vertically.

. Develop a drawing package that can display an optional grid pattern so that selected

screen positions are rounded to grid intersections. The package is to provide line-
drawing capabilities, with line endpoints selected with a locator device.

.
. Write a routine that allows a designer to create a picture by sketching straight lines

with a rubber-band method.

. Write a drawing package that allows straight lines, rectangles, and circles to be con-

structed with rubber-band methods.

. Write a program that allows a user to design a picture from a menu of basic shapes by

dragging each selected shape into position with a pick device.
Design an implementation of the input functions for request mode.
Design an implementation of the sample-mode input functions.
Design an implementation of the input functions for event mode.

Set up a general implementation of the input functions for request, sample, and event
modes.

Fxercises

295

