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A major consideration in the generation of realistic graphics displays is
identifying those parts of a scene that are visible from a chosen viewing
position. There are many approaches we can take to solve this problem, and nu-
merous algorithms have been devised for efficient identification of visible objects
for different types of applications. Some methods require more memory, some in-
volve more processing time, and some apply only to special types of objects. De-
ciding upon a method for a particular application can depend on such factors as
the complexity of the scene, type of objects to be displayed, available equipment,
and whether static or animated displays are to be generated. The various algo-
rithms are referred to as visible-surface detection methods. Sometimes these
methods are also referred to as hidden-surface elimination methods, although
there can be subtle differences between identifying visible surfaces and eliminat-
ing hidden surfaces. For wireframe displays, for example, we may not want to
actually eliminate the hidden surfaces, but rather to display them with dashed
boundaries or in some other way to retain information about their shape. In this
chapter, we explore some of the most commonly used methods for detecting visi-
ble surfaces in a three-dimensional scene.

13-1
CLASSIFICATION OF VISIBLE-SURFACE DETECTION
ALGORITHMS

Visible-surface detection algorithms are broadly classified according to whether
they deal with object definitions directly or with their projected images. These
two approaches are called object-space methods and image-space methods, re-
spectively. An object-space method compares objects and parts of objects to each
other within the scene definition to determine which surfaces, as a whole, we
should label as visible. In an image-space algorithm, visibility is decided point by
point at each pixel position on the projection plane. Most visible-surface algo-
rithms use image-space methods, although object-space methods can be used ef-
fectively to locate visible surfaces in some cases. Line-display algorithms, on the
other hand, generally use object-space methods to identify visible lines in wire-
frame displays, but many image-space visible-surface algorithms can be adapted
easily to visible-line detection.

Although there are major differences in the basic approach taken by the var-
ious visible-surface detection algorithms, most use sorting and coherence meth-
ods to improve performance. Sorting is used to facilitate depth comparisons by
ordering the individual surfaces in a scene according to their distance from the



view plane. Coherence methods are used to take advantage of regularities in a
scene. An individual scan line can be expected to contain intervals (runs) of con-
stant pixel intensities, and scan-line patterns often change little from one line to
the next. Animation frames contain changes only in the vicinity of moving ob-
jects. And constant relationships often can be established between objects and
surfaces in a scene.

13-2
BACK-FACE DETECTION

A fast and simple object-space method for identifying the back faces of a polyhe-
dron is based on the “inside-outside” tests discussed in Chapter 10. A point (x, ,
2) is “inside” a polygon surface with plane parameters A, B, C, and D if

Ax+By+Cz+ D <0 (13-

When an inside point is along the line of sight to the surface, the polygon must
be a back face (we are inside that face and cannot see the front of it from our
viewing position).

We can simplify this test by considering the normal vector N to a polygon
surface, which has Cartesian components (A, B, C). In general, if V is a vector in
the viewing direction from the eye (or “camera”) position, as shown in Fig. 13-1,
then this polygon is a back face if

V-N=>0 (13-2)

Furthermore, if object descriptions have been converted to projection coordinates
and our viewing direction is parallel to the viewing z, axis, then V = (0, 0, V)
and

V-N=V.C

so that we only need to consider the sign of C, the z component of the normal
vector N

In a right-handed viewing system with viewing direction along the nega-
tive z, axis (Fig. 13-2), the polygon is a back face if C < 0. Also, we cannot see any
face whose normal has z component C = 0, since our viewing direction is grazing
that polygon. Thus, in general, we can label any polygon as a back face if its nor-
mal vector has a z-component value:

CcC=0 (13-33

N={A 8 C) _— -
Figure 13-1

Vector V in the viewing direction
and a back-face normal vector N of
a polyhedron

Section 13-2

Back-Face Detection

471



Figure 13-3

View of a concave
polyhedron with one face
partially hidden by other
faces.
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Figure 13-2
Y. .
N=(A B,C) A polygon surface with plane
parameter C < 0in a right-handed
X, viewing coordinate system is
Vv identified as a back face when the
viewing direction is along the
2, negative 7, axis.

Similar methods can be used in packages that employ a left-handed view-
ing system. In these packages, plane parameters A, B, C, and D can be calculated
from polygon vertex coordinates specified in a clockwise direction (instead of the
counterclockwise direction used in a right-handed system). Inequality 13-1 then
remains a valid test for inside points. Also, back faces have normal vectors that
point away from the viewing position and are identified by C = 0 when the
viewing direction is along the positive z, axis.

By examining parameter C for the different planes defining an object, we
can immediately identify all the back faces. For a single convex polyhedron, such
as the pyramid in Fig. 13-2, this test identifies all the hidden surfaces on the ob-
ject, since each surface is either completely visible or completely hidden. Also, if
a scene contains only nonoverlapping convex polyhedra, then again all hidden
surfaces are identified with the back-face method.

For other objects, such as the concave polyhedron in Fig. 13-3, more tests
need to be carried out to determine whether there are additional faces that are to-
tally or partly obscured by other faces. And a general scene can be expected to
contain overlapping objects along the line of sight. We then need to determine
where the obscured objects are partially or completely hidden by other objects. In
general, back-face removal can be expected to eliminate about half of the polygon
surfaces in a scene from further visibility tests.

13-3
DEPTH-BUFFER METHOD

A commonly used image-space approach to detecting visible surfaces is the
depth-buffer method, which compares surface depths at each pixel position on
the projection plane. This procedure is also referred to as the z-buffer method,
since object depth is usually measured from the view plane along the z axis of a
viewing system. Each surface of a scene is processed separately, one point at a
time across the surface. The method is usually applied to scenes containing only
pelygon surfaces, because depth values can be computed very quickly and the
method is easy to implement. But the method can be applied to nonplanar sur-
faces.

With object descriptions converted to projection coordinates, each (x, v, 2)
position on a polygon surface corresponds to the orthographic projection point
{x, y) on the view plane. Therefore, for each pixel position (x, y) on the view
plane, object depths can be compared by comparing z values. Figure 13-4 shows
three surfaces at varying distances along the orthographic projection line from
position (x, y) in a view plane taken as the x v, plane. Surface 5, is closest at this
position, so its surface intensity value at (x, y) is saved.

We can implement the depth-buffer algorithm in normalized coordinates,
so that z values range from 0 at the back clipping plane to z_,. at the front clip-
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Depth-Buffer Method

. Figure 13-4

At view-plane position (x, y),
surface S; has the smallest depth
from the view plane and so is
visible at that position.

ping plane. The value of z.,, can be set either to 1 (for a unit cube) or to the
largest value that can be stored on the system.

As implied by the name of this method, two buffer areas are required. A
depth buffer is used to store depth values for each (x, y) position as surfaces are
processed, and the refresh buffer stores the intensity values for each position. Ini-
tially, all positions in the depth buffer are set to 0 (minimum depth), and the re-
fresh buffer is initialized to the background intensity. Each surface listed in the
polygon tables is then processed, one scan line at a time, calculating the depth (z
value) at each (x, y) pixel position. The calculated depth is compared to the value
previously stored in the depth buffer at that position. If the calculated depth is
greater than the value stored in the depth buffer, the new depth value is stored,
and the surface intensity at that position is determined and placed in the same xy
location in the refresh buffer.

We summarize the steps of a depth-buffer algorithm as follows:

1. Initialize the depth buffer and refresh buffer so that for all buffer posi-
tions (x, ),

depth(x, y) = 0, refresh(x, ) = lucgna

2. For each position on each polygon surface, compare depth values to
previously stored values in the depth buffer to determine visibility.

 Calculate the depth z for each (x, y) position on the polygon.
* If z > depth(x, y), then set

depth(x, y) =z,  refresh(x, y) = L(x,y)

where Iy, g is the value for the background intensity, and Iy, 4(x,y) is
the projected intensity value for the surface at pixel position (x,y).
After all surfaces have been processed, the depth buffer contains
depth values for the visible surfaces and the refresh buffer contains
the corresponding intensity values for those surfaces.

Depth values for a surface position (x, y) are calculated from the plane
equation for each surface:

—-Ax —By—D
= T2

C (13-4)
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Figure 13-5

From position (x, y) on a scan
line, the next position across
the line has coordinates

{x + 1, y), and the position
immediately below on the
next line has coordinates
x,y— 1.
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For any scan line (Fig. 13-5), adjacent horizontal positions across the line differ by
1, and a vertical y value on an adjacent scan line differs by 1. If the depth of posi-
tion (x, y) has been determined to be z, then the depth 2z’ of the next position (x +
1, y) along the scan line is obtained from Eq. 13-4 as

,_ —Alx+1)-By-D
B c

z (13-5)

or

(13-0)

N
il
5
|
O

The ratio —A/C is constant for each surface, so succeeding depth values across a
scan line are obtained from preceding values with a single addition.

On each scan lire, we start by calculating the depth on a left edge of the
polygon that intersects that scan line (Fig. 13-6). Depth values at each successive
position across the scan line are then calculated by Eq. 13-6.

We first determine the y-coordinate extents of each polygon, and process
the surface from the topmost scan line to the bottom scan line, as shown in Fig.
13-6. Starting at a top vertex, we can recursively calculate x positions down a left
edge of the polygon as x’ = x — 1/m, where m is the slope of the edge (Fig. 13-7).
Depth values down the edge are then obtained recursively as

+A/m+B
C

If we are processing down a vertical edge, the slope is infinite and the recursive
calculations reduce to

' =z+

Nl

An alternate approach is to use a midpoint method or Bresenham-type al-
gorithm for determining x values on left edges for each scan line. Also the
method can be applied to curved surfaces by determining depth and intensity
values at each surface projection point.

For polygon surfaces, the depth-buffer method is very easy to implement,
and it requires no sorting of the surfaces in a scene. But it does require the avail-
ability of a second buffer in addition to the refresh buffer. A system with a resolu-

top scan line

y scan line
left edge

intersection

bottom scan line

Figure 13-6
Scan lines intersecting a polygon surface.
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Figure 13-7
Intersection positions on successive scan lines along a left
polygon edge.

tion of 1024 by 1024, for example, would require over a million positions in the
depth buffer, with each position containing enough bits to represent the number
of depth increments needed. One way to reduce storage requirements is to
process one section of the scene at a time, using a smaller depth buffer. After each
view section is processed, the buffer is reused for the next section.

13-4
A-BUFFER METHOD

An extension of the ideas in the depth-buffer method is the A-buffer method (at
the other end of the alphabet from “z-buffer”, where z represents depth). The A-
buffer method represents an antialiased, area-averaged, accumulation-buffer method
developed by Lucasfilm for implementation in the surface-rendering system
called REYES (an acronym for “Renders Everything You Ever Saw”).

A drawback of the depth-buffer method is that it can only find one visible
surface at each pixel position. In other words, it deals only with opaque surfaces
and cannot accumulate intensity values for more than one surface, as is necessary
if transparent surfaces are to be displayed (Fig. 13-8). The A-buffer method ex-
pands the depth buffer so that each position in the buffer can reference a linked
list of surfaces. Thus, more than one surface intensity can be taken into consider-
ation at each pixel position, and object edges can be antialiased.

Each position in the A-buffer has two fields:

* depth field — stores a positive or negative real number
* intensity field — stores surface-intensity information or a pointer value.

background

opaque \
surface foreground Figure 13-8
transparent o
surface Viewing an opaque surface through

a transparent surface requires
multiple surface-intensity
contributions for pixel positions.
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Figure 13-9

Organization of an A-buffer pixel position: (a) single-surface overlap of
the corresponding pixel area, and (b) multiple-surface overlap.

If the depth field is positive, the number stored at that position is the depth of a
single surface overlapping the corresponding pixel area. The intensity field then
stores the RGB components of the surface color at that point and the percent of
pixel coverage, as illustrated in Fig. 13-9(a).

If the depth field is negative, this indicates multiple-surface contributions to
the pixel intensity. The intensity field then stores a pointer to a linked list of sur-
face data, as in Fig. 13-9(b). Data for each surface in the linked list includes

¢ RGB intensity components

* opacity parameter (percent of transparency)
e depth

* percent of area coverage

* surface identifier

* other surface-rendering parameters

* pointer to next surface

The A-buffer can be constructed using methods similar to those in the
depth-buffer algorithm. Scan lines are processed to determine surface overlaps of
pixels across the individual scanlines. Surfaces are subdivided into a polygon
mesh and clipped against the pixel boundaries. Using the opacity factors and
percent of surface overlaps, we can calculate the intensity of each pixel as an av-
erage of the contributions from the overlapping surfaces.

13-5
SCAN-LINE METHOD

This image-space method for removing hidden surfaces is an extension of the
scan-line algorithm for filling polygon interiors. Instead of filling just one surface,
we now deal with multiple surfaces. As each scan line is processed, all polygon
surfaces intersecting that line are examined to determine which are visible.
Across each scan line, depth calculations are made for each overlapping surface
to determine which is nearest to the view plane. When the visible surface has
been determined, the intensity value for that position is entered into the refresh
buffer.

We assume that tables are set up for the various surfaces, as discussed in
Chapter 10, which include both an edge table and a polvgon table. The edge table
contains coordinate endpoints for each line in'the scene, the inverse slope of each
line, and pointers into the polygon table to identify the surfaces bounded by each



line. The polygon table contains coefficients of the plane equation for each sur-
face, intensity information for the surfaces, and possibly pointers into the edge
table. To facilitate the search for surfaces crossing a given scan line, we can set up
an active list of edges from information in the edge table. This active list will con-
tain only edges that cross the current scan line, sorted in order of increasing x. In
addition, we define a flag for each surface that is set on or off to indicate whether
a position along a scan line is inside or outside of the surface. Scan lines are
processed from left to right. At the leftmost boundary of a surface, the surface
flag is turned on; and at the rightmost boundary, it is turned off.

Figure 13-10 illustrates the scan-line method for locating visible portions of
surfaces for pixel positions along the line. The active list for scan line 1 contains
information from the edge table for edges AB, BC, EH, and FG. For positions
along this scan line between edges AB and BC, only the flag for surtace §, is on.
Therefore, no depth calculations are necessary, and intensity information for sur-
face S, is entered from the polygon table into the refresh buffer. Similarly, be-
tween edges EH and FG, only the flag for surface S, is on. No other positions
along scan line 1 intersect surfaces, so the intensity values in the other areas are
set to the background intensity. The background intensity can be loaded through-
out the buffer in an initialization routine.

For scan lines 2 and 3 in Fig. 13-10, the active edge hist contains edges AD,
EH, BC, and FG. Along scan line 2 from edge AD to edge EH, only the flag for
surface S is on. But between edges EH and BC, the flags for both surfaces are on.
In this interval, depth calculations must be made using the plane coefficients for
the two surfaces. For this example, the depth of surface S, is assumed to be less
than that of S, so intensities for surface S, are loaded into the refresh buffer until
boundary BC is encountered. Then the flag for surface S, goes off, and intensities
for surface S, are stored until edge FG is passed.

We can take advantage of coherence along the scan lines as we pass from
one scan line to the next. In Fig. 13-10, scan line 3 has the same active list of edges
as scan line 2. Since no changes have occurred in line intersections, it is unneces-
sary again to make depth calculations between edges EH and BC. The two sur-

Scan Line 2
Sfﬂll L".(' 3

S A

Figure 13-10
Scan lires crossing the projection of two surfaces, S, and 5., in the
view plane. Dashed lines indicate the boundaries of hidden surfaces.
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Figure 13-11
Intersecting and cyclically overlapping surfaces that alternately obscure one another.

Subdividing
| Line

Subdividing

faces must be in the same orientation as determined on scan line 2, so the intensi-
ties for surface S, can be entered without further calculations.

Any number of overlapping polygon surfaces can be processed with this
scan-line method. Flags for the surfaces are set to indicate whether a position is
inside or outside, and depth calculations are performed when surfaces overlap.
When these coherence methods are used, we need to be careful to keep track of
which surface section is visible on each scan line. This works only if surfaces do
not cut through or otherwise cyclically overlap each other (Fig. 13-11). If any kind
of cyclic overlap is present in a scene, we can divide the surfaces to eliminate the
overlaps. The dashed lines in this figure indicate where planes could be subdi-
vided to form two distinct surfaces, so that the cyclic overlaps are eliminated.

13-6
DEPTH-SORTING METHOD

Using both image-space and object-space operations, the depth-sorting method
performs the following basic functions:

1. Surfaces are sorted in order of decreasing depth.

2. Surfaces are scan converted in order, starting with the surface of greatest
depth.

Sorting operations are carried out in both image and object space, and the scan
conversion of the polygon surfaces is performed in image space.

This method for solving the hiddem-surface problem is often referred to as
the painter’s algorithm. In creating an oil painting, an artist first paints the back-
ground colors. Next, the most distant objects are added, then the nearer objects,
and so forth. At the final step, the foreground objects are painted on the canvas
over the background and other objects that have been painted on the canvas.



Each layer of paint covers up the previous layer. Using a similar technique, we
first sort surfaces according to their distance from the view plane. The intensity
values for the farthest surface are then entered into the refresh buffer. Taking
each succeeding surface in turn (in decreasing depth order), we “paint” the sur-
face intensities onto the frame buffer over the intensities of the previously
processed surfaces.

Painting polygon surfaces onto the frame buffer according to depth is
carried out in several steps. Assuming we are viewing along the—z direction,
surfaces are ordered on the first pass according to the smallest z value on each
surface. Surface S with the greatest depth is then compared to the other sur-
faces in the list to determine whether there are any overlaps in depth. If no
depth overlaps occur, S is scan converted. Figure 13-12 shows two surfaces
that overlap in the xy plane but have no depth overlap. This process is then re-
peated for the next surface in the list. As long as no overlaps occur, each sur-
face is processed in depth order until ail have been scan converted. If a depth
overlap is detected at any point in the list, we need to make some additional
comparisons to determine whether any of the surfaces should be reordered.

We make the following tests for each surface that overlaps with S. If any
one of these tests is true, no reordering is necessary for that surface. The tests are
listed in order of increasing difficulty.

1. The bounding rectangles in the xy plane for the two surfaces da not over-
lap.

2. Surface 5 is completely behind the overlapping surface relative to the view-
ing position.

3. The overlapping surface is completelv in front of S relative to the viewing
position.

4. The projections of the two surfaces onto the view plane do not overlap.

We perform these tests in the order listed and proceed to the next overlapping
surface as soon as we find one of the tests is true. If all the overlapping surfaces
pass at least one of these tests, none of them is behind S. No reordering is then
necessary and S is scan converted.

Test 1 is performed in two parts. We first check for overlap in the x direc-
tion, then we check for overlap in the y direction. If either of these directions
show no overlap, the two planes cannot obscure one other. An example of two
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Figiere 13-12
Two surfaces with no depth
v overlap.
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surfaces that overlap in the z direction but not in the x direction is shown in Fig.
13-13.

We can perform tests 2 and 3 with an “inside-outside” polygon test. That is,
we substitute the coordinates for all vertices of S into the plane equation for the
overlapping surface and check the sign of the result. If the plane equations are set
up so that the outside of the surface is toward the viewing position, then § is be-
hind S’ if all vertices of S are “inside” S (Fig. 13-14). Similarly, ' is completely in
front of S if all vertices of S are “outside” of $’. Figure 13-15 shows an overlap-
ping surface S’ that is completely in front of S, but surface S is not completely
“inside” S’ (test 2 is not true).

If tests 1 through 3 have all failed, we try test 4 by checking for intersections
between the bounding edges of the two surfaces using line equations in the xy
plane. As demonstrated in Fig. 13-16, two surfaces may or may not intersect even
though their coordinate extents overlap in the x, y, and z directions.

Should all four tests fail with a particular overlapping surface S’, we inter-
change surfaces S and S in the sorted list. An example of two surfaces that

Figure 13-13
Two surfaces with depth overlap
2 but no overlap in the x direction.

x,  Figure 13-14
Surface S is completely behind
(“inside”} the overlapping surface

2, s
S
s’ Figure 13-15

X, Overlapping surface 5’ is
completely in front (“outside”) of
surface 5, but S is not completely

2, behind &’




|
; N
| i j
! [ % i
| t
,,,,,,,,,,,,, a | i
(a} : |
! I
i imee o
‘bl
Figure 13-16
Two surfaces with overlapping bounding rectangles in
the xy plane.

would be reordered with this procedure is given in Fig. 13-17. At this point, we
still do not know for certain that we have found the farthest surface from the
view plane. Figure 13-18 illustrates a situation in which we would first inter-
change S and S”. But since S” obscures part of S', we need to interchange $”
and S’ to get the three surfaces into the correct depth order. Therefore, we need
to repeat the testing process for each surface that is reordered in the list.

It is possible for the algorithm just outlined to get into an infinite loop if
two or more surfaces alternately obscure each other, as in Fig. 13-11. In such sit-
uations, the algorithm would continually reshuffle the positions of the overlap-
ping surfaces. To avoid such loops, we can flag any surface that has been re-
ordered to a farther depth position so that it cannot be moved again. If an
attempt is made to switch the surface a second time, we divide it into two parts
to eliminate the cyclic overlap. The original surface is then replaced by the two
new surfaces, and we continue processing as before.

13-7
BSP-TREE METHOD

A binary space-partitioning (BSP) tree is an efficient method for determining
object visibility by painting surfaces onto the screen from back to front, as in the
painter’s algorithm. The BSP tree is particularly useful when the view reference
point changes, but the objects in a scene are at fixed positions.

Applying a BSP tree to visibility testing involves identifying surfaces that
are “inside” and “outside” the partitioning plane at each step of the space sub-
division, relative to the viewing direction. Figure 13-19 illustrates the basic con-
cept in this algorithm. With plane P,, we first partition the space into two sets of
objects. One set of objects is behind, or in back of, plane P, relative to the view-
ing direction, and the other set is in front of P,. Since one object is intersected by
plane Py, we divide that object into two separate objects, labeled A and B. Ob-
jects A and C are in front of P, and objects B and D are behind P,. We next parti-
tion the space again with plane P, and construct the binary tree representation
shown in Fig. 13-19(b). In this tree, the objects are represented as terminal
nodes, with front objects as left branches and back objects as right branches.

Figure 13-17
Surface S has greater depth
but obscures surface 5.

z

v

Figure 13-18

Three surfaces entered into
the sorted surface list in the
order 5, 5, §” should be
reordered S°, 57, 5.
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A region of space (a) is partitioned
A c B D

with two planes P°; and P, to form
t the BSP tree representation in (b).

For objects described with polygon facets, we chose the partitioning planes
to coincide with the polygon planes. The polygon equations are then used to
identify “inside” and “outside” polygons, and the tree is constructed with one
partitioning plane for each polygon face. Any polygon intersected by a partition-
ing plane is split ‘nto two parts. When the BSP tree is complete, we process the
tree by selecting the surfaces for display in the order back to front, so that fore-
ground objects are painted over the background objects. Fast hardware imple-
mentations for vonstructing and processing BSP trees are used in some systems.

13-8
AREA-SUBDIVISION METHOD

This technique for hidden-surface removal is essentially an image-space method,
but object-space operations can be used to accomplish depth ordering of surfaces.
The area-subdivision method takes advantage of area coherence in a scene by lo-
cating those view areas that represent part of a single surface. We apply this
method by successively dividing the total viewing area into smaller and smaller
rectangles until each small area is the projection of part of a single visible surface
or no surface at all.

To implement this method, we need to establish tests tnat can quickly iden-
tify the area as part of a single surface or tell us that the area is too complex to an-
alyze easily. Starting with the total view, we apply the tests to determine whether
we should subdivide the total area into smaller rectangles. If the tests indicate
that the view is sufficiently complex, we subdivide it. Next, we apply the tests to



each of the smaller areas, subdividing these if the tests indicate that visibility of a  Section 13-8

single surface is still uncertain. We continue this process until the subdivisions Area-Subdivision Method
are easily analyzed as belonging to a single surface or until they are reduced to
the size of a single pixel. An easy way to do this is to successively divide the area

into four equal parts at each step, as shown in Fig. 13-20. This approach is similar
to that used in constructing a quadtree. A viewing area with a resolution of 1024
by 1024 could be subdivided ten times in this way before a subarea is reduced to
a point.

Tests to determine the visibility of a single surface within a specified area

are made by comparing surfaces to the boundary of the area. There are four pos-
sible relationships that a surface can have with a specified area boundary. We can

describe these relative surface characteristics in the following way (Fig. 13-21):

Surrounding surface—One that completely encloses the area.

Overlapping surface—One that is partly inside and partly outside the area. :
Inside surface—One that is completely inside the area. Figure 15-20

- . . Dividing a square area into
Outside surface—One that is completely outside the area. equal-sized quadrants at each

step.
The tests for determining surface visibility within an area can be stated in P

terms of these four classifications. No further subdivisions of a specified area are
needed if one of the following conditions is true:

1. All surfaces are outside surfaces with respect to the area.
2. Only one inside, overlapping, or surrounding surface is in the area.

3. A surrounding surface obscures all other surfaces within the area bound-
aries.

Test 1 can be carried out by checking the bounding rectangles of all surfaces
against the area boundaries. Test 2 can also use the bounding rectangles in the xy
plane to identify an inside surface. For other types of surfaces, the bounding rec-
tangles can be used as an initial check. If a single bounding rectangle intersects
the area in some way, additional checks are used to determine whether the sur-
face is surrounding, overlapping, or outside. Once a single inside, overlapping,
or surrounding surface has been identified, its pixel intensities are transferred to
the appropriate area within the frame buffer.

One method for implementing test 3 is to order surfaces according to their
minimum depth from the view plane. For each surrounding surface, we then
compute the maximum depth within the area under consideration. If the maxi-

Surrounding Overlapping tnside Outside
Surface Surface Surface Surtsce

Figure 13-21
Possible relationships between polygon surfaces and a rectangular area.
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| Figure 13-22
%’ Zmac Within a specified area, a
; (Surrounding  surrounding surface with a
! Surface) maximum depth of z,, obscures all

X surfaces that have a minimum
v depth beyond z,,,,.

mum depth of one of these surrounding surfaces is closer to the view plane than
the minimum depth of all other surfaces within the arca, test 3 is satisfied. Figure
13-22 shows an example of the conditions for this method.

Another method for carrying out test 3 that does not require depth sorting
is to use plane equations to calculate depth values at the four vertices of the area
for all surrounding, overlapping, and inside surfaces, If the calculated depths for
one of the surrounding surfaces is less than the calculated depths for all other
surfaces, test 3 is true. Then the area can be filled with the intensity values of the
surrounding surface.

For some situations, both methods of implementing test 3 will fail to iden-
tify correctly a surrounding surface that obscures all the other surfaces. Further
testing could be carried out to identify the single surface that covers the area, but
it is faster to subdivide the area than to continue with more complex testing.
Once outside and surrounding surfaces have been identified for an area, they
will remain outside and surrounding surfaces for all subdivisions of the area.
Furthermore, some inside and overlapping surfaces can be expected to be elimi-
nated as the subdivision process continues, so that the areas become easier to an-
alyze. In the limiting case, when a subdivision the size of a pixel is produced, we
simply calculate the depth of each relevant surface at that point and transfer the
intensity of the nearest surface to the frame buffer.

Y,

Figure 13-23
Area Ais subdivided into A, and A4, using the boundary of
surface S on the view plane.



As a variation on the basic subdivision process, we could subdivide areas
along surface boundaries instead of dividing them in half. If the surfaces have
been sorted according to minimum depth, we can use the surface with the small-
est depth value to subdivide a given area. Figure 13-23 illustrates this method for
subdividing areas. The projection of the boundary of surface S is used to parti-
tion the original area into the subdivisions A; and A,. Surface S is then a sur-
rounding surface for A, and visibility tests 2 and 3 can be applied to determine
whether further subdividing is necessary. In general, fewer subdivisions are re-
quired using this approach, but more processing is needed to subdivide areas
and to analyze the relation of surfaces to the subdivision boundaries.

139
OCTREE METHODS

When an octree representation is used for the viewing volume, hidden-surface
elimination is accomplished by projecting octree nodes onto the viewing surface
in a front-to-back order. In Fig. 13-24, the front face of a region of space (the side
toward the viewer) is formed with octanis 0, 1, 2, and 3. Surfaces in the front of
these octants are visible to the viewer. Any surfaces toward the rear of the front
octants or in the back octants (4, 5, 6, and 7) may be hidden by the front surfaces.

Back surfaces are eliminated, for the viewing direction given in Fig. 13-24,
by processing data elements in the octree nodes in the order 0, 1, 2, 3,4, 5, 6, 7.
This results in a depth-first traversal of the octree, so that nodes representing oc-
tants 0, 1, 2, and 3 for the entire region are visited before the nodes representing
octants 4, 5, 6, and 7. Similarly, the nodes for the front four suboctants of octant 0
are visited before the nodes for the four back suboctants. The traversal of the oc-
tree continues in this order for each octant subdivision.

When a color value is encountered in an octree node, the pixel area in the
frame buffer corresponding to this node is assigned that color value only if no
values have previously been stored in this area. In this way, only the {ront colors
are loaded into the buffer. Nothing is loaded if an area is void. Any node that is
found to be completely obscured is eliminated from further processing, so that its
subtrees are not accessed. :

Different views of objects represented as octrees can be obtained by apply-
ing transformations to the octree representation that reorient the object according

Numbered

Figure 13-24
Octam; Objects in octants 0, 1, 2, and 3
of s Region - X
obscure objects in the back octants
Viewing (4,5, 6, 7) when the viewing
Direction direction is as shown.
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to the view selected. We assume that the octree representation is always set up so
that octants 0, 1, 2, and 3 of a region form the front face, as in Fig. 13-24.

A method for displaying an octree is first to map the octree onto a quadtree
of visible areas by traversing octree nodes from front to back in a recursive proce-
dure. Then the quadtree representation for the visible surfaces is loaded into the
frame buffer. Figure 13-25 depicts the octants in a region of space and the corre-
sponding quadrants on the view plane. Contributions to quadrant 0 come from
octants 0 and 4. Color values in quadrant 1 are obtained from surfaces in octants
1 and 5, and values in each of the other two quadrants are generated from the
pair of octants aligned with each of these quadrants.

Recursive processing of octree nodes is demonstrated in the following proce-
dure, which accepts an octree description and creates the quadtree representation
for visible surfaces in the region. In most cases, both a front and a back octant
must be considered in determining the correct color values for a quadrant. But if
the front octant is homogeneously filled with some color, we do not process the
back octant. For heterogeneous regions, the procedure is recursively called, pass-
ing as new arguments the child of the heterogeneous octant and a newly created
quadtree node. If the front is empty, the rear octant is processed. Otherwise, two
recursive calls are made, one for the rear octant and one for the front octant.

typedef enum { SOLID, MIXED } Status;
#define EMPTY -1

typedef struct tOctree {
int id;
Status status;
union {
int color;
struct tOctree * children{8];
} data:
} Octree:

typedef struct tQuadtree {
int id;
Status status;
union !
int color;
struct tQuadtree * children(4]);
} data;
} Quadtree;

int nQuadtree = 0,

void octreeToQuadtree (Octree * oTree, Quadtree * gTree)
{

Octree * front, * back:

Quadtree * newQuadtree;

int i, j;

if (oTree->status == SOLID) {
gTree->status = SOLID;
gTree->data.color = oTree->data.color;
return;

}

gqTree->status = MIXED;

/* Fill in each quad of the quadtree */

for (i=0; i<4; i++) {
front = oTree->data.childrenfi];




back = oTree-»data.children[i+4];

newQuadtree = (Quadtree *) malloc (sizeof (Quadtree));
newQuadtree->id s nQuadtree++;

newQuadtree->status = SOLID;

qTree->data.children(i) = newQuadtree;

if {(front->status == SOLID)
if (front->data.color != EMPTY)
qTree->data.children(i}->data.color = front->data.color;
else
if (back->status == SOLID)
if (back->data.color !'= EMPTY)
gTree->data.children(i]-~>data.color = back->data.color;
else
qTree->data.childrenfi}->data.color = EMPTY:
else { /* back node is mixed */
newQuadtree->status = MIXED;
octreeToQuadtree (back, newQuadtree)
}
else { /* front node is mixed */
newQuadtree->status = MIXED;
octreeToQuadtree (back, newQuadtree) ;
octreeToQuadtree (front, newQuadtree);
}

13-10
RAY-CASTING METHOD

If we consider the line of sight from a pixel position on the view plane through a
scene, as in Fig. 13-26, we can determine which objects in the scene (if any) inter-
sect this line. After calculating all ray-surface intersections, we identify the visi-
ble surface as the one whose intersection point is closest to the pixel. This visibil-
ity-detection scheme uses ray-casting procedures that were introduced in Section
10-15. Ray casting, as a visibility-detection tool, is based on geometric optics
methods, which trace the paths of light rays. Since there are an infinite number of
light rays in a scene and we are interested only in those rays that pass through

pixe!

Figure 13-26
A ray along the line of sight from a
pixel position through a scene.

Section 13-10

Ray-Casting Method

487



Chapter 13

Visible-Surface Detection Methods

488

pixel positions, we can trace the light-ray paths backward from the pixels
through the scene. The ray-casting approach is an effective visibility-detection
method for scenes with curved surfaces, particularly spheres.

We can think of ray casting as a variation on the depth-buffer method (Sec-
tion 13-3). In the depth-buffer algorithm, we process surfaces one at a time and
calculate depth values for all projection points over the surface. The calculated
surface depths are then compared to previously stored depths to determine visi-
ble surfaces at each pixel. In ray-casting, we process pixels one at a time and cal-
culate depths for all surfaces along the projection path to that pixel.

Ray casting is a special case of ray-tracing algorithms (Section 14-6) that trace
multiple ray paths to pick up global reflection and refraction contributions from
multiple objects in a scene. With ray casting, we only follow a ray out from each
pixel to the nearest object. Efficient ray-surface intersection calculations have
been developed for common objects, particularly spheres, and we discuss these
intersection methods in detail in Chapter 14.

13-11
CURVED SURFACES

Effective methods for determining visibility for objects with curved surfaces in-
clude ray-casting and octree methods. With ray casting, we calculate ray-surface
intersections and locate the smallest intersection distance along the pixel ray.
With octrees, once the representation has been established from the input defini-
tion of the objects, all visible surfaces are identified with the same processing pro-
cedures. No special considerations need be given to different kinds of curved
surfaces.

We can also approximate a curved surface as a set of plane, polygon sur-
faces. In the list of surfaces, we then replace each curved surface with a polygon
mesh and use one of the other hidden-surface methods previously discussed.
With some objects, such as spheres, it can be more efficient as well as more accu-
rate to use ray casting and the curved-surface equation.

Curved-Surface Representations

We can represent a surface with an implicit equation of the form f(x, y, z) = 0 or
with a parametric representation (Appendix A). Spline surfaces, for instance, are
normally described with parametric equations. In some cases, it is useful to ob-
tain an explicit surface equation, as, for example, a height function over an xy
ground plane:

z = flx, y)

Many objects of interest, such as spheres, ellipsoids, cylinders, and cones, have
quadratic representations. These surfaces are commonly used to model molecu-
lar structures, roller bearings, rings, and shafts.

Scan-line and ray-casting algorithms often involve numerical approxima-
tion techniques to solve the surface equation at the intersection point with a scan
line or with a pixel ray. Various techniques, including parallel calculations and
fast hardware implementations, have been developed for solving the curved-sur-
face equations for commonly used objects.



Surface Contour Plots

For many applications in mathematics, physical sciences, engineering and other
fields, it is useful to display a surface function with a set of contour lines that
show the surface shape. The surface may be described with an equation or with
data tables, such as topographic data on elevations or population density. With
an explicit functional representation, we can plot the visible-surface contour lines
and eliminate those contour sections that are hidden by the visible parts of the
surface.

To obtain an xy plot of a functional surface, we write the surface representa-
tion in the form

y = fx,2) (13-8)

A curve in the xy plane can then be plotted for values of z within some selected
range, using a specified interval Az. Starting with the largest value of z, we plot
the curves from “front” to “back” and eliminate hidden sections. We draw the
curve sections on the screen by mapping an xy range for the function into an xy
pixel screen range. Then, unit steps are taken in x and the corresponding y value
for each x value is determined from Eq. 13-8 for a given value of z.

One way to identify the visible curve sections on the surface is to maintain a
list of ¥y and y,,, values previously calculated for the pixel x coordinates on the
screen, As we step from one pixel x posttion to the next, we check the calculated
v value against the stored range, ¥, and Yy, for the next pixel. If y <y <
Ymaw that point on the surface is not visible and we do not plot it. But if the calcu-
lated y value is outside the stored y bounds for that pixel, the point is visible. We
then plot the point and reset the bounds for that pixel. Similar procedures can be
used to project the contour plot onto the xz or the yz plane. Figure 13-27 shows an
example of a surface contour plot with color-coded contour lines.

Similar methods can be used with a discrete set of data points by determin-
ing isosurface lines. For example, if we have a discrete set of z values for an n, by
n, grid of xy values, we can determine the path of a line of constant z over the
surface using the contour methods discussed in Section 10-21. Each selected con-
tour line can then be projected onto a view plane and displayed with straight-line

Figure 13-27
A color-coded surface contour plot. (Courtesy of Los
Alamos National Laboratory.)
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Fignre 13-28

Hidden-line sections (dashed)
for a line that (a) passes behind
a surface and (b) penetrates a

surface.

490

segments. Again, lines can be drawn on the display device in a front-to-back
depth order, and we eliminate contour sections that pass behind previously
drawn (visible) contour lines.

13-12
WIREFRAME METHODS

When only the outline of an object is to be displayed, visibility tests are applied
to surface edges. Visible edge sections are displayed, and hidden edge sections
can either be eliminated or displayed differently from the visible edges. For ex-
ample, hidden edges could be drawn as dashed lines, or we could use depth cue-
ing to decrease the intensity of the lines as a linear function of distance from the
view plane. Procedures for determining visibility of object edges are referred to
as wireframe-visibility methods. They are also called visible-line detection
methods or hidden-line detection methods. Special wireframe-visibility proce-
dures have been developed, but some of the visible-surface methods discussed in
preceding sections can also be used to test for edge visibility.

A direct approach to identifying the visible lines in a scene is to compare
each line to each surface. The process involved here is sifnilar to clipping lines
against arbitrary window shapes, except that we now want to determine which
sections of the lines are hidden by surfaces. For each line, depth values are com-
pared to the surfaces to determine which line sections are not visible. We can use
coherence methods to identify hidden line segments without actually testing
each coordinate position. If both line intersections with the projection of a surface
boundary have greater depth than the surface at those points, the line segment
between the intersections is completely hidden, as in Fig. 13-28(a). This is the
usual situation in a scene, but it is also possible to have lines and surfaces inter-
secting each other. When a line has greater depth at one boundary intersection
and less depth than the surface at the other boundary intersection, the line must
penetrate the surface interior, as in Fig. 13-28(b). In this case, we calculate the in-
tersection point of the line with the surface using the plane equation and display
only the visible sections.

Some visible-surface methods are readily adapted to wireframe visibility
testing. Using a back-face method, we could identify all the back surfaces of an
object and display only the boundaries for the visible surfaces. With depth sort-
ing, surfaces can be painted into the refresh buffer so that surface interiors are in
the background color, while boundaries are in the foreground color. By process-
ing the surfaces from back to front, hidden lines are erased by the nearer sur-
faces. An area-subdivision method can be adapted to hidden-line removal by dis-
playing only the boundaries of visible surfaces. Scan-line methods can be used to
display visible lines by setting points along the scan line that coincide with
boundaries of visible surfaces. Any visible-surface method that uses scan conver-
sion can be modified to an edge-visibility detection method in a similar way.

13-13
VISIBILITY-DETECTION FUNCTIONS

Often, three-dimensional graphics packages accommodate several visible-surface
detection procedures, particularly the back-face and depth-buffer methods. A
particular function can then be invoked with the procedure name, such as back -
Face or depthBuffer.



In general programming standards, such as GKS and PHIGS, visibility
methods are implementation-dependent. A table of available methods is listed at
each installation, and a particular visibility-detection method is selected with the
hidden-line-hidden-surface-removal (HLHSR) function:

setHLHSRidentifier (visibilityFunctionIndex)

Parameter visibilityFunctionIndex is assigned an integer code to identify
the visibility method that is to be applied to subsequently specified output primi-
tives.

SUMMARY

Here, we give a summary of the visibility-detection methods discussed in this
chapter and a comparison of their effectiveness. Back-face detection is fast and ef-
fective as an initial screening to eliminate many polygons from further visibility
tests. For a single convex polyhedron, back-face detection eliminates all hidden
surfaces, but in general, back-face detection cannot completely identify all hid-
den surfaces. Other, more involved, visibility-detection schemes will correctly
produce a list of visible surfaces. )

A fast and simple technique for identifying visible surfaces is the depth-
buffer (or z-buffer) method. This procedure requires two buffers, one for the pixel
intensities and one for the depth of the visible surface for each pixel in the view
plane. Fast incremental methods are used to scan each surface in a scene to calcu-
late surface depths. As each surface is processed, the two buffers are updated. An
improvement on the depth-buffer approach is the A-buffer, which provides addi-
tional information for displaying antialiased and transparent surfaces. Other visi-
ble-surface detection schemes include the scan-line method, the depth-sorting
method (painter’s algorithm), the BSP-tree method, area subdivision, octree
methods, and ray casting.

Visibility-detection methods are also used in displaying three-dimensional
line drawings. With curved surfaces, we can display contour plots. For wireframe
displays of polyhedrons, we search for the various edge sections of the surfaces
in a scene that are visible from the view plane.

The effectiveness of a visible-surface detection method depends on the
characteristics of a particular application. If the surfaces in a scene are spread out
in the z direction so that there is very little depth overlap, a depth-sorting or BSP-
tree method is often the best choice. For scenes with surfaces fairly well sepa-
rated horizontally, a scan-line or area-subdivision method can be used efficiently
to locate visible surfaces.

As a general rule, the depth-sorting or BSP-tree method is a highly effective
approach for scenes with only a few surfaces. This is because these scenes usually
have few surfaces that overlap in depth. The scan-line method also performs well
when a scene contains a small number of surfaces. Either the scan-line, depth-
sorting, or BSP-tree method can be used effectively for scenes with up to several
thousand polygon surfaces. With scenes that contain more than a few thousand
surfaces, the depth-buffer method or octree approach performs best. The depth-
buffer method has a nearly constant processing time, independent of the number
of surfaces in a scene. This is because the size of the surface areas decreases as the
number of surfaces in the scene increases. Therefore, the depth-buffer method ex-
hibits relatively low performance with simple scenes and relatively high perfor-

Summary
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mance with complex scenes. BSP trees are useful when multiple views are to be
generated using different view reference points.

When octree representations are used in a system, the hidden-surface elimi-
nation process is fast and simple. Only integer additions and subtractions are
used in the process, and there is no need to perform sorting or intersection calcu-
lations. Another advantage of octrees is that they store more than surfaces. The
entire solid region of an object is available for display, which makes the octree
representation useful for obtaining cross-sectional slices of solids.

If a scene contains curved-surface representations, we use octree or ray-
casting methods to identify visible parts of the scene. Ray-casting methodsare an
integral part of ray-tracing algorithms, which allow scenes to be displayed with
global-illumination effects.

It is possible to combine and implement the different visible-surface detec-
tion methods in various ways. In addition, visibility-detection algorithms are
often implemented in hardware, and special systems utilizing parallel processing
are employed to increase the efficiency of these methods. Special hardware sys-
tems are used when processing speed is an especially important consideration, as
in the generation of animated views for flight simulators.

REFERENCES

Additional sources of information on visibility algorithms include Elber and Cohen (1990},
Franklin and Kankanhalli (1990), Glassner (1990), Naylor, Amanatides, and Thibault
(1990), and Segal (1990).

EXERCISES

13-1. Develop a procedure, based on a back-face detection technique, for identifying all
the visible faces of a convex polyhedron that has different-colored surfaces, Assume
that the object is defined in a right-handed viewing system with the xy-plane as the
viewing surface.

13-2. Implement a back-face detection procedure using an orthographic parallel projection
to view visible faces of a convex polyhedron. Assume that all parts of the object are
in front of the view plane, and provide a mapping onto a screen viewport for display.

13-3. Implement a back-face detection procedure using a perspective projection to view
visible faces of a convex polyhedron. Assume that all parts of the object are in front
of the view plane, and provide a mapping onto a screen viewpart for display.

13-4, Write a program to produce an animation of a convex polyhedron. The object is to
be rotated incrementally about an axis that passes through the object and is parallel
to the view plane. Assume that the object lies completely in front of the view plane.
Use an orthographic parallel projection to map the views successively onto the view
plane.

13-5. Implement the depth-buffer method to display the visible surfaces of a given polyhe-
dron. How can the storage requirements for the depth buffer be determined from the
definition of the objects to be disptayed?

13-6. Implement the depth-buffer method to display the visible surfaces in a scene contain-
ing any number of polyhedrons. Set up efficient methods for storing and processing
the various objects in the scene.

13-7. Implement the A-buffer algorithm to display a scene containing both opaque and
transparent surfaces. As an optional feature, your algorithm may be extended to in-
clude antialiasing.



13-9.

13-10.

13-11.

13-12.

13-13.

13-14.

13-15.

13-16.

13-17.

13-18.

13-19.
13-20.

13-21.
13-22.

13-23.

13-24.

. Develop a program to implement the scan-line algorithm for displaying the visible

surfaces of a given polyhedron. Use polygon and edge tables to store the definition
of the object, and use coherence techniques to evaluate points along and between
scan lines.

Write a program to implement the scan-line algorithm for a scene containing several
polyhedrons. Use polygon and edge tables to store the definition of the object, and
use coherence techniques to evaluate points along and between scan lines.

Set up a program to display the visible surfaces of a convex polyhedron using the
painter’s algorithm. That is, surfaces are to be sorted on depth and painted on the
screen from back to front.

Write a program that uses the depth-sorting method to display the visible surfaces of
any given object with plane faces.

Develop a depth-sorting program to display the visible surfaces in a scene containing
several polyhedrons.

Wirite a program to display the visible surfaces of a convex polyhedron using the

. BSP-tree method.

Give examples of situations where the two methods discussed for test 3 in the area-
subdivision algorithm will fail to identify correctly a surrounding surface that ob-
scures all other surfaces.

Develop an algorithm that would test a given plane surface against a rectangular
area to decide whether it is a surrounding, overlapping, inside, or outside surface.
Develop an algorithm for generating a quadtree representation for the visible sui-
faces of an object by applying the area-subdivision tests to determine the values of
the quadtree elements.

Set up an algorithm to load a given quadtree representation of an object into a frame
buffer for display.

Write a program on your system to display an octree representation for an object so
that hidden-surfaces are removed.

Devise an algorithm for viewing a single sphere using the ray-casting method.
Discuss how antialiasing methods can be incorporated into the various hidden-sur-
face elimination algorithms.

Wirite a routine to produce a surface contour plot for a given surface function f(x, y).
Develop an algorithm for detecting visible line sections in a scene by comparing
each line in the scene to each surface.

Discuss how wireframe displays might be generated with the various visible-surface
detection methods discussed in this chapter.

Set up a procedure for generating a wireframe display of a polyhedron with the hid-
den edges of the object drawn with dashed lines.

Exercises
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R ealistic displays of a scene are obtained by generating perspective projec-
tions of objects and by applying natural lighting effects to the visible sur-
faces. An illumination model, also called a lighting model and sometimes re-
ferred to as a shading model, is used to calculate the intensity of light that we
should see at a given point on the surface of an object. A surface-rendering algo-
rithm uses the intensity calculations from an illumination model to determine the
light intensity for all projected pixel positions for the various surfaces in a scene.
Surface rendering can be performed by applying the illumination model to every
visible surface point, or the rendering can be accomplished by interpolating in-
tensities across the surfaces from a small set of illumination-model calculations.
Scan-line, image-space algorithms typically use interpolation schemes, while ray-
tracing algorithms invoke the illumination model at each pixel position. Some-
times, surface-rendering procedures are termed surface-shading methods. To avoid
confusion, we will refer to the model for calculating light intensity at a single sur-
face point as an illumination model or a lighting model, and we will use the term
surface rendering to mean a procedure for applying a lighting model to obtain
pixel intensities for all the projected surface positions in a scene.

Photorealism in computer graphics involves two elements: accurate graphi-
cal representations of objects and good physical descriptions of the lighting ef-
fects in a scene. Lighting effects include light reflections, transparency, surface
texture, and shadows. )

Modeling the colors and lighting effects that we see on an object is a com-
plex process, involving principles of both physics and psychology. Fundamen-
tally, lighting effects are described with models that consider the interaction of
electromagnetic energy with object surfaces. Once light reaches our eyes, it trig-
gers perception precesses that determine what we actually “see” in a scene. Phys-
ical illumination models involve a number of factors, such as object type, object
position relative to light sources and other objects, and the light-source condi-
tions that we set for a scene. Objects can be constructed of opaque materials, or
they can be more or less transparent. In addition, they can have shiny or dull sur-
faces, and they can have a variety of surface-texture patterns. Light sources, of
varying shapes, colors, and positions, can be used to provide the illumination ef-
fects for a scene. Given the paramcters for the optical properties of surfaces, the
relative positions of the surfaces in a scene, the color and positions of the light
sources, and the position and orientation of the viewing plane, illumination mod-
els calculate the intensity projected from a particular surface point in a specified
viewing direction.

lllumination models in computer graphics are often loosely derived from
the physical laws that describe surface light intensities. To minimize intensity <al-
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culations, most packages use empirical models based on simplified photometric
calculations. More accurate models, such as the radiosity algorithm, calculate
light intensities by considering the propagation of radiant energy between the
surfaces and light sources in a scene. In the following sections, we first take a
look at the basic illumination models often used in graphics packages; then we
discuss more accurate, but more time-consuming, methods for calculating sur-
face intensities. And we explore the various surface-rendering algorithms for ap-
plying the lighting models to obtain the appropriate shading over visible sur-
faces in a scene.

14-1
LIGHT SOURCES

When we view an opaque nonluminous object, we see reflected light from the
surfaces of the object. The total reflected light is the sum of the contributions
from light sources and other reflecting surfaces in the scene (Fig. 14-1). Thus, a
surface that is not directly exposed to a light source may still be visible if nearby
objects are illuminated. Sometimes, light sources are referred to as light-emitting
sources; and reflecting surfaces, such as the walls of a room, are termed light-re-
flecting sources. We will use the term light source to mean an object that is emitting
radiant energy, such as a light bulb or the sun.

A luminous object, in general, can be both a light source and a light reflec-
tor. For example, a plastic globe with a light bulb inside both emits and reflects
light from the surface of the globe. Emitted light from the globe may then illumi-
nate other objects in the vicinity.

The simplest model for a light emitter is a point source. Rays from the
source then follow radially diverging paths from the source position, as shown in
Fig. 14-2. This light-source model is a reasonable approximation for sources
whose dimensions are small compared to the size of objects in the scene. Sources,
such as the sun, that are sufficiently far from the scene can be accurately modeled
as point sources. A nearby source, such as the long fluorescent light in Fig. 14-3,
is more accurately modeled as a distributed light source. In this case, the illumi-
nation effects cannot be approximated realistically with a point source, because
the area of the source is not small compared to the surfaces in the scene. An accu-
rate model for the distributed source is one that considers the accumulated illu-
mination effects of the points over the surface of the source.

When light is incident on an opaque surface, part of it is reflected and part
is absorbed. The amount of incident light reflected by a surface depends on the
type of material. Shiny materials reflect more of the incident light, and dull sur-
faces absorb more of the incident light. Similarly, for an illuminated transparent

Figure 14-3
An object illuminated with a
distributed light source.



surface, some of the incident light will be reflected and some will be transmitted ~ Section 14-2

through the material. Basic lllumination Models
Surfaces that are rough, or grainy, tend to scatter the reflected light in all di-

rections. This scattered light is called diffuse reflection. A very rough matte sur-

face produces primarily diffuse reflections, so that the surface appears equally \\ \ / / /

bright from all viewing directions. Figure 14-4 illustrates diffuse light scattering
from a surface. What we call the color of an object is the color of the diffuse re- .
flection of the incident light. A blue object illuminated by a white light source, for
example, reflects the blue component of the white light and totally absorbs all

X C . . Fi 14-4
other components. If the blue object is viewed under a red light, it appears black D’ﬁuﬁﬁe reflections from a
since all of the incident light is absorbed. surface.

In addition to diffuse reflection, light sources create highlights, or bright
spots, called specular reflection. This highlighting effect is more prenounced on
shiny surfaces than on dull surfaces. An illustration of specular reflection is
shown in Fig. 14-5.

BASIC ILLUMINATION MODELS

Here we discuss simplified methods for calculating light intensities. The empiri- Figure 14-5

cal models described in this section provide simple and fast methods for calculat-  Specular reflection

ing surface intensity at a given point, and they produce reasonably good results  superimposed on diffuse
for most scenes. Lighting calculations are based on the optical properties of sur-  reflection vectors.

faces, the background lighting conditions, and the light-source specifications.

Optical parameters are used to set surface properties, such as glossy, matte,

opaque, and transparent. This controls the amount of reflection and absorption of

incident light. All light sources are considered to be point sources, specified with

a coordinate position and an intensity value (color).

Ambient Light

A surface that is not exposed directly to a light source still will be visible if
nearby objects are illuminated. In our basic illumination model, we can set a gen-
eral level of brightness for a scene. This is a simple way to madel the combina-
tion of light reflections from various surfaces to produce a uniform illumination
called the ambient light, or background light. Ambient light has no spatial or di-
rectional characteristics. The amount of ambient light incident on each object is a
constant for all surfaces and over all directions.

We can set the level for the ambient light in a scene with parameter I,, and
each surface is then illuminated with this constant value. The resulting reflected
light is a constant for each surface, independent of the viewing direction and the
spatial orientation of the surface. But the intensity of the reflected light for each
surface depends on the optical properties of the surface; that is, how much of the
incident energy is to be reflected and how much absorbed.

Diffuse Reflection

Ambient-light reflection is an approximation of global diffuse lighting effects.
Diffuse reflections are constant over each surface in a scene, independent of the
viewing direction. The fractional amount of the incident light that is diffusely re-
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Figurc 14-7

A surface perpendicular to
the direction of the incident
light (a) is more illuminated
than an equal-sized surface at
an oblique angle (b) to the
incoming light direction.
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Figure 14-6
Radiant energy from a surface area dA in direction ¢y relative
to the surface normal direction. i

flected can be set for each surface with parameter k;, the diffuse-reflection coeffi-
cient, or diffuse reflectivity. Parameter k, is assigned a constant value in the in-
terval 0 to 1, according to the reflecting properties we want the surface to have. If
we want a highly reflective surface, we set the value of k, near 1. This produces a
bright surface with the intensity of the reflected light near that of the incident
light. To simulate a surface that absorbs most of the incident light, we set the re-
flectivity to a value near 0. Actually, parameter k, is a function of surface color,
but for the time being we will assume k; is a constant.

If a surface is exposed only to ambient light, we can express the intensity of
the diffuse reflection at any point on the surface as

Limpaitt = Kal, (14-1)

Since ambient light produces a flat uninteresting shading for each surface (Fig.
14-19(b)), scenes are rarely rendered with ambient light alone. At least one light
source is included in a scene, often as a point source at the viewing position.

We can model the diffuse reflections of illumination from a point source in a
similar way. That is, we assume that the diffuse reflections from the surface are
scattered with equal intensity in all directions, independent of the viewing direc-
tion. Such surfaces are sometimes referred to as ideal diffuse reflectors. They are
also called Lambertian reflectors, since radiated light energy from any point on the
surface is governed by Lambert’s cosine law. This law states that the radiant energy
from any small surface area dA in any direction ¢y relative to the surface normal
is proportional to cos¢y (Fig. 14-6). The light intensity, though, depends on the
radiant energy per projected area perpendicular to direction ¢y, which is dA
cos¢y. Thus, for Lambertian reflection, the intensity of light is the same over all
viewing directions. We discuss photometry concepts and terms, such as radiant
energy, in greater detail in Section 14-7.

Even though there is equal light scattering in all directions from a perfect
diffuse reflector, the brightness of the surface does depend on the orientation of
the surface relative to the light source. A surface that is oriented perpendicular to
the direction of the incident light appears brighter than if the surface were tilted
at an oblique angle to the direction of the incoming light. This is easily seen by
holding a white sheet of paper or smooth cardboard parallel to a nearby window
and slowly rotating the sheet away from the window direction. As the angle be-
tween the surface normal and the incoming light direction increases, less of the
incident light falls on the surface, as shown in Fig. 14-7. This figure shows a beam
of light rays incident on two equal-area plane surface patches with different spa-
tial orientations relative to the incident light direction from a distant source (par-



Figure 14-8

incident
light An illuminated area projected
perpendicular to the path of the

incoming light rays.

allel incoming rays). If we denote the angle of incidence between the incoming
light direction and the surface normal as @ (Fig. 14-8), then the projected area of a
surface patch perpendicular to the light direction is proportional to cosé. Thus,
the amount of illumination (or the “number of incident light rays” cutting across
the projected surface patch) depends on cosé. If the incoming light from the
source is perpendicular to the surface at a particular point, that point is fully illu-
minated. As the angle of illumination moves away from the surface normal, the
brightness of the point drops off. If ], is the intensity of the point light source,
then the diffuse reflection equation for a point on the surface can be written as

Il,diﬂ = kdll cos 8 (]4’2)

A surface is illuminated by a point source only if the angle of incidence is in the
range 0° to 90° (cos 8 is in the interval from 0 to 1). When cos 6 is negative, the
light source is “behind” the surface.

If N is the unit normal vector to a surface and L is the unit direction vector
to the point light source from a position on the surface (Fig. 14-9), then cos 6 =
N - L and the diffuse reflection equation for single point-source illumination is

I!,difl = kdII(N * L) (14»:‘)

Reflections for point-source illumination are calculated in world coordinates or
viewing coordinates before shearing and perspective transformations are ap-
plied. These transformations may transform the orientation of normal vectors so
that they are no longer perpendicular to the surfaces they represent. Transforma-
tion procedures for maintaining the proper orientation of surface normals are
discussed in Chapter 11.

Figure 14-10 illustrates the application of Eq. 14-3 to positions over the sur-
face of a sphere, using various values of parameter k, between 0 and 1. Each pro-
jected pixel position for the surface was assigned an intensity as calculated by the
diffuse reflection equation for a point light source. The renderings in this figure
illustrate single point-source lighting with no other lighting effects. This is what
we might expect to see if we shined a small light on the object in a completely
darkened room. For general scenes, however, we expect some background light-
ing effects in addition to the illumination effects produced by a direct light
source.

We can combine the ambient and point-source intensity calculations to ob-
tain an expression for the total diffuse reflection. In addition, many graphics
packages introduce an ambient-reflection coefficient k, to modify the ambient-
light intensity I, for each surface. This simply provides us with an additional pa-
rameter to adjust the light conditions in a scene. Using parameter k,, we can write
the total diffuse reflection equation as

Lyge = Kl + k(N - L) (1443

To Light
Source |

Figure 14-9

Angle of incidence 8 between
the unit light-source direction
vector L and the unit surface

normal N.
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kd, with kxa = 0.0

Q0 0.2 e.4 0.6 0.8 1.0

Figure 14-10

Diffuse reflections from a spherical surface illuminated by a point light
source for values of the diffuse reflectivity coeffident in the interval
Oxsk;s1.

Figure 14-11

Diffuse reflections from a spherical surface illuminated with
ambient light and a single point source for values of k, and
kg in the interval (0, 1).

where both k, and k; depend on surface material properties and are assigned val-
ues in the range from 0 to 1. Figure 14-11 shows a sphere displayed with surface
intensitities calculated from Eq. 14-4 for values of parameters k, and k, between 0
and 1.

Specular Reflection ane the Phong Model

When we look at an illuminated shiny surface, such as polished metal, an apple,
or a person’s forehead, we see a highlight, or bright spot, at certain viewing di-



rections. This phenomenon, called specular reflection, is the result of total, or near
total, reflection of the incident light in a concentrated region around the specular-
reflection angle. Figure 14-12 shows the specular reflection direction at a point
on the illuminated surface. The specular-reflection angle equals the angle of the
incident light, with the two angles measured on opposite sides of the unit normal
surface vector N. In this figure, we use R to represent the unit vector in the direc-
tion of ideal specular reflection; L to represent the unit vector directed toward the
point light source; and V as the unit vector pointing to the viewer from the sur-
face position. Angle ¢ is the viewing angle relative to the specular-reflection di-
rection R. For an ideal reflector (perfect mirror), incident light is reflected only in
the specular-reflection direction. In this case, we would only see reflected light
when vectors V and R coincide (¢ = Q).

Objects other than ideal reflectors exhibit specular reflections over a finite
range of viewing positions around vector R. Shiny surfaces have a narrow specu-
lar-reflection range, and dull surfaces have a wider reflection range. An empirical
model for calculating the specular-reflection range, developed by Phong Bui
Tuong and called the Phong specular-reflection model, or simply the Phong
model, sets the intensity of specular reflection proportional to cos™¢. Angle ¢
can be assigned values in the range 0° to 90°, so that cos¢ varies from 0 to 1. The
value assigned to specular-reflection parameter n, is determined by the type of sur-
face that we want to display. A very shiny surface is modeled with a large value
for n, (say, 100 or more), and smaller values (down to 1) are used for duller sur-
faces. For a perfect reflector, n, is infinite. For a rough surface, such as chalk or
cinderblock, n, would be assigned a value near 1. Figures 14-13 and 14-14 show
the effect of #, on the angular range for which we can expect to see specular re-
flections.

The intensity of specular reflection depends on the material properties of
the surface and the angle of incidence, as well as other factors such as the polar-
ization and color of the incident light. We can approximately model monochro-
matic specular intensity variations using a specular-reflection coefficient, W(¢6),
for each surface. Figure 14-15 shows the general variation of W(6) over the range
6 =0° to 6 = 90° for a few materials. In general, W(6) tends to increase as the
angle of incidence increases. At # = 90°, W(8) = 1 and all of the incident light is
reflected. The variation of specular intensity with angle of incidence is described
by Fresnel’s Laws of Reflection. Using the spectral-reflection function W(f), we can
write the Phong specular-reflection model as

Lipec = WO, cos™ & (14-5)

where I is the intensity of the light source, and ¢ is the viewing angle relative to
the specular-reflection direction R.

co N R L N ow
Shiny Surface Dull Surface
{Large n,) {Small n,)
Tigrure 14-13

Modeling specular reflections (shaded area) with parameter ..

Tigure 14-12
Specular-reflection angle
equals angle of incidence 0.
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Plots of cos™¢ for several values of specular parameter #,.

As seen in Fig. 14-15, transparent materials, such as glass, only exhibit ap-
preciable specular reflections as 8 approaches 90°. At § = 0°, about 4 percent of
the incident light on a glass surface is reflected. And for most of the range of 6,
the reflected intensity is less than 10 percent of the incident intensity. But for
many opaque materials, specular reflection is nearly constant for all incidence an-
gles. In this case, we can reasonably model the reflected light effects by replacing
W(8) with a constant specular-reflection coefficient k.. We then simply set k, equal

to some value in the range 0 to 1 for each surface.

Since V and R are unit vectors in the viewing and specular-reflection direc-
tions, we can calculate the value of cos¢ with the dot product V « R. Assuming
the specular-reflection coefficient is a constant, we can determine the intensity of

the specular reflection at a surface point with the calculation

1>P\“( =k (V- R)™
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Vector R in this expression can be calculated in terms of vectors L and N. As seen
in Fig. 14-16, the projection of L onto the direction of the normal vector is ob-
tained with the dot product N - L. Therefore, from the diagram, we have

R+ L=Q@N-LN

and the specular-reflection vector is obtained as

R=CN:LN-L (14-7) Figure 14-16
Calculation of vector R by

considering projections onto
the direction of the normal
vector N.

Figure 14-17 illustrates specular reflections for various values of k, and n, on a
sphere illuminated with a single point light source.

A somewhat simplified Phong model is obtained by using the halfway vector
H between L and V to calculate the range of specular reflections. If we replace V -
R in the Phong model with the dot product N - H, this simply replaces the empir-
ical cos ¢ calculation with the empirical cos a calculation (Fig. 14-18). The
halfway vector is obtained as

L+V

H= m (14-&)

e s ves
L Ll |
b b b b‘ b gg;qu;:-rleilecﬁons from a Figure 14-13

- spherical surface for varying Halfway vector H along the
specular parameter values and a bisector of the angle between
single light source. Land V.
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If both the viewer and the light source are sufficiently far from the surface, both
V and L are constant over the surface, and thus H is also constant for all surface
points. For nonplanar surfaces, N - H then requires less computation than V - R
since the calculation of R at each surface point involves the variable vector N.

For given light-source and viewer positions, vector H is the orientation di-
rection for the surface that would produce maximum specular reflection in the
viewing direction. For this reason, H is sometimes referred to as the surface ori-
entation direction for maximum highlights. Also, if vector V is coplanar with
vectors L and R (and thus N), angle a has the value ¢/2. When V, L, and N are
not coplanar, a > ¢/2, depending on the spatial relationship of the three vectors.

Combined Diffuse and Specular Reflections
with Multiple Light Sources

For a single point light source, we can model the combined diffuse and specular
reflections from a point on an illuminated surface as

1= ldlff + Ispec
=k, + k(N - L) + kJ,(N - )™

(14-9)

Figure 14-19 illustrates surface lighting effect~ vioduced by the various terms in
. - . .

Eq. 14-9. If we place more than one point sour.. .1 a scene, we obtain the light re-

flection at any surface point by summing the contributions from the individual

sources:

D=k, + D LIkAN - L) + k(N - H"] (14-10

r=1

To ensure that any pixel intensity does not exceed the maximum allowable
value, we can apply some type of normalization procedure. A simple approach is
to set a maximum magnitude for each term in the intensity equation. If any cal-
culated term exceeds the maximum, we simply set it to the maximum value. An-
other way to compensate for intensity overflow is to normalize the individual
terms by dividing each by the magnitude of the largest term. A more compli-
cated procedure is first to calculate all pixel intensities for the scene, then the cal-
culated intensities are scaled onto the allowable intensity range.

Warn Model

So far we have considered only point light sources. The Warn model provides a
method for simulating studio lighting effects by controlling light intensity in dif-
ferent directions.

Light sources are modeled as points on a reflecting surface, using the Phong
model for the surface points. Then the intensity in different directions is con-
trolled by selecting values for the Phong exponent. In addition, light controls,
such as “barn doors” and spotlighting, used by studio photographers can be sim-
ulated in the Warn model. Flaps are used to control the amount of light emitted
by a source in various directions. Two flaps are provided for each of the x, y, and
z directions. Spotlights are used to control the amount of light emitted within a
cone with apex at a point-source position. The Warn model is implemented in



{b)

(c) (d)

Figure 14-19
A wireframe scene (a) is displayed only with ambient lighting in (b), and the surface of
each object is assigned a different color. Using ambient light and diffuse reflections due to
a single source with k, = 0 for all surfaces, we obtain the lighting effects shown in (c). |
Using ambient light and both diffuse and specular reflections due to a single light source,
we obtain the lighting effects shown in (d).

PHIGS+, and Fig. 14-20 illustrates lighting effects that can be produced with this
model.

Intensity Attenuation

As radiant energy from a point light source travels through space, its amplitude
is attenuated by the factor 1/4d2, where d is the distance that the light has traveled.
This means that a surface close to the light source (small d) receives a higher inci-
dent intensity from the source than a distant surface (large d). Therefore, to pro-
duce realistic lighting effects, our illumination model should take this intensity
attenuation into account. Otherwise, we are illuminating all surfaces with the
same intensity, no matter how far they might be from the light source. If two par-
allel surfaces with the same optical parameters overlap, they would be indistin-
guishable from each other. The two surfaces would be displayed as one surface.
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Figure 14-20
Studio lighting effects produced with the Warn model, using

five light sources to illuminate a Chevrolet Camaro. (Courtesy of
David R. Warn, General Motors Research Laboratories.)

Our simple point-source illumination model, however, does not always
produce realistic pictures, if we use the factor 1/d? to attenuate intensities. The
factor 1/d? produces too much intensity variations when 4 is small, and it pro-
duces very little variation when 4 is large. This is because real scenes are usually
not illuminated with point light sources, and our illumination model is too sim-
ple to accurately describe real lighting effects.

Graphics packages have compensated for these problems by using inverse
linear or quadratic functions of 4 to attenuate intensities. For example, a general
inverse quadratic attenuation function can be set up as

1
fd) = m (14-1D)

A user can then fiddle with the coefficients 4, 4), and a4, to obtain a variety of
lighting effects for a scene. The value of the constant term g, can be adjusted to
prevent f(d) from becorning too large when d is very small. Also, the values for
the coefficients in the attenuation function, and the optical surface parameters for
a scene, can be adjusted to prevent calculations of reflected intensities from ex-
ceeding the maximum allowable value. This is an effective method for limiting
intensity values when a single light source is used to illuminate a scene. For mul-
tiple light-source illumination, the methods described in the precedmg section
are more effective for limiting the intensity range.

With a given set of attenuation coefficients, we can limit the magmtude of
the attenuation function to 1 with the calculation

1
f(d) mm( m) (14-12)

Using this function, we can then write our basic illumination model as

M

I=kI,+ > fld kN - L) + k(N - H)"] (14-13)

i=1

where d, is the distance light has traveled from light source i.



Figure 14-21

Light reflections from the surface of
a black nylon cushion, modeled as
woven cloth patterns and rendered
using Monte Carlo ray-tracing

methods. (Courtesy of Stephen H. Westin,
Program of Computer Graphics, Cornell
University.)

Color Considerations

Most graphics displays of realistic scenes are in color. But the illumination model
we have described so far considers only monochromatic lighting effects. To incor-
porate color, we need to write the intensity equation as a function of the color
properties of the light sonrces and object surfaces.

For an RGB description, each color in a scene is expressed in terms of red,
green, and blue components. We then specify the RGB components of light-
source intensities and surface colors, and the illumination model calculates the
RGB components of the reflected light. One way to set surface colors is by speci-
fying the reflectivity coefficients as three-element vectors. The diffuse reflection-
coefficient vector, for example, would then have RGB components (kg, k4, kgp)- If
we want an object to have a blue surface, we select a nonzero value in the range
from 0 to 1 for the blue reflectivity component, k5, while the red and green reflec-
tivity components are set to zero (k;zr = kg = 0). Any nonzero red or green com-
ponents in the incident light are absorbed, and only the blue component is re-
flected. The intensity calculation for this example reduces to the single expression

Is = kaglug + D fi@lplkag(N - L) + k(N - H)™] (14-14)

i=1

Surfaces typically are illuminated with white light sources, and in general we can
set surface color so that the reflected light has nonzero values for all three RGB
components. Calculated intensity levels for each color component can be used to
adjust the corresponding electron gun in an RGB monitor.

In his original specular-reflection model, Phong set parameter k; to a con-
stant value independent of the surface color. This produces specular reflections
that are the same color as the incident light (usually white), which gives the sur-
face a plastic appearance. For a nonplastic material, the color of the specular re-
flection is a function of the surface properties and may be different from both the
color of the incident light and the color of the diffuse reflections. We can approxi-
mate specular effects on such surfaces by making the specular-reflection coeffi-
cient color-dependent, as in Eq. 14-14. Figure 14-21 illustrates color reflections
from a matte surface, and Figs. 14-22 and 14-23 show color reflections from metal

Figure 14-22

Light reflections from a teapot with
reflectance parameters set to
simulate brushed aluminum
surfaces and rendered using Monte
Carlo ray-tracing methods. (Courtesy
of Stephen H. Westin, Program of Computer
Graphics, Cornell University.)
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Figure 14-23

Light reflections from trombones
with reflectance parameters set to
simulate shiny brass surfaces.
(Courtesy of SOFTIMAGE, Inc.)

surfaces. Light reflections from object surfaces due to multiple colored light
sources is shown in Fig. 14-24.

Another method for setting surface color is to specify the components of
diffuse and specular color vectors for each surface, while retaining the reflectivity
coefficients as single-valued constants. For an RGB color representation, for in-
stance, the components of these two surface-color vectors can be denoted as (Sup,

Sac, Sap) and (S,g, Sg. S.p)- The blue component of the reflected light is then calcu-
lated as

Ip = k,Seplep + Zf.—(d) Lgilk;S4p(N « L)) + k,S5(N - H)™] (14-15)

i=1

This approach provides somewhat greater flexibility, since surface-color parame-
ters can be set independently from the reflectivity values.

Other color representations besides RGB can be used to describe colors in a
scene. And sometimes it is convenient to use a color model with more than three
components for a color specification. We discuss color models in detail in the
next chapter. For now, we can simply represent any component of a color specifi-
cation with its spectral wavelength A. Intensity calculations can then be ex-
pressed as i

1 < kSandar + D fl@IpdksSaun(N « L) + k,S,(N » H)™) (14-16)
i=1
Transparency

A transparent surface, in general, produces both reflected and transmitted light.
The relative contribution of the transmitted light depends on the degree of trans-

Figure 14-24

Light reflections due to multiple
light sources of various colors.
(Courtesy of Sun Microsystems.)




parency of the surface and whether any light sources or illuminated surfaces are
behind the transparent surface. Figure 14-25 illustrates the intensity contributions
to the surface lighting for a transparent object.

When a transparent surface is to be modeled, the intensity equations must
be modified to include contributions from light passing through the surface. In
most cases, the transmitted light is generated from reflecting objects in back of
the surface, as in Fig. 14-26. Reflected light from these objects passes through the
transparent surface and contributes to the total surface intensity.

Both diffuse and specular transmission can take place at the surfaces of a
transparent object. Diffuse effects are important when a partially transparent sur-
face, such as frosted glass, is to be modeled. Light passing through such materials
is scattered so that a blurred image of background objects is obtained. Diffuse re-
fractions can be generated by decreasing the intensity of the refracted light and
spreading intensity contributions at each point on the refracting surface onto a fi-
nite area. These manipulations are time-comsuming, and most lighting models
employ only specular effects. '

Realistic transparency effects are modeled by considering light refraction.
When light is incident upon a transparent surface, part of it is reflected and part
is refracted (Fig. 14-27). Because the speed of light is different in different materi-
als, the path of the refracted light is different from that of the incident light. The
direction of the refracted light, specified by the angle of refraction, is a function
of the index of refraction of each material and the direction of the incident light.
Index of refraction for a material is defined as the ratio of the speed of light in a
vacuum to the speed of light in the material. Angle of refraction 4, is calculated
from the angle of incidence 6, the index of refraction 7, of the “incident” material
(usually air), and the index of refraction , of the refracting material according to
Snell’s law:

(14-17)

Figure 14-26

A ray-traced view of a transparent glass surface,
showing both light transmission from objects behind
the glass and light reflection from the glass surface.
(Courtesy of Eric Haines, 3D/EYE Inc.)

incident
light

Transparent
object

Figure 14-25

Light emission from a
transparent surface is in
general a combination of
reflected and transmitted
light.

To Light N
Source |

reflection

7, direction

refraction
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Figure 14-27

Reflection direction R and
refraction direction T for a
ray of light incident upon a
surface with index of
refraction 7,.
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Figure 14-28

Refraction of light through a
glass object. The emerging
refracted ray travels alonga
path that is parallel to the
incident light path (dashed
line).
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F
1 Transparent
/ Object

Projection Plane

Figure 14-29

The intensity of a background
object at point P can be
combined with the reflected
intensity off the surface of a
transparent object along a
perpendicular projection line
(dashed).
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Actually, the index of refraction of a material is a function of the wave-
length of the incident light, so that the different color components of a light ray
will be refracted at different angles. For most applications, we can use an average
index of refraction for the different materials that are modeled ir. a scene. The
index of refraction of air is approximately 1, and that of crown glass is about 1.5.
Using these values in Eq. 14-17 with an angle of incidence of 30° yields an angle
of refraction of about 19°. Figure 14-28 illustrates the changes in the path direc-
tion for a light ray refracted through a glass object. The overall effect of the re-
fraction is to shift the incident light to a parallel path. Since the calculations of the
trigonometric functions in Eq. 14-17 are time-consuming, refraction effects could
be modeled by simply shifting the path of the incident light a small amount.

From Snell's law and the diagram in Fig. 14-27, we can obtain the unit
transmission vector T in the refraction direction 8, as

T= (_"7,_ cos 6; — cos 6,)N -y (14-18)

T Tir

where N is the unit surface normal, and L is the unit vector in the direction of the
light source. Transmission vector T can be used to locate intersections of the re-
fraction path with objects behind the transparent surface. Including refraction ef-
fects in a scene can produce highly realistic displays, but the determination of re-
fraction paths and object intersections requires considerable computation. Most
scan-line image-space methods model light transmission with approximations
that reduce processing time. We return to the topic of refraction in our discussion
of ray-tracing algorithms (Section 14-6).

A simpler procedure for modeling transparent objects is to ignore the path
shifts altogether. In effect, this approach assumes there is no change in the index
of refraction from one material to another, so that the angle of refraction is always
the same as the angle of incidence. This method speeds up the calculation of in-
tensities and can produce reasonable transparency effects for thin pulygon sur-
faces.

We can combine the transmitted intensity I, through a surface from a
background object with the reflected intensity I,y from the transparent surface
(Fig. 14-29) using a transparency coefficient k,. We assign parameter k, a value
between 0 and 1 to specify how much of the background light is to be transmit-
ted. Total surface intensity is then calculated as

=0~ k)q + kdirars (14-19)
The term (1 — k) is the opacity factor.

For highly transparent objects, we assign k; a value near 1. Nearly opaque
objects transmit very little light from background objects, and we can set k; to a
value near 0 for these materials (opacity near 1). It is also possible to allow k, to
be a function of position over the surface, so that different parts of an object can
transmit more or less background intensity according to the values assigned to &,.

Transparency effects are often implemented with modified depth-buffer (z-
buffer) algorithms. A simple way to do this is to process opaque objects first to
determine depths for the visible opaque surfaces. Then, the depth positions of
the transparent objects are compared to the values previously strored in the
depth buffer. If any transparent surface is visible, its reflected intensity is calcu-
lated and combined with the opaque-surface intensity previously stored in the
frame buffer. This method can be modified to produce more accurate displays by
using additional storage for the depth and other parameters of the transparent
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Figure 14-30
Objects modeled with shadow regions.

surfaces. This allows depth values for the transparent surfaces to be compared to
each other, as well as to the depth values of the opaque surfaces. Visible transpar-
ent surfaces are then rendered by combining their surface intensities with those
of the visible and opaque surfaces behind them.

Accurate displays of transparency and antialiasing can be obtained with the
A-buffer algorithm. For each pixel position, surface patches for all overlapping
surfaces are saved and sorted in depth order. Then, intensities for the transparent
and opaque surface patches that overlap in depth are combined in the proper vis-
ibility order to produce the final averaged intensity for the pixel, as discussed in
Chapter 13.

A depth-sorting visibility algorithm can be modified to handle transparency
by first sorting surfaces in depth order, then determining whether any visible
surface is transparent. If we find a visible transparent surface, its reflected surface
intensity is combined with the surface intensity of objects behind it to obtain the
pixel intensity at each projected surface point.

Shadows

Hidden-surface methods can be used to locate areas where light sources produce
shadows. By applying a hidden-surface method with a light source at the view
position, we can determine which surface sections cannot be “seen” from the
light source. These are the shadow areas. Once we have determined the shadow
areas for all light sources, the shadows could be treated as surface patterns and
stored in pattern arrays. Figure 14-30 illustrates the generation of shading pat-
terns for two objects on a table and a distant light source. All shadow areas in
this figure are surfaces that are not visible from the position of the light source.
The scene in Fig. 14-26 shows shadow effects produced by multiple light sources.

Shadow patterns generated by a hidden-surface method are valid for any
selected viewing position, as long as the light-source positions are not changed.
Surfaces that are visible from the view position are shaded according to the light-
ing model, which can be combined with texture patterns. We can display shadow
areas with ambient-light iniensity only, or we can combine the ambient light with
specified surface textures.

14-3
DISPLAYING LIGHT INTENSITIES

Values of intensityv calculated by an illumination model must be converted to one
of the allowable intensity levels for the particular graphics system in use. Some
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systems are capable of displaying several intensity levels, while others are capa-
ble of only two levels for each pixel (on or off). In the first case, we convert inten-
sities from the lighting model into one of the available levels for storage in the
frame buffer. For bilevel systems, we can convert intensities into halftone pat-
terns, as discussed in the next section.

Assigning Intensity Levels

We first consider how grayscale values on a video monitor can be distributed
over the range between 0 and 1 so that the distribution corresponds to our per-
ception of equal intensity intervals, We perceive relative light intensities the same
way that we perceive relative sound intensities: on a logarithmic scale. This
means that if the ratio of two intensities is the same as the ratio of two other in-
tensities, we perceive the difference between each pair of intensities to be the
same. As an example, we perceive the difference between intensities 0.20 and
0.22 to be the same as the difference between 0.80 and 0.88. Therefore, to display
n + 1 successive intensity levels with equal perceived brightness, the intensity
levels on the monitor should be spaced so that the ratio of successive intensities
is constant:

=2=..= o, (14-20)

Here, we denote the lowest level that can be displayed on the monitor as [, and
the highest as I,. Any intermediate intensity can then be expressed in terms of I,
as

I = r*, (14-21)

We can calculate the value of r, given the values of I, and n for a particular sys-
tem, by substituting k = n in the preceding expression. Since I, = 1, we have

1/u
r= (l) (14-22)
IO

Thus, the calculation for I, in Eq. 14-21 can be rewritten as
Ik — Io(n—k)/'" (]4_23)

As an example, if I, = 1/8 for a system with n = 3, we have r = 2, and the four
intensity values are 1/8,1/4,1/2,and 1.

The lowest intensity value I; depends on the characteristics of the monitor
and is typically in the range from 0.005 to around 0.025. As we saw in Chapter 2,
a “black” region displayed on a monitor will always have some intensity value
above 0 due to reflected light from the screen phosphors. For a black-and-white
monitor with 8 bits per pixel (n = 255) and I; = 0.0}, the ratio of successive inten-
sities is approximately r = 1.0182. The approximate values for the 256 intensities
on this system are 0.0100, 0.0102, 0.0104, 0.0106, 0.0107, 0.0109, . . ., 0.9821, and
1.0000.

With a color system, we set up intensity levels for each component of the
color model: Using the RGB model, for example, we can relate the blue compo-
nent of intensity at level k to the lowest attainable blue value as in Eq. 14-21:
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Figure 14-31
A typical monitor response curve,
' _+ showing the displayed screen
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I = rilso (14-24)
where
1 \Un
rg = (—) (14-25)
Ipo

and 7 is the number of intensity levels. Similar expressions hold for the other
color components.

Gamma Correction and Video Lookup Tables

Another problem associated with the display of calculated intensities is the non-
linearity of display devices. lllumination models produce a linear range of inten-
sities. The RGB color (0.25, (.25, 0.25) obtained from a lighting model represents
one-half the intensity of the color (0.5, 0.5, 0.5). Usually, these calculated intensi-
ties are then stored in an image file as integer values, with one byte for each of
the three RGB components. This intensity file is also linear, so that a pixel with
the value (64, 64, 64) has one-half the intensity of a pixel with the value (128, 128,
128). A video monitor, however, is a nonlinear device. If we set the voltages for
the electron gun proportional to the linear pixel values, the displayed intensities
will be shifted according to the monitor response curve shown in Fig. 14-31.

To correct for monitor nonlinearities, graphics systems use a video lockup
table that adjusts the linear pixel values. The monitor response curve is described
by the exponential function

I=aV” (14-26)

Parameter | is the displayed intensity, and parameter V is the input voltage. Val-
ues for parameters a and y depend on the characteristics of the monitor used in
the graphics system. Thus, if we want to display a particular intensity value /, the
correct voltage value to produce this intensity is

v
V=(£) ’ (14-27)

a
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Figure 14-32

A video lookup correction curve for mapping pixel
intensities to electron-gun voltages using gamma
correction with ¥ = 2.2. Values for both pixel
intensity and monitor voltages are normalized on
the interval O to 1.

This calculation is referred to as gamma correction of intensity. Monitor gamma
values are typically between 2.0 and 3.0. The National Television System Com-
mittee (NTSC) signal standard is y = 2.2. Figure 14-32 shows a gamma-correction
curve using the NTSC gamma value. Equation 14-27 is used to set up the video
lookup table that converts integer pixel values in the image file to values that
control the electron-gun voltages.

We can combine gamma correction with logarithmic intensity mapping to
produce a lookup table that contains both conversions. If | is an input intensity
value from an illumination model, we first locate the nearest intensity I; from a
table of values created with Eq. 14-20 or Eq. 14-23. Alternatively, we could deter-
mine the level number for this intensity value with the calculation

1 E
k= round()og,l—) (14-28)
0

then we compute the intensity value at this level using Eq. 14-23. Once we have
the intensity value I;, we can calculate the electron-gun voltage:

/
sz(ﬂ)l ’ (14-29)
a

Values Vj can then be placed in the lookup tables, and values for k would be
stored in the frame-buffer pixel positions. If a particular system has no lookup
table, computed values for V, can be stored directly in the frame buffer. The com-
bined conversion to a logarithmic intensity scale followed by calculation of the V,
using Eq.14-29 is also sometimes referred to as gamma correction.



(a)

Figure 14-33
A continuous-lone photograph (a) printed with (b) two intensity levels,
(c) four intensity levels, and (d) eight intensity levels

If the video amplifiers of a monitor are designed to convert the linear input
pixel values to electron-gun voltages, we cannot combine the two intensity-con-
version processes. In this case, gamma correction is built into the hardware, and
the logarithmic values I, must be precomputed and stored in the frame buffer (or
the color table).

Displaying Continuous-Tone Images

High-quality computer graphics systems generally provide 256 intensity levels
for each color component, but acceptable displays can be obtained for many ap-
plications with fewer levels. A four-level system provides minimum shading ca-
pability for continuous-tone images, while photorealistic images can be gener-
ated on systems that are capable of from 32 to 256 intensity levels per pixel.

Figure 14-33 shows a continuous-tone photograph displayed with various
intensity levels. When a small number of intensity levels are used to reproduce a
continuous-tone image, the borders between the different intensity regions
(called contours) are clearly visible. In the two-level reproduction, the features of
the photograph are just barely identifiable. Using four intensity levels, we begin
to identify the original shading patterns, but the contouring effects are glaring.
With eight intensity levels, contouring effects are still obvious, but we begin to
have a better indication of the original shading. At 16 or more intensity levels,
contouring effects diminish and the reproductions are very close to the original.
Reproductions of continuous-tone images using more than 32 intensity levels
show only very subtle differences from the original.

[ta]]
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Figure 14-34

An enlarged section of a
photograph reproduced with
a halftoning method, showing
how tones are represented
with varying size dots.
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14-4
HALFTONE PATTERNS AND DITHERING TECHNIQUES

When an output device has a limited intensity range, we can create an apparent
increase in the number of available intensities by incorporating multiple pixel po-
sitions into the display of each intensity value. When we view a small region con-
sisting of several pixel positions, our eyes tend to integrate or average the fine
detail into an overall intensity. Bilevel monitors and printers, in particular, can
take advantage of this visual effect to produce pictures that appear to be dis-
played with multiple intensity values.

Continuous-tone photographs are reproduced for publication in newspa-
pers, magazines, and books with a printing process called halftoning, and the re-
produced pictures are called halftones. For a black-and-white photograph, each
intensity area is reproduced as a series of black circles on a white background.
The diameter of each circle is proportional to the darkness required for that in-
tensity region. Darker regions are printed with larger circles, and lighter regions
are printed with smaller circles (more white area). Figure 14-34 shows an en-
larged section of a gray-scale halftone reproduction. Color halftones are printed
using dots of various sizes and colors, as shown in Fig. 14-35. Book and maga-
zine halftones are printed on high-quality paper using approximately 60 to 80 cir-
cles of varying diameter per centimeter. Newspapers use lower-quality paper
and lower resolution (about 25 to 30 dots per centimeter).

Halftone Approximations

In computer graphics, halftone reproductions are approximated using rectangu-
lar pixel regions, called halftone patterns or pixel patterns. The number of intensity

Figure 14-35
Color halftone dot patterns. The top half of the clock in the color halftone (a) is enlarged
by a factor of 10 in (b) and by a factor of 50 in (c).
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Figure 14-36

A 2by 2 pixel grid used to display five intensity levels on a bilevel
system. The intensity values that would be mapped to each grid are
listed below each pixel pattern.
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Figure 14-37

A 3by 3 pixel grid can be used to display 10 intensities on a bilevel
system. The intensity values that would be mapped to each grid are
listed below each pixel pattern.

levels that we can display with this method depends on how many pixels we in-
clude in the rectangular grids and how many levels a system can display. With n
by n pixels for each grid on a bilevel system, we can represent 1’ + 1 intensity
levels. Figure 14-36 shows one way to set up pixel patterns to represent five in-
tensity levels that could be used with a bilevel system. In pattern 0, all pixels are
turned off; in pattern 1, one pixel is turned on; and in pattern 4, all four pixels are
turned on. An intensity value I in a scene is mapped to a particular pattern ac-
cording to the range listed below each grid shown in the figure. Pattern 0 is used
for 0 =1<0.2, pattern 1 for 0.2 <[ < 0.4, and pattern 4 is used for 0.8 =] = 1.0.

With 3 by 3 pixel grids on a bilevel system, we can display 10 intensity lev-
els. One way to set up the 10 pixel patterns for these levels is shown in Fig. 14-37.
Pixel positions are chosen at each level so that the patterns approximate the in-
creasing circle sizes used in halftone reproductions. That is, the “on” pixel posi-
tions are near the center of the grid for lower intensity levels and expand out-
ward as the intensity level increases.

For any pixel-grid size, we can represent the pixel patterns for the various
possible intensities with a “mask” of pixel position numbers. As an example, the
following mask can be used to generate the nine 3 by 3 grid patterns for intensity
levels above 0 shown in Fig. 14-37.
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8 3 7
5 1 2 (14-3h
4 9 6

To display a particular intensity with level number &, we turn on' each pixel
whose position number is less than or equal to k.

Although the use of n by n pixel patterns increases the number of intensities
that can be displayed, they reduce the resolution of the displayed picture by a
factor of 1/n along each of the x and y axes. A 512 by 512 screen area, for in-
stance, is reduced to an area containing 256 by 256 intensity points with 2 by 2
grid patterns. And with 3 by 3 patterns, we would reduce the 512 by 512 area to
128 intensity positions along each side. ’

Another problem with pixel grids is that subgrid patterns become apparent
as the grid size increases. The grid size that can be used without distorting the in-
tensity variations depends on the size of a displayed pixel. Therefore, for systems
with lower resolution (fewer pixels per centimeter), we must be satisfied with
fewer intensity levels. On the other hand, high-quality displays require at least 64
intensity levels. This means that we need 8 by 8 pixel grids. And to achieve a res-
olution equivalent to that of halftones in books and magazines, we must display
60 dots per centimeter. Thus, we need to be able to display 60 X 8 = 480 dots per
centimeter. Some devices, for example high-quality film recorders, are able to dis-
play this resolution.

Pixel-grid patterns for halftone approximations must also be constructed to
minimize contouring and other visual effects not present in the original scene.
Contouring can be minimized by evolving each successive grid pattern from the
previous pattern. That is, we form the pattern at level k by adding an “on” posi-
tion to the grid pattern at level k — 1. Thus, if a pixel position is on for one grid
level, it is on for all higher levels (Figs. 14-36 and 14-37). We can minimize the in-
troduction of other visual effects by avoiding symmetrical patterns. With a 3 by 3
pixel grid, for instance, the third intensity level above zero would be better repre-
sented by the pattern in Fig. 14-38(a) than by any of the symmetrical arrange-
ments in Fig. 14-38(b). The symmetrical patterns in this figure would produce
vertical, horizontal, or diagonal streaks in any large area shaded with intensity
level 3. For hard-copy output on devices such as film recorders and some print-
ers, isolated pixels are not effectly reproduced. Therefore, a grid pattern with a
single “on” pixel or one with isolated “on” pixels, as in Fig. 14-39, should be
avoided.

.
-

(a)
(b}

Figure 14-38

For a 3 by 3 pixel grid, pattern (a) is to be preferred to the patterns in (b) for representing
the third intensity level above 0.
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Figure 14-39
Halftone grid patterns with isolated pixels that cannot be effectively
reproduced on some hard-copy devices.
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Figure 14-40

Intensity levels 0 through 12 obtained with halftone approximations
using 2 by 2 pixel grids on a four-level system.

Halftone approximations also can be used to increase the number of inten-
sity options on systems that are capable of displaying more than two intensities
per pixel. For example, on a system that can display four intensity levels per
pixel, we can use 2 by 2 pixel grids to extend the available intensity levels from 4
to 13. In Fig. 14-36, the four grid patterns above zero now represent several levels
each, since each pixel position can display three intensity values above zero. Fig-
ure 14-40 shows one way to assign the pixel intensities to obtain the 13 distinct
levels. Intensity levels for individual pixels are labeled 0 thrcugh 3, and the over-
all levels for the system are labeled 0 through 12.

Similarly, we can use pixel-grid patterns to increase the number of intensi-
ties that can be displayed on a color system. As an example, suppose we have a
three-bit per pixel RGB system. This gives one bit per color gun in the monitor,
providing eight colors (including black and white). Using 2 by 2 pixel-grid pat-
terns, we now have 12 phosphor dots that can be used to represent a particular
color value, as shown in Fig. 14-41. Each of the three RGB colors has four phos-
phor dots in the pattern, which allows five possible settings per color. This gives
us a total of 125 different color combinations.

Dithering Techniques

The term dithering is used in various contexts. Primarily, it refers to techniques
for approximating halftones without reducing resolution, as pixel-grid patterns
do. But the term is also applied to halftone-approximation methods using pixel
grids, and sometimes it is used to refer to color halftone approximations only.
Random values added to pixel intensities to break up contours are often re-
ferred to as dither noise. Various algorithms have been used to generate the ran-

S
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Figure 14-41
An RGB 2 by 2 pixel-grid
pattern.
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dom distributions. The effect is to add noise over an entire picture, which tends
to soften intensity boundaries.

Ordered-dither methods generate intensity variations with a one-to-one map-
ping of points in a scene to the display pixels. To obtain n? intensity levels, we set
up an n by n dither matrix D,, whose elements are distinct positive integers in
the range 0 to n?> — 1. For example, we can generate four intensity levels with

3 1
D=1y » (14-31)

and we can generate nine intensity levels with
7 2 6
Dy={4 0 1 (14-32)
3 8 5

The matrix elements for D; and D; are in the same order as the pixel mask for set-
ting up 2 by 2 and 3 by 3 pixel grids, respectively. For a bilevel system, we then
determine display intensity values by comparing input intensities to the matrix
elements. Each input intensity is first scaled to the range 0 < < n2 If the inten-
sity I is to be applied to screen position (x, y), we calculate row and column num-
bers for the dither matrix as

i=(@modn) +1, j=(ymodm +1 (14-33)

If I > D,(i,j), we turn on the pixel at position (x, y). Otherwise, the pixel is not
turned on.

Elements of the dither matrix are assigned in accordance with the guide-
lines discussed for pixel grids. That is, we want to minimize added visual effect
in a displayed scene. Order dither produces constant-intensity areas identical to
those generated with pixel-grid patterns when the values of the matrix elements
correspond to the grid mask. Variations from the pixel-grid displays occur at
boundaries of the intensity levels.

Typically, the number of intensity levels is taken to be a multiple of 2.
Higher-order dither matrices are then obtained from lower-order matrices with
the recurrence relation:

4D,,, + D,,DU,,, 4D, + D,1,2)U,,,
Da=l4p,,, + D2 U,,, 4D, .+ Dy22U ] {34
n/2 pALY n/2 n/2 0L nf2
assuming n = 4. Parameter U, ; is the “unity” matrix (all elements are 1). As an
example, if D, is specified as in Eq. 14-31, then recurrence relation 14-34 yields

15 7 13 5
3 1 1 9

D, = 12 4 14 6 (14-35)
0 8 2 10

Another method for mapping a picture with 1 by n points to a display area
with m by n pixels is error diffusion. Here, the error between an input intensity



value and the displayed pixel intensity level at a given position is dispersed, or
diffused, to pixel positions to the right and below the current pixel position.
Starting with a matrix M of intensity values obtained by scanning a photograph,
we want to construct an array [ of pixel intensity values for an area of the screen.
We do this by first scanning across the rows of M, from left to right, top to bot-
tom, and determining the nearest available pixel-intensity level for each element
of M. Then the error between the- value stored in matrix M and the displayed in-
tensity level at each pixel position is distributed to neighboring elements in M,
using the following simplified algorithm:

for (i=0; i<m; i++)
for (j=0; j<n; j++) {
/* Determine the available intensity level I, */
/* that is closest to the value M;;;. */

‘ 1=l
err:= M;;—I;;;
Mijq = Mi + 1t a-err;
Mm,—l = x".‘u,—l + B em
M= My, t y-err;
M,zjay = Misgjuy + 8-emm;

Once the elements of matrix I have been assigned intensity-level values, we then
map the matrix to some area of a display device, such as a printer or video moni-
tor. Of course, we cannot disperse the error past the last matrix column (j = n) or
below the last matrix row (i = m). For a bilevel system, the available intensity
levels are 0 and 1. Parameters for distributing the error can be chosen to satisfy
the following relationship

a+B+y+8=1 (14-36)

One choice for the error-diffusion parameters that produces fairly good re-
sults is (a, B, v, & =(7/16, 3/16, 5/16, 1/16). Figure 14-42 illustrates the error
distribution using these parameter values. Error diffusion sometimes produces
“ghosts” in a picture by repeating, or echoing, certain parts of the picture, partic-
ularly with facial features such as hairlines and nose outlines. Ghosting can be re-

column j
7 .
g . —— 1_6 row i
| N
ABREEL
3 5 1 .
16 6 16 row i+ 1

Figure 14-42
Fraction of intensity error that can be distributed to neighboring pixel
positions using an error-diffusion scheme.
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duced by choosing values for the error-diffusion parameters that sum to a value
less than 1 and by rescaling the matrix values after the dispersion of errors. One
way to rescale is to multiply all elements of M by 0.8 and then add 0.1. Another
method for improving picture quality is to alternate the scanning of matrix rows
from right to left and left to right.

A variation on the error-diffusion method is dot diffusion. In this method,
the m by n array of intensity values is divided into 64 classes numbered from 0 to
63, as shown in Fig. 14-43. The error between a matrix value and the displayed
intensity is then distributed only to those neighboring matrix elements that have
a larger class number. Distribution of the 64 class numbers is based on minimiz-
ing the number of elements that are completely surrounded by elements with a
lower class number, since this would tend to direct all errors of the surrounding
elements to that one position.

14-5
POLYGON-RENDERING METHODS

In this section, we consider the application of an illumination model to the ren-
dering of standard graphics objects: those formed with polygon surfaces. The ob-
jects are usually polygon-mesh approximations of curved-surface objects, but
they may also be polyhedra that are not curved-surface approximations. Scar-
line algorithms typically apply a lighting model to obtain polygon surface ren-
dering in one of two ways. Each polygon can be rendered with a single intensity,
or the intensity can be obtained at each point of the surface using an interpola-
tion scheme.

Constant-Intensity Shading

A fast and simple method for rendering an object with polygon surfaces is con-
stant-intensity shading, also called flat shading. In this method, a single inten-
sity is calculated for each polygon. All points over the surface of the polygon are
then displayed with the same intensity value. Constant shading can be useful for
quickly displaying the general appearance of a curved surface, as in Fig. 14-47.

In general, flat shading of polygon facets provides an accurate rendering for
an object if all of the following assumptions are valid:

* The object is a polyhedron and 1s not an approximation of an object with a
curved surface.



Section 14-5
Polygon-Rendering Methods

Figure 14-44

The normal vector at vertex V is
calculated as the average of the
surface normais for each polygon -
sharing that vertex.

* All light sources illuminating the object are sufficiently far from the surface
so that N - L and the attenuation function are constarit over the surface.

. The viewing position is sufficiently far from the surface so that V - R is con-
stant over the surface.

Even if all of these conditions are not true, we can still reasonably approximate
surface-lighting effects using small polygon facets with flat shading and calculate
the intensity for each facet, say, at the center of the polygon.

Gouraud Shading

This intensity-interpolation scheme, developed by Gouraud and generally re-
ferred to as Gouraud shading, renders a polygon surface by linearly interpolat-
ing intensity values across the surface. Intensity values for each polygon are
matched with the values of adjacent polygons along the common edges, thus
eliminating the intensity discontinuities that can occur in flat shading.

Each polygon surface is rendered with Gouraud shading by performing the
following calculations:

* Determine the average unit normal vector at each polygon vertex.
¢ Apply an illumination model to each vertex to calculate the vertex intensity.
e Linearly interpolate the vertex intensities over the surface of the polygon.

At each polygon vertex, we obtain a normal vector by averaging the surface
normals of all polygons sharing that vertex, as illustrated in Fig. 14-44. Thus, for
any vertex position V, we obtain the unit vertex normal with the calculation

2N
k=1
Ny="7,"
2N
k=1
Once we have the vertex normals, we can determine the intensity at the vertices
from a lighting model.

Figure 1445 demonstrates the next step: interpolating intensities along the
polygon edges. For each scan line, the intensity at the intersection of the scan line
with a polygon edge is linearly interpolated from the intensities at the edge end-
points. For the example in Fig. 1445, the polygon edge with endpoint vertices at
positions 1 and 2 is intersected by the scan line at point 4. A fast method for ob-

taining the intensity at point 4 is to interpolate between intensities I, and I, using
only the vertical displacement of the scan line:

(14-37)
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Figure 14-45
For Gouraud shading, the intensity
at point 4 is linearly interpolated
P scan line from the intensities at vertices 1 and
"\F 2. The intensity at point 5 is linearly
interpolated from intensities at
2 vertices 2 and 3. An interior point p
is then assigned an intensity value
that is linearly interpolated from
x  intensities at positions 4 and 5.

1

=L BT Hy (14-38)
i~ Wh—¥

Similarly, intensity at the right intersection of this scan line {(point 5) is interpo-
lated from intensity values at vertices 2 and 3. Once these bounding intensities
are established for a scan line, an interior point (such as point p in Fig. 14-45) is
interpolated from the bounding intensities at points 4 and 5 as

X5 — X, Xy — X
L= 2—2PL + 22—, (14-39)
X5 T Xy X5~ Xy

Incremental calculations are used to obtain successive edge intensity values
between scan lines and to obtain successive intensities along a scan line. As
shown in Fig. 14-46, if the intensity at edge position (x, ) is interpolated as

I= y__ﬂll + ulz (14-40)
=¥ N

then we can obtain the intensity along this edge for the next scan line, y — 1, as

L-1I
r=1+ ;—_—y‘— 14-41)
1 2

i
v _: TN / scan lines

Figure 14-46
Incremental interpolation of intensity values along a
polygon edge for successive scan lines.
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Figure 14-47
A polygon mesh approximation of an object (a) is rendered with flat
shading (b) and with Gouraud shading {(c).

Similar calculations are used to obtain intensities at successive horizontal pixel
positions along each scan line.

When surfaces are to be rendered in color, the intensity of each color com-
ponent is calculated at the vertices. Gouraud shading can be combined with a
hidden-surface algorithm to fill in the visible polygons along each scan line. An
example of an object shaded with the Gouraud method appears in Fig. 14-47.

Gouraud shading remeves the intensity discontinuities associated with the
constant-shading model, but it has some other deficiencies. Highlights on the
surface are sometimes displayed with anomalous shapes, and the linear intensity
interpolation can cause bright or dark intensity streaks, called Mach bands, to ap-
pear on the surface. These effects can be reduced by dividing the surface into a
greater number of polygon faces or by using other methods, such as Phong shad-
ing, that require more calculations.

Phong Shading

A more accurate method for rendering a polygon surface is to interpolate normal
vectors, and then apply the illumination model to each surface point. This
method, developed by Phong Bui Tuong, is called Phong shading, or normal-
vector interpolation shading. It displays more realistic highlights on a surface
and greatly reduces the Mach-band effect.

A polygon surface is rendered using Phong shading by carrying out the fol-
lowing steps:

* Determine the average unit normal vector at each polygon vertex.
* Linearly interpolate the vertex normals over the surface of the polygon.

* Apply an illumination model along each scan line to calculate projected
pixel intensities for the surface points.

Interpolation of surface normals along a polygon edge between two vertices
is illustrated in Fig. 14-48. The normal vector N for the scan-line intersection
point along the edge between vertices 1 and 2 can be obtained by vertically inter-
polating between edge endpoint normals:
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N, N,
N

scan line
Figure 14-48
Interpolation of surface normals

N, along a polygon edge
N=L8N s L3y, (14-42)
Ni= Y2 W=

Incremental methods are used to evaluate normals between scan lines and along
each individual scan line. At each pixel position along a scan line, the illumina-
tion model is applied to determine the surface intensity at that point.

Intensity calculations using an approximated normal vector at each point
along the scan line produce more accurate results than the direct interpolation of
intensities, as in Gouraud shading. The trade-off, however, is that Phong shading
requires considerably more calculations.

Fast Phong Shading

Surface rendering with Phong shading can be speeded up by using approxima-
tions in the illumination-model calculations of normal vectors. Fast Phong shad-
ing approximates the intensity calculations using a Taylor-series expansion and
triangular surface patches.

Since Phong shading interpolates normal vectors from vertex normals, we
can express the surface normal N at any point (x, y) over a triangle as

N=Ax+By+C (14-43)
where vectors A, B, and C are determined from the three vertex equations:
N, =Ax,+ By, + C, k=1,273 (14-44)

with (xy, y,) denoting a vertex position.
Omitting the reflectivity and attenuation parameters, we can write the cal-
culation for light-source diffuse reflection from a surface point (x, y) as

L-N
Las(x, y) = TLTIN]
_ L-(Ax+By+0Q)
IL] TAx + By + C| (14-45)

_(L-Ax+(L-By+L-C
L] [Ax + By + C|




We can rewrite this expression in the form

ax + by + ¢
X+ exy + fy + gx + hy + D2

la(x, y) = ¥ (14-46)

where parameters such as , b, ¢, and d are used to represent the various dot
products. For example,

L-A
a= ﬁ (14-47)

Finally, we can express the denominator in Eq. 14-46 as a Taylor-series expansion
and retain terms up to second degree in x and y. This yields

Lo, y) = Tex2 + Texy + Toy? + Toax + Tiy + Ty (14-48)

where each T, is a function of parameters 4, b, ¢, and so forth.

Using forward differences, we can evaluate Eg. 14-48 with only two addi-
tions for each pixel position (x, y) once the initial forward-difference parameters
have been evaluated. Although fast Phong shading reduces the Phong-shading
calculations, it still takes approximately twice as long to render a surface with
fast Phong shading as it does with Gouraud shading. Normal Phong shading
using forward differences takes about six to seven times longer than Gouraud
shading.

Fast Phong shading for diffuse reflection can be extended to include specu-
lar reflections. Calculations similar to those for diffuse reflections are used to
evaluate specular terms such as (N - H)™s in the basic illumination model. In ad-
dition, we can generalize the algorithm to include polygons other than triangles
and finite viewing positions.

14-6
RAY-TRACING METHODS

In Section 10-15, we introduced the notion of ray casting, where a ray is sent out
from each pixel position to locate surface intersections for object modeling using
constructive solid geometry methods. We also discussed the use of ray casting as
a method for determining visible surfaces in a scene (Section 13-10). Ray tracing
is an extension of this basic idea. Instead of merely looking for the visible surface
for each pixel, we continue to bounce the ray around the scene, as illustrated in
Fig. 14-49, collecting intensity contributions. This provides a simple and power-
ful rendering technique for obtaining global reflection and transmission effects.
The basic ray-tracing algorithm also provides for visible-surface detection,
shadow effects, transparency, and multiple light-source illumination Many ex-
tensions to the basic algorithm have been developed to produce photorealistic
displays. Ray-traced displays can be highly realistic, particularly for shiny ob-
jects, but they require considerable computation time to generate. An example of
the global reflection and transmission effects possible with ray tracing is shown
in Fig. 14-50.
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pixel positions
on projection
plane

projection
reference
point

Figure 14-49
Tracing a ray from the projection reference point through a pixel
position with multiple reflections and transmissions.

Basic Ray-Tracing Algorithm

We first set up a coordinate system with the pixel positions designated in the vy
plane. The scene description is given in this reference frame (Fig. 14-51). From the
center of projection, we then determine a ray path that passes through the center
of each screen-pixel position. Illlumination effects accumulated along this ray
path are then assigned to the pixel. This rendering approach is based on the prin-
ciples of geometric optics. Light rays from the surfaces in a scene emanate in all
directions, and some will pass through the pixel positions in the projection plane.
Since there are an infinite number of ray paths, we determine the contributions to
a particular pixel by tracing a light path backward from the pixel to the scene. We
first consider the basic ray-tracing algorithm with one ray per pixel, which is
equivalent to viewing the scene through a pinhole camera.

b »

! ‘ 2 e Figure 14-30

' ’ = L A ray-traced scene, showing global
‘ g‘ ‘ 'y e reflection and transmission

illumination effects from object

;:;m _‘ § surfaces. (Courtesy of Evans &

528 Sutherland.)
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Figure 14-51
Ray-tracing coordinate-reference frame.

For each pixel ray, we test each surface in the scene to determine if it is in-
tersected by the ray. If a surface is intersected, we calculate the distance from the
pixel to the surtace-intersection point. The smallest calculated intersection dis-
tance identifies the visible surface for that pixel. We then reflect the ray off the
visible surface along a specular path (angle of refiection equals angle of inci-
dence). If the surface is transparent, we also send a rav through the surface in the
refraction direction. Reflection and refraction ravs are referred to as secondary
ras.

This procedure is repeated for each secondary ray: Objects are tested for in-
tersection, and the nearest surface along a secondary ray path is used to recur-
sively produce the next generation of reflection and refraction paths. As the rays
from a pixel ricochet through the scene, each successively intersected surface is
added to a binary ray-tracing tree, as shown in Fig. 14-52. We use left branches in
the tree to represent reflection paths, and right branches represent transmission
paths. Maximum depth of the ray-tracing trees can be set as a user option, or it
can be determined by the amount of storage available. A path in the tree is then
terminated if it reaches the preset maximum or if the ray strikes a light source.

The intensity assigned to a pixel is then determined by accumulating the in-
tensity contributions, starting at the bottom (terminal nodes) of its ray-tracing
tree. Surface intensity from each node in the tree is attenuated by the distance
from the “parent” surface (next node up the tree} and added to the intensity of
the parent surface. Pixel intensity is then the sum of the attenuated intensities at
the root node of the ray tree. If no surfaces are intersccted by a pixel rav, the ray-
tracing tree is empty and the pixel is assigned the intensity value of the back-
ground. If a pixel ray intersects a nonreflecting light source. the pixel can be as-
signed the intensity of the source, although light sources are usuallv placed
bevand the path of the initial rays.

Figure 14-53 shows a surface intersected by a ray and the unit vectors
needed for the reflected light-intensity calculations. Unit vector u is in the direc-
tion of the ray path. N is the unit surface normal, R is the unit reflection vector, L
is the unit vector pointing to the light source, and H 15 the unit vector halfway be-
tween V (opposite to u) and L. The path along L is reterred to as the shadow ray.
It any object intersects the shadow ray between the surface and the point light
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projection
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(a)

{b)

Figure 14-52

(a) Reflection and refraction ray paths through a scene for a
screen pixel. (b) Binary ray-tracing tree for the paths shown
in (a).

source, the surface is in shadow with respect to that source. Ambient light at the
surface is calculated as k,l,; diffuse reflection due to the source is proportional to
k4N - L); and the specular-reflection component is proportional to k(H - N). As
discussed in Section 14-2, the specular-reflection direction for the secondary ray
path R depends on the surface normal and the incoming ray direction:

R=u- Qu-N)N {14-49)

For a transparent surface, we also need to obtain intensity contributions
from light transmitted through the material. We can locate the source of this con-
tribution by tracing a secondary ray along the transmission direction T, as shown
in Fig. 14-54. The unit transmission vector can be obtained from vectors u and N
as

T = Eu ~ (cos 6, — %cas 6N (14-3()

i r
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incoming
ray

Figure 14-53
Unit vectors at the surface of an object intersected by an
incoming ray along direction u.

refracted
ray psath

incoming
ray

Figure 14-54
Refracted ray path T through a transparent material.

Parameters n; and n, are the indices of refraction in the incident material and the
refracting material, respectively. Angle of refraction 6, can be calculated from

Snell’s law:
2
cos 8, = [1- (—:’L> (1 — cos* 6) (14-51)

Ray-Surface Intersection Calculations

A ray can be described with an initial position Py and unit direction vector u, as
illustrated in Fig. 14-55. The coordinates of any point P along the ray at a distance
s from Py is computed from the ray equation:

P="P;+su (14-52)

Initailly, P, can be set to the position of the pixel on the projection plane, or it
could be chosen to be the projection reference point. Unit vector u is initially ob-
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y
ray pat
u
/ Py
Figure 14-55
Describing a ray with an initial-
x position vector Py and unit direction
z vector u.

tained from the position of the pixel through which the ray passes and the projec-
tion reference point:

P, P
u= ]—l—*’—"—l (14-53)
Po = Porp

At each intersected surface, vectors Py and u are updated for the secondary rays
at the ray-surface intersection point. For the secondary rays, reflection direction
for u is R and the transmission direction is T. To locate surface intersections, we
simultaneously solve the ray equation and the surface equation for the individ-
ual objects in the scene.

The simplest objects to ray trace are spheres. If we have a sphere of radius r
and center position P, (Fig. 14-56), then any point P on the surface must satisfy
the sphere equation:

[P-P.|*-r2=0 (45D

Substituting the ray equation 14-52, we have

[P,-su-P|" -+ =0 {14-55)

3

If we let AP = P, ~ P, and expand the dot product, we obtain the quadratic equa-
tion

Figire 14250
A Tav intersecting a sphere with radius r centered on
position P .
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Figure 14-57

A “sphereflake” rendered with ray
tracing using 7381 spheres and 3
light sources. (Courtesy of Eric Haines,

3DJEYE Inc.)
2 —2u-AP)s + (AP~ ) =0 (14-56)
whose solution is
s=u-AP+V(u-AP)? — |AP|%+ r2 (14-57)

If the discriminant is negative, the ray does not intersect the sphere. Otherwise,
the surface-intersection coordinates are obtained from the ray equation 14-52
using the smaller of the two values from Eq. 14-57.

For small spheres that are far from the initial ray position, Eq. 14-57 is sus-
ceptible to roundoff errors. That is, if

<< |aP|?

we could lose the r term in the precision error of |AP|% We can avoid this for
most cases by rearranging the calculation for distance s as

s=u-AP*Vr2 — |AP — (u- APjul? (14-58)

Figure 14-57 shows a snowflake pattern of shiny spheres rendered with ray trac-
ing to display global surface reflections.

Polyhedra require more processing than spheres to locate surface intersec-
tions. For that reason, it is often better to do an initial intersection test on a
bounding volume. For example, Fig. 14-58 shows a polyhedron bounded by a
sphere. If a ray does not intersect the sphere, we do not need to do any further
testing on the polyhedron. But if the ray does intersect the sphere, we first locate
“front” faces with the test

u:N<0 (14-59)

where N is a surface normal. For each face of the polyhedron that satisifies in-
equality 14-59, we solve the plane equation

N:-P=-D (14-60)

for surface position P that also satisfies the ray equation 14-52. Here, N = (4, B, C)
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Figure 14-58
Polyhedron enclosed by a bounding sphere.

and D is the fourth plane parameter. Position P is both on the plane and on the
ray path if

N:(P;+su)= -D (14-01)
And the distance from the initial ray position to the plane is

D+N-P,
N-u

s = (14-62}

This gives us a position on the infinite plane that contains the polygon face, but
this position may not be inside the polygon boundaries (Fig. 14-59). So we need
to perform an “inside-outside” test (Chapter 3) to determine whether the ray in-
tersected this face of the polyhedron. We perform this test for each face satisfying
inequality 14-59. The smallest distance s to an inside point identifies the inter-
sected face of the polyhedron. If no intersection positions from Eq. 14-62 are in-
side points, the ray does not intersect the object.

Similar procedures are used to calculate ray-surface intersection positions
for other objects, such as quadric or spline surfaces. We combine the ray equation
with the surface definition and solve for parameter s. In many cases, numerical
root-finding methods and incremental calculations are used to locate intersection

plane-
intersection
point

/

polygon

Figure J4-58
Ray intersection with the plane of a polvgon.



Figure 14-60
A ray-traced scene showing global reflection of surface-texture
patterns. (Courtesy of Sun Microsystems.)

points over a surface. Figure 14-60 shows a ray-traced scene containing multiple
objects and texture patterns.

Reducing Object-Intersection Calculations

Ray-surface intersection calculations can account for as much as 95 percent of the
processing time in a ray tracer. For a scene with many objects, most of the pro-
cessing time for each ray is spent checking objects that are not visible along the
ray path. Therefore, several methods have been developed for reducing the pro-
cessing time spent on these intersection calculations.

One method for reducing the intersection calculations is to enclose groups
of adjacent objects within a bounding volume, such as a sphere or a box (Fig. 14-
61). We can then test for ray intersections with the bounding volume. If the ray
does not intersect the bounding object, we can eliminate the intersection tests
with the enclosed surfaces. This approach can be extended to include a hierarchy
of bounding volumes. That is, we enclose several bounding volumes within a
larger volume and carry out the intersection tests hierarchically. First, we test the
outer bounding volume; then, if necessary, we test the smaller inner bounding
volumes; and so on.

Space-Subdivision Methods

Another way to reduce intersection calculations, is to use space-subdivision meth-
ods. We can enclose a scene within a cube, then we successively subdivide the
cube until each subregion (cell) contains no more than a preset maximum num-
ber of surfaces. For example, we could require that each cell contain no more
than one surface. If parallel- and vector-processing capabilities are available, the
maximum number of surfaces per cell can be determined by the size of the vector

_— bounding
sphere

Figure 14-61
A group of objects enclosed within
a bounding sphere.

(S
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pixet /

ray

Figure 14-62
Ray intersection with a cube
enclosing all objects in a scene.

registers and the number of processors. Space subdivision of the cube can be
stored in an octree or in a binary-partition tree. In addition, we can perform a
uniform subdivision by dividing the cube into eight equal-size octants at each step,
or we can perform an adaptive subdivision and subdivide only those regions of the
cube containing objects.

We then trace rays through the individual cells of the cube, performing in-
tersection tests only within those cells containing surfaces. The first object surface
intersected by a ray is the visible surface for that ray. There is a trade-off between
the cell size and the number of surfaces per cell. If we set the maximum number
of surfaces per cell too low, cell size can become so small that much of the sav-
ings in reduced intersection tests goes into cell-traversal processing.

Figure 14-62 illustrates the intersection of a pixel ray with the front face of
the cube enclosing a scene. Once we calculate the intersection point on the front
face of the cube, we determine the initial cell intersection by checking the inter-
section coordinates against the cell boundary positions. We then need to process
the ray through the cells by determining the entry and exit points (Fig. 14-63) for
each cell traversed by the ray until we intersect an object surface or exit the cube
enclosing the scene.

Given a ray direction u and a ray entry position P, for a cell, the potential
exit faces are those for which

u- N >0 (14-63)

If the normal vectors for the cell faces in Fig. 14-63 are aligned with the coordi-
nates axes, then

(%£1,0,0)
N,=4(0,%1,0
0,0, £1)

NV

R Figure 14-63

Ray traversal through a subregion
(cell) of a cube enclosing a scene.




and we only need to check the sign of each component of u to determine the
three candidate exit planes. The exit position on each candidate plane is obtained
from the ray equation:

Pous = Pin + 51 (14-64)

where s, is the distance along the ray from Py, to P, Substituting the ray equa-
tion into the plane equation for each cell face:

Ni-Poux = =D (14-65)
we can solve for the ray distance to each candidate exit face as

-D-N,-P,
= — %k w 14-
Si Nk'u (14-66)

and then select smallest s,. This calculation can be simplified if the normal vec-
tors N, are aligned with the coordinate axes. For example, if a candidate normal
vector is (1, 0, 0), then for that plane we have

X — X
5 = —=2 (14-67)
uX

where u = (u,, u,, 1), and x, is the value of the right boundary face for the cell.

Various modifications can be made to the cell-traversal procedures to speed
up the processing. One possibility is to take a trial exit plane k as the one perpen-
dicular to the direction of the largest component of u. The sector on the trial
plane (Fig. 14-64) containing P, ; determines the true exit plane. If the intersec-
tion point P, i is in sector 0, the trial plane is the true exit plane and we are
done. If the intersection point is sector 1, the true exit plane is the top plane and
we simply need to calculate the exit point on the top boundary of the cell. Simi-
larly, sector 3 identifies the bottom plane as the true exit plane; and sectors 4 and
2 identify the true exit plane as the left and right cell planes, respectively. When
the trial exit point falls in sector 5, 6, 7, or 8, we need to carry out two additional
intersection calculations to identify the true exit plane. Implementation of these
methods on parallel vector machines provides further improvements in perfor-
mance.

The scene in Fig. 14-65 was ray traced using space-subdivision methods.
Without space subdivision, the ray-tracing calculations took 10 times longer.
Eliminating the polygons also speeded up the processing. For a scene containing
2048 spheres and no polygbns, the same algorithm executed 46 times faster than
the basic ray tracer.

Figure 14-66 illustrates another ray-traced scene using spatial subdivision
and parallel-processing methods. This image of Rodin’s Thinker was ray traced
with over 1.5 million rays in 24 seconds.

The scene shown in Fig. 14-67 was rendered with a light-buffer technique, a
form of spatial partitioning. Here, a cube is centered on each point light source,
and each side of the cube is partitioned with a grid of squares. A sorted list of ob-
jects that are visible to the light through each square is then maintained by the
ray tracer to speed up processing of shadow rays. To determine surface-illumina-
tion effects, the square for each shadow ray is computed and the shadow ray is
then pracessed against the list of objects for that square.

Section 14-6
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Figure 14-64

Sectors of the trial exit plane.

537



Chapter 14

538

Rendering Methods

Intersection tests in ray-tracing programs can also be reduced with direc-
Hlumination Madels and Surface-  tional subdivision procedures, by considering sectors that contain a bundle of
rays. Within each sector, we can sort surfaces in depth order, as in Fig. 14-68.
Each ray then only needs to test objects within the sector that contains that ray.

Antialiased Ray Tracing

Two basic techniques for antialiasing in ray-tracing algorithms are supersampling
and adaptive sampling. Sampling in ray tracing is an extension of the sampling
methods we discussed in Chapter 4. In supersampling and adaptive sampling,

-

Q_!‘!‘l mE RS

A parallel ray-traced scene containing 37 spheres and
720 polygon surfaces. The ray-tracing algorithm
used 9 rays per pixel and a tree depth of 5. Spatial
subdivision methods processed the scene 10 times
faster than the basic ray-tracing algorithm on an
Alliant FX/8. (Courtesy of Lee-Hian Quek, Information
Technology Institute, Republic of Singapore.)

Figure 14-66

This ray-traced scene took 24
seconds to render on a Kendall
Square Research KSR1 parallel
computer with 32 processors.
Rodin’s Thinker was modeled with
3036 primitives. Two light sources
and one primary ray per pixel
were used to obtain the global
illumination effects from the

1,675,776 rays processed. (Courtesy of
M. ]. Keates and R. ]. Hubbold, Department
of Compuler Science, University of
Manchester.)



(a) (b}

Figure 14-67 :

A room scene illuminated with 5 light sources (a) was rendered using
the ray-tracing light-buffer technique to process shadow rays. A closeup
(b) of part of the room shown in (a) illustrates the global illumination
effects. The room is modeled with 1298 polygons, 4 spheres, 76
cylinders, and 35 quadrics. Rendering time was 246 minutes on a VAX

11/780, compared to 602 minutes without using light buffers. (Courtesy of
Eric Haines and Donald P. Greenberg, Program of Computer Graphics, Cornell
University.}

Sector fora
Bundle of Rays

Figure 14-68

Directional subdivision of space. All rays in this sector
only need to test the surfaces within the sector in depth
order.

the pixel is treated as a finite square area instead of a single point. Supersampling
uses multiple, evenly spaced rays (samples) over each pixel area. Adaptive sam-
pling uses unevenly spaced rays in some regions of the pixel area. For example,
more rays can be used near object edges to obtain a better estimate of the pixel in-
tensities. Another method for sampling is to randomly distribute the rays over
the pixel area. We discuss this approach in the next section. When multiple rays
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Figure 14-70

Subdividing a pixel into nine
subpixels with one ray at
each subpixel corner.
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Figure 14-69
Supersampling with four rays per pixel, one at each pixel corner.

per pixel are used, the intensities of the pixel rays are averaged to produce the
overall pixel intensity.

Figure 14-69 illustrates a simple supersampling procedure. Here, one ray is
generated through each corner of the pixel. If the intensities for the four rays are
not approximately equal, or if some small object lies between the four rays, we
divide the pixel area into subpixels and repeat the process. As an example, the
pixel in Fig. 14-70 is divided into nine subpixels using 16 rays, one at each sub-
pixel corner. Adaptive sampling is then used to further subdivide those subpixels
that do not have nearly equal-intensity rays or that subtend some small object.
This subdivision process can be continued until each subpixel has approximately
equal-intensity rays or an upper bound, say, 256, has been reached for the num-
ber of rays per pixel.

The cover picture for this book was rendered with adaptive-subdivision ray
tracing, using Rayshade version 3 on a Macintosh II. An extended light source
was used to provide realistic soft shadows. Nearly 26 million primary rays were
generated, with 33.5 million shadow rays and 67.3 million reflection rays. Wood
grain and marble surface patterns were generated using solid texturing methods
with a noise function. Total rendering time with the extended light source was
213 hours. Each image of the stereo pair shown in Fig. 2-20 was generated in 45
hours using a point light source.

Instead of passing rays through pixel corners, we can generate rays through
subpixel centers, as in Fig. 14-71. With this approach, we can weight the rays ac-
cording to one of the sampling schemes discussed in Chapter 4.

Another method for antialiasing displayed scenes is to treat a pixel ray as a
cone, as shown in Fig. 14-72. Only one ray is generated per pixel, but the ray now
has a finite cross section. To determine the percent of pixel-area coverage with
objects, we calculate the intersection of the pixel cone with the object surface. For
a sphere, this requires finding the intersection of two circles. For a polyhedron,
we must find the intersection of a circle with a polygon.

Distributed Ray Tracing

This is a stochastic sampling method that randomly distributes rays according to
the various parameters in an illumination model. lllumination parameters in-
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Projection N Figure 14-72
Reference Point I A pixel ray cone.

clude pixel area, reflection and refraction directions, camera lens area, and time.
Aliasing effects are thus replaced with low-level “noise”, which improves picture
quality and allows more accurate modeling of surface gloss and translucency, fi-
nite camera apertures, finite light sources, and motion-blur displays of moving
objects. Distributed ray tracing (also referred to as distribution ray tracing) essen-
tially provides a Monte Carlo evaluation of the multiple integrals that accur in an
accurate description of surface lighting.

Pixel sampling is accomplished by randomly distributing a number of rays
over the pixel surface. Choosing ray positions completely at random, however,
can result in the rays clustering together in a small region of the pixel area, and
leaving other parts of the pixel unsampled. A better approximation of the light
distribution over a pixel area is obtained by using a technique called jittering on a
regular subpixel grid. This is usually done by initially dividing the pixel area (a
unit square) into the 16 subareas shown in Fig. 14-73 and generating a random
jitter position in each subarea. The random ray positions are obtained by jittering
the center coordinates of each subarea by small amounts, §, and §,, where both §,
and §, are assigned values in the interval (- 0.5, 0.5). We then choose the ray po-
sition in a cell with center coordinates (x, y} as the jitter position (x + §,, y + 8,).

Integer codes 1 through 16 are randomly assigned to each of the 16 rays,
and a table lookup is used to obtain values for the other parameters (reflection
angle, time, etc.), as explained in the following discussion. Each subpixel ray is
then processed through the scene to determine the intensity contribution for that
ray. The 16 ray intensities are then averaged to produce the overall pixel inten-
sity. If the subpixel intensities vary too much, the pixel is further subdivided.

To model camera-lens effects, we set a lens of assigned focal length f in front
of the projection plane and distribute the subpixel rays over the lens area. As-
suming we have 16 rays per pixel, we can subdivide the lens area into 16 zones.
Each ray is then sent to the zone corresponding to its assigned code. The ray po-
sition within the zone is set to a jittered position from the zone center. Then the
ray is projected into the scene from the jittered zone position through the focal
point of the lens. We locate the focal point for a ray at a distance f from the Iens
along the line from the center of the subpixel through the lens center, as shown in
Fig. 14-74. Objects near the focal plane are projected as sharp images. Objects in
front or in back of the focal plane are blurred. To obtain better displays of out-of-
focus objects, we increase the number of subpixel rays.

Ray reflections at surface-intersection points are distributed about the spec-
ular reflection direction R according to the assigned ray codes (Fig. 14-75). The
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Figure 14-73

Pixel sampling using 16
subpixel areas and a jittered
ray position from the center
coordinates for each subarea.
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Figure 14-75

Distributing subpixel rays
about the reflection direction
R and the transmission
direction T.
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Lens
Poaition

Figure 14-74
Ray Distributing subpixel rays over a
Direction  camera lens of focal length f.

maximum spread about R is divided into 16 angular zones, and each ray is re-
flected in a jittered position from the zone center corresponding to its integer
code. We can use the Phong model, cos™¢, to determine the maximum reflection
spread. If the material is transparent, refracted rays are distributed about the
transmission direction T in a similar manner.

Extended light sources are handled by distributing a number of shadow
rays over the area of the light source, as demonstrated in Fig. 14-76. The light
source is divided into zones, and shadow rays are assigned jitter directions to the
various zones. Additionally, zones can be weighted according to the intensity of
the light source within that zone and the size of the projected zone area onto the
object surface. More shadow rays are then sent to zones with higher weights. If
some shadow rays are blocked by opaque objects between the surface and the
light source, a penumbra is generated at that surface point. Figure 14-77 illus-
trates the regions for the umbra and penumbra on a surface partially shielded
from a light source.

We create motion blur by distributing rays over time. A total frame time
and the frame-time subdivisions are' determined according to the motion dynam-
ics required for the scene. Time intervals are labeled with integer codes, and each
ray is assigned to a jittered time within the interval corresponding to the ray
code. Objects are then moved to their positions at that time, and the ray is traced

/ Extended
( ) Light
~
L e /} ‘\ Source

Figure 14-76
Distributing shadow rays over a
finite-sized light source.

Lo

o

Earth

Penumbra

Figure 14-77

Umbra and penumbsra regions created by a solar eclipse on the surface
of the earth.



Figure 14-78

A scene, entitled 1984, rendered with distributed ray tracing,
illustrating motion-blur and penumbra effects. (Courtesy of Pixar. © 1984
Pixar. All rights reserved.)

through the scene. Additional rays are used for highly blurred objects. To reduce
calculations, we can use bounding boxes or spheres for initial ray-intersection
tests. That is, we move the bounding object according to the motion requirements
and test for intersection. If the ray does not intersect the bounding object, we do
not need to process the individual surfaces within the bourding volume. Figure
14-78 shows a scene displayed with motion blur. This image was rendered using
distributed ray tracing with 4096 by 3550 pixels and 16 rays per pixel. In addition
to the motion-blurred reflections, the shadows are displayed with penumbra
areas resulting from the extended light sources around the room that are illumi-
nating the pool table.

Additional examples of objects rendered with distributed ray-tracing meth-
ods are given in Figs. 1479 and 14-80. Figure 14-81 illustrates focusing, refrac-
tion, and antialiasing effects with distributed ray tracing.

Figure 14-79

A brushed aluminum wheel
showing reflectance and shadow
effects generated with distributed

ray-tracing techniques. (Courtesy of
Stephen H. Westin, Program of Computer
Graphics, Cornell University.)
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Figure 14-80

A room scene rendered with
distributed ray-tracing methods.
(Courtesy of Jokn Snyder, Jed Lengyel,
Devendra Kalra, and Al Barr, Computer
Graphics Lab, California Institute of
Technology. Copyright © 1988 Caltech.)

Figure 14-81

A scene showing the focusing,
antialiasing, and illumination
effects possible with a combination
of ray-tracing and radiosity
methods. Realistic physical models
of light illumination were used to
generate the refraction effects,
including the caustic in the shadow

of the glass. (Courtesy of Pmr Slurley
Department of Comput
University.)

14-7

RADIOSITY LIGHTING MODEL

We can accurately model diffuse reflections from a surface by considering the ra-
diant energy transfers between surfaces, subject to conservation of energy laws.
This method for describing diffuse reflections is generally referred to as the ra-
diosity model.

Basic Radiosity Model

In this method, we need to consider the radiant-energy interactions between all
surfaces in a scene. We do this by determining the differential amount of radiant
energy dB leaving each surface point in the scene and summing the energy con-
tributions over all surfaces to obtain the amount of energy transfer between sur-
faces. With reference to Fig. 14-82, dB is the visible radiant energy emanating
from the surface point in the direction given by angles § and ¢ within differential
solid angle dw per unit time per unit surface area. Thus, dB has umts of joules/(sec-
ond - meter?), or wattsmeter?.

Intensity I, or luminance, of the diffuse radiation in direction (6, ¢) is the ra-
diant energy per unit time per unit projected area per unit solid angle with units
watts/(meter? - steradians):

dB

[= ——~
dw cos ¢ (14-68)



Figure 14-82

Visible radiant energy emitted from
a surface point in direction (6, ¢)
within solid angle dw.

Direction of

Energy Transfer gg"" 14-83

or a unit surface element, the
projected area perpendicular to the
direction of energy transfer is equal
to cos¢.

Assuming the surface is an ideal diffuse reflector, we can set intensity I to a con-
stant for all viewing directions. Thus, dB/dw is proportional to the projected sur-
face area (Fig. 14-83). To obtain the total rate of energy radiation from the surface
point, we need to sum the radiation for all directions. That is, we want the to-
tal energy emanating from a hemisphere centered on the surface point, as in
Fig. 14-84:

B=| dB (14-69)
hemi

For a perfect diffuse reflector, I is a constant, so we can express radiant energy B
as

B= Ijhmcos¢ dw (14-70)
Also, the differential element of solid angle dw can be expressed as (Appendix A)

dw = ‘i—f = sinpdd do

Figure 14-84

Total radiant energy from a surface
point is the sum of the
contributions in all directions over a
hemisphere centered on the surface
point.

Radiosity Lighting Model
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Surface k

Figure 14-85
An enclosure of surfaces for the radiosity model.

so that
27 12
B=1 | cos¢singdsdo (14-71)
10 [+]
=Ir

A model for the light reflections from the various surfaces is formed by set-
ting up an “enclosure” of surfaces (Fig. 14-85). Each surface in the enclosure is ei-
ther a reflector, an emitter (light source), or a combination reflector-emitter. We
designate radiosity parameter B, as the total rate of energy leaving surface k per
unit area. Incident-energy parameter H; is the sum of the energy contributions

from all surfaces in the enclosure arriving at surface k per unit time per unit area.
That is,

H = Z B,Fx (14-72)
i

where parameter Fj is the form factor for surfaces f and k. Form factor F is the
fractional amount of radiant energy from surface j that reaches surface k.

For a scene with n surfaces in the enclosure, the radiant energy from surface
kis described with the radiosity equation:

By = Ex + pelds

. (14-73)
= Ex + o) BFj
j=1

If surface k is not a light source, E, = 0. Otherwise, E; is the rate of energy emitted
from surface k per unit area (watts/meter?). Parameter p, is the reflectivity factor
for surface k (percent of incident light that is reflected in all directions). This re-
flectivity factor is related to the diffuse reflection coefficient used in empirical il-
lumination models. Plane and convex surfaces cannot “see” themselves, so that
no self-incidence takes place and the form factor F,, for these surfaces is 0.



To obtain the illumination effects over the various surfaces in the enclosure, Section 14-7

we need to solve the simultaneous radiosity equations for the n surfaces given Radiosity Lighting Model
the array values for E;, gy, and F,-,. That is, we must solve

(1 - pFWB,~p) BFy=E., k=123,...,n (14-74)
Jrk
or
1- P1F11 -pFi R -pFy, B, E,
“efa 1mpbe o ek LB LB
ﬁpnrnl _pZFrIZ T 1_pnFn1- Brr En

We then convert to intensity values I, by dividing the radiosity values B, by .
For color scenes, we can calculate the individual RGB components of the radios-
ity (Byg, By, Bip) from the color components of g, and E,.

Before we can solve Eq. 14-74, we need to determine the values for form
factors Fj. We do this by considering the energy transfer from surface j to surface
k (Fig. 14-86). The rate of radiant energy falling on a small surface element dA,
from area element dA; is

dB, dA; = (I; cos ¢y dw)dA, (14-76)

But solid angle dw can be written in terms of the projection of area element dA,
perpendicular to the direction dB;:

dA
)

_ cosdndA,

dw = 25 (14-77)
r

r

Surface k

Surface j

Figure 14-86
Rate of energy transfer dB, from a surface element with area dA; to
surface element dA,.
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s0 we can express Eq. 14-76 as
Iicos ¢; cos &, dA, dA,
rt (14-78)

dB; dA, =

The form factor between the two surfaces is the percent of energy emanating
from area dA, that is incident on dA;:

energy incident on dA,

F =
dALdAy total energy leaVing dA,
(14-79)
[ cosdy cosddd da, 1
- - B,dA
Also B, = 71, so that
, cos d), cos oy dA,
dA,inp = ——_m—z— (14-80)

The fraction of emitted energy from area dA, incident on the entire surface k is
then

cos ¢, cosdy
F = _.__—dA 3
A A fsurf, i . (14-81)

where A, is the area of surface k. We now can define the form factor between the
two surfaces as the area average of the previous expression:

1 cos ¢, cos
Fo=of [ TR % g4, dA,
A’ surf, / surf 2 (14-82)

Integrals 14-82 are evaluated using numerical integration techniques and stipu-
lating the following conditions:

* ';,’__,F,,( = 1, for all k (conservation of energy)
* AF; = AF, (uniform light reflection)
¢ F, =0, forall j (assuming only plane or convex surface patches)

Each surface in the scene can be subdivided into many small polygons, and
the smaller the polygon areas, the more realistic the display appears. We can
speed up the calculation of the form factors by using a hemicube to approximate
the hemisphere. This replaces the spherical surface with a set of linear (plane)
surfaces. Once the form factors are evaluated, we can solve the simultaneous lin-



ear equations 14-74 using, say, Gaussian elimination or LU decomposition meth-
ods (Appendix A). Alternatively, we can start with approximate values for the B,
and solve the set of linear equations iteratively using the Gauss—Seidel method.
At each iteration, we calculate an estimate of the radiosity for surface patch k
using the previously obtained radiosity values in the radiosity equation:

B, = E + ;> BiF;

j=1

We can then display the scene at each step, and an improved surface rendering is
viewed at each iteration until there is little change in the calculated radiosity val-
ues.

Progressive Refinement Radiosity Method

Although the radiosity method produces highly realistic surface rendings, there
are tremendous storage requirements, and considerable processing time is
needed to calculate the form factors. Using progressive refinement, we can restruc-
ture the iterative radiosity algorithm to speed up the calculations and reduce
storage requirements at each iteration.

From the radiosity equation, the radiosity contribution between two surface
patches is calculated as

B, dueto B, = pBiF, (14-83)
Reciprocally,
B, due to By = pBiFy, for all (14-84)
which we can rewrite as
B,dueto B, = p,BkF,kél, tor all j (14-85)
Ay

This relationship is the basis for the progressive refinement approach to the ra-
diosity calculations. Using a single surface patch k, we can calculate all form fac-
tors F, and “shoot” light from that patch to all other surfaces in the environment.
Thus, we need only to compute and store one hemicube and the associated form
factors at a time. We then discard these values and choose another patch for the
next iteration. At each step, we display the approximation to the rendering of the
scene.

Initially, we set B, = E, for all surface patches. We then select the patch with
the highest radiosity value, which will be the brightest light emitter, and calcu-
late the next approximation to the radiosity for all other patches. This process is
repeated at each step, so that light sources are chosen first in order of highest ra-
diant energy, and then other patches are selected based on the amount of light re-
ceived from the light sources. The steps in a simple progressive refinement ap-
proach are given in the following algorithm.

Section 14-7
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Figure 14-87
Nave of Chartres Cathedral
rendered with a progressive-
refinement radiosity model by John
Wallace and John Lin, using the
Hewlett-Packard Starbase Radiosity
and Ray Tracing software. Radiosity
form factors were computed with

. ray-tracing methods. (Courtesy of Eric
Haines, 3D/EYE Inc. © 1889, Hewlett-
Packard Co.)

for each patch k
/* set up hemicube, calculate form factors F*/

for each patchj
Arad := pB/F A/ Au
AB,:= AB, + Arad;
B, := B, + Arad:

AB, = 0;

At each step, the surface patch with the highest value for AB A, is selected as the
shooting patch, since radiosity is a measure of radiant energy per unit area. And
we choose the initial values as AB, = B, = E; for all surface patches. This progres-
sive refinement algorithm approximates the actual propagation of light through a
scene.

Displaying the rendered surfaces at each step produces a sequence of views
that proceeds from a dark scene to a fully illuminated one. After the first step, the
only surfaces illuminated are the light sources and those nonemitting patches
that are visible to the chosen emitter. To produce more useful initial views of the
scene, we can set an ambient light level so that all patches have some illumina-
tion. At each stage of the iteration, we then reduce the ambient light according to
the amount of radiant energy shot into the scene.

Figure 14-87 shows a scene rendered with the progressive-refinement ra-
diosity model. Radiosity renderings of scenes with various lighting conditions
are illustrated in Figs. 14-88 to 14-90. Ray-tracing methods are often combined
with the radiosity model to produce highly realistic diffuse and specular surface
shadings, as in Fig. 14-81.
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Figure 14-88

Image of a constructivist museum
rendered with a progressive-
refinement radiosity method.
(Courtesy of Shenchang Eric Chen, Stuart 1.
Feldman, and Julie Dorséy, Program of
Computer Graphics, Corell Untversify.

© 1988, Cornell Liniversity, Program of
Computer Graphics.)

Figure 14-89

Simulation of the stair tower of
the Engineering Theory Center
Building at Cornell University
rendered with a progressive-
refinement radiosity method.
(Courtesy of Keith Howie and Ben
Trumbore, Program of Computer Graphics,
Cornell University. © 1990, Cornell
University, Program of Computer
Graphics.}

{a) (b)

Figure 14-90

Simulation of two lighting schemes for the Parisian garret from the Metropolitan Opera’s
production of La Boherne: (a) day view and (b) night view. (Courtesy of Julie Dorsey and Mark
Shepard, Program of Computer Graphics, Cornell University. © 1991, Cornell University, Program of
Computer Graphics.)
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A spherical enclosing universe
containing the environment map

14-8

ENVIRONMENT MAPPING

An alternate procedure tor modeling global reflections is to define an array of in-
tensity values that describes the environment around a single object or a set of
objects. Instead of intercbject rav tracing or radiosity calculations to pick up the
global specular and ditruse illumination effects, we simply map the environment
array onto an object in 1clationship to the viewing direction. This procedure is re-
ferred to as environment mapping, also called reflection mapping although
transparency effects cou.d’also be modeled with the environment map. Environ-
ment mapping 18 sometimes reterred to as the “pocr person’s ray-tracing”
method, since it is a fast approximation of the more accurate global-illumination
rendering techniques we discussed in the previous two sections.

The environment map is detined over the surface of an enclosing universc.
Information in the emvironment map includes intensity values for light sources,
the skv, and other backy -ound objects. Figure 14-91 shows the enclosing universe
as a sphere, but a cube or a cylinder is often used as the enclosing universe.

To render the surtace of an object, we project pixel areas onto the surface
and then reflect the projected pixel area onto the environment map to pick up the
surface-shading attributes for each pixel. If the object is zransparent, we can also
refract the projected pixel area to the environment map. The environment-map-
ping process for reflection of a projected pixel area is illustrated in Fig. 14-92.
Pixel intensity is determined by averaging the intensitv values within the inter-
sected region of the environment map.

>

Pixel Projection
onto Environment
Map

™~ Surface

Figure 14-92

Projecting a pixel area to a surface,
Piciection then reflecting the area to the

Retere:ce Point environment map.



14-9
ADDING SURFACE DETAIL

So far we have discussed rendering techniques for displaying smooth surfaces,
typically polygons or splines. However, most objects do not have smooth, even
surfaces. We need surface texture to model accurately such objects as brick walls,
gravel roads, and shag carpets. In addition, some surfaces contain patterns that
must be taken into account in the rendering procedures. The surface of a vase
could contain a painted design; a water glass might have the family crest en-
graved into the surface; a tennis court contains markings for the alleys, service
areas, and base line; and a four-lane highway has dividing lines and other mark-
ings, such as oil spills and tire skids. Figure 14-93 illustrates objects displayed
with various surface detail.

Modeling Surface Detail with Polygons

A simple method for adding surface detail is to model structure and patterns
with polygon facets. For large-scale detail, polygon modeling can give good re-
sults. Some examples of such large-scale detail are squares on a checkerboard, di-
viding lines on a highway, tile patterns on a linoleum floor, floral designs in a
smooth low-pile rug, panels in a door, and lettering on the side of a panel truck.
Also, we could model an irregular surface with small, randomly oriented poly-
gon facets, provided the facets were not too small.

(c)
Figure 14-93
Scenes illustrating com Ex'.lter graphics generation of surface detail.
() © 1992 Deborah R. Fowler, Przemyslaw Prusinkiewsicz, and Johannes Battjes;
(b) © 1992 Deborah R. Fowler, Hans Meinhardt, and Przemyslaw Prusinkiewicz,
University of Calgary; (c) and (d) Courtesy of SOFTIMAGE, Inc.)
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Texture Object image
Space: Space: Space:
(s, t} Array {u, v) Surface ix, y) Pixel
Coordinates Parameters Coordinates
[ [ S—
Texture-Surface Viewing and
Transtormation Projection

Transformation

Figure 14-94
Coordinate reference systems for texture space, object space, and image
space.

Surface-pattern polygons are generally overlaid on a larger surface polygon
and are processed with the parent surface. Only the parent polygon is processed
by the visible-surface algorithms, but the illumination parameters for the surface-
detail polygons take precedence over the parent polygon. When intricate or fine
surface detail is to be modeled, polygon methods are not practical. For example,
it would be difficult to accurately model the surface structure of a raisin with
polygon facets.

Texture Mapping

A common method for adding surface detail is to map texture patterns onto the
surfaces of objects. The texture pattern may either be defined in a rectangular
array or as a procedure that modifies surface intensity values. This approach is
referred to as texture mapping or pattern mapping.

Usually, the texture pattern is defined with a rectangular grid of intensity
values in a texture space referenced with (s, #) coordinate values, as shown in Fig.
14-94. Surface positions 1n the scene are referenced with uv object-space coordi-
nates, and pixel positions on the projection plane are referenced in xy Cartesian
coordinates. Texture mapping can be accomplished in one of two ways. Either we
can map the texture pattern to object surfaces, then to the projection plane; or we
can map pixel areas onto object surfaces, then to texture space. Mapping a texture
pattern to pixel coordinates is sometimes called texture scanning, while the map-
ping from pixel coordinates to texture space is referred to as pixel-order scanning
Or inverse scanning or image-order scanning.

To simplify calculations, the mapping from texture space to object space is
often specified with parametric linear functions

u=fn=as+hbt+c,
(1-1-86)
v=fh=as+bt+c,

The object-to-image space mapping is accomplished with the concatenation of
the viewing and projection transformations. A disadvantage of mapping from
texture space to pixel space is thal a selected texture patch usually does not
match up with the pixel boundaries, thus requiring calculation of the fractional
area of pixel coverage. Therefore, mapping from pixel space to texture space (Fig.
14-99) is the most commonly used texture-mapping method. This avoids pixel-
subdivision calculations. and allows antialiasing (filtering) procedures to be eas-



Projected
Pixel Area
/

Surface Area

Rectangular
Pattern Array

Figure 14-95
Texture mapping by projecting pixel areas to texture space.

Extended

/ Pixel Area

Figure 14-96
Extended area for a pixel that
includes centers of adjacent pixels.

ily applied. An effective antialiasing procedure is to project a slightly larger pixel
area that includes the centers of neighboring pixels, as shown in Fig. 14-96, and
applying a pyramid function to weight the intensity values in the texture pattern.
But the mapping from image space to texture space does require calculation of
the inverse viewing-projection transformation My} and the inverse texture-map
transformation M7!. In the following example, we illustrate this approach by
mapping a defined pattern onto a cylindrical surface.

Example 14-1 Texture Mapping

To illustrate the steps in texture mapping, we consider the transfer of the pattern
shown in Fig. 14-97 to a cylindrical surface. The surface parameters are

u=0, v=2
with

0=6=<w/2 0=z=<1
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Figure 14-97
Mapping a texture pattern defined on a unit square (a) to a cylindrical
surface (b).

And the parametric representation for the surface in the Cartesian reference
frame is

t = FCOS U,

r

Y = rsinu,

We can map the arrav pattern to the surface with the following linear transforma-
tion, which maps the pattern origin to the lower left corner of the surface.

u=sm/2, =1t

Next, we select a viewing position and perform the inverse viewing transforma-
tion from pixel coordinates to the Cartesian reference for the cylindrical surface.
Cartesian coordinates are then mapped to the surface parameters with the trans-
formation

w = tan’ (y/x), v=1z
and projected pixel positians are mapped to texture space with the inverse trans-
formation

s =2u/m, t=v

Intensity values in the pattern arrav covered bv each projected pixel area are then
averaged to obtain the pixel intensity.

Procedural Texturing Mothods

Another method for adding surface texture is to use procedural definitions of the
color variations that are to be applied 1o the objects in a scene. This approach
avoids the transformation calculations involved in transferring two-dimensional
texture patterns to object surfaces.

When values are assigned throughout a region of three-dimensional space,
the object color variatiors are referred to as solid textures. Values from fexture
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Figure 14-98

A scene with surface characteristics
generated using solid-texture
methods. (Courtesy of Peter Shirley,

Computer Science Department, Indiana
University.)

space are transferred to object surfaces using procedural methods, since it is usu-
ally impossible to store texture values for all points throughout a region of space.
Other procedural methods can be used to set up texture values over two-dimen-
sional surfaces. Solid texturing allows cross-sectional views of three-dimensional
objects, such as bricks, to be rendered with the same texturing as the outside sur-
faces.

As examples of procedural texturing, wood grains or marble patterns can
be created using harmonic functions (sine curves) defined in three-dimensional
space. Random variations in the wood or marble texturing can be attained by su-
perimposing a noise function on the harmonic variations. Figure 14-98 shows a
scene displayed using solid textures to obtain wood-grain and other surface pat-
terns. The scene in Fig. 14-99 was rendered using procedural descriptions of ma-
terials such as stone masonry, polished gold, and banana leaves.

Figure 14-99

A scene rendered with VG Shaders
and modeled with RenderMan
using polygonal facets for the gem
faces, quadric surfaces, and bicubic
patches. In addition to surface
texturing, procedural methods were
used to create the steamy jungle
atmosphere and the forest canopy
da]iyled lighting effect. (Courtesy of
the VALIS Group. Reprinted from Graphics
Gems lil, edited by David Kirk. Copyright
© 1992, Academic Press, Inc.)
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Bump Mapping

Although texture mapping can be used to add fine surface detail, it is not a good
method for modeling the surface roughness that appears on objects such as or-
anges, strawberries, and raisins. The illumination detail in the texture pattern
usually does not correspond to the illumination direction in the scene. A better
method for creating surface bumpiness is to apply a perturbation function to the
surface normal and then use the perturbed normal in the illumination-model cal-
culations. This techniques is called bump mapping.

If P(u, v) represents a position on a parametric surface, we can obtain the
surface normal at that point with the calculation

N=P, xXP. (14-87)
where P, and P, are the partial derivatives of P with respect to parameters u and
v. To obtain a perturbed normal, we modify the surface-position vector by
adding a small perturbation function, called a bump function:

P'(u, v) = P(u, v) +-b(u, v)n (14-88)

This adds bumps to the surface in the direction of the unit surface normal n =
N/ 1 N l . The perturbed surface normal is then obtained as

N =P/ x P’ (14-89

We calculate the partial derivative with respect to u of the perturbed position
vector as

i 9
P, = a“(P+bn)

=P, +bn +bn,

(14-90)

Assuming the bump function b is small, we can neglect the last term and write:

P =P, b,n (14-97)
Similarly,

P'~P, +bn (14-92)
And the perturbed surface normal is

N =P, <P, +biP, Xn)+b(nxP)+bb(nXn)
But n X n =0, so that
N’ =N+ b(P, X n) + b,(n X P.) (14-93)

The final step is to normalize N’ for use in the illumination-model calculations.
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Figure 14-100
Surface roughness characteristics rendered with bump mapping.

(Courtesy of (a) Peter Shirley, Computer Science Department, Indiana University and
(b) SOFTIMAGE, Inc.)

Figure 14-101

. The stained-glass knight from the
motion picture Young Sherlock
Holmes. A combination of bump
mapping, environment mapping,
and texture mapping was used to
render the armor surface. (Courtesy of

Industrial Light & Magic. Copyright ©
1985 Paramount Pictures]Amblin.}

There are several ways in which we can specify the bump function b(u, v).
We can actually define an analytic expression, but bump values are usually ob-
tained with table lookups. With a bump table, values for b can be obtained
quickly with linear interpolation and incremental calculations. Partial derivatives
b, and b, are approximated with finite differences. The bump table can be set up
with random patterns, regular grid patterns, or character shapes. Random pat-
terns are useful for modeling irregular surfaces, such as a raisin, while a repeat-
ing pattern could be used to model the surface of an orange, for example. To an-
tialiase, we subdivide pixel areas and average the computed subpixel intensities.

Figure 14-100 shows examples of surfaces rendered with bump mapping.
An example of combined surface-rendering methods is given in Fig. 14-101. The
armor for the stained-glass knight in the film Young Sherlock Holmes was rendered
with a combination of bump mapping, environment mapping, and texture map-
ping. An environment map of the surroundings was combined with a bump map
to produce background illumination reflections and surface roughness. Then ad-
ditional color and surface illumination, bumps, spots of dirt, and stains for the
seams and rivets were added to produce the overall effect shown in Fig. 14-101.

Frame Mapping

This technique is an extension of bump mapping. In frame mapping, we perturb
both the surface normal N and a local coordinate system (Fig. 14-102) attached to
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Figure 14-102
A local woordinate system at a
surface pomnt.

N The local coordinates are defined with a surface-tangent vector T and a binar-
mal vector B = T = N

Frame mapping 1~ used to model anisotropic surfaces. We orient T along
the “grain” ot the surtace and apply directional perturbations, w addition to
bump perturbations i the direction of N In this way, we can model wood-grain
patterns, cross-thread patterns m cloth, and streaks i marble or similar materi-
als. Both bump and directional perturbations can be obtained with table lookups.

SUMMARY

In general, an object 15 :lluminated with radiant energy from light-emitting
sources and from the raflective surfaces of other objects in the scene. Light
sources can be modeled s point sources or as distributed {extended) sources. Ob-
jects can be either opaque or transparent. And lighting eflects can be described in
terms of diffuse and specular components for both reflections and refractions.

An empirical, point light-source, illumination model can be used to de-
scribe diffuse reflections with Lambert’s cosine law and to describe specular re-
flections with the Phonyg model. General background tambient) lighting can be
modeled with a tixed mtensity level and a coefticient ot reflection for each sur-
face. In this basic madel, we can approximate transparency effects by combining
surface intensities using a transparency coefficient. Accurate geometric modeling
of light paths through transparent materials is obtained by calculating refraction
angles using Snell's law Color 1s mcorporated into the model by assigning a
triple of RGB values to intensities and surface reflection coefficients. We can also
extend the basic modtl to incorporate distributed light sources, studio lighting
effects, and intensity attenuation.

Intensity values calculated with an illununation model must be mapped to
the intensity levels available on the display system in use. A logarithmic intensity
scale is used to pravide u set of intensity levels with equal perceived brightness.
In addition, gamma correction is applied to intensily values to correct for the
nonlinearity of diaplay Jdevices. With bilevel monitors, we can use halftone pat-
terns and dithering techniiques to simulate a range of intensity values. Halftone
approximations can alsc be used to increase the number of intensity options on
systems that are capable of displaying more than two irtensities per pixel. Or-
dered-dither, error-diffusion, and dot-diffusion methods are used to simulate a
range of intensities when the number of points to be plotted in a scene is equal to
the number of pixels on the display device.

Surface rendering can be accomplished by applving a basic illumination
madel to the objects in a scenc. We apply an illumination model using either con-



stant-intensity shading, Gouraud shading, or Phong shading. Constant shading
is accurate for polyhedrons or for curved-surface polygon meshes when the References
viewing and light-source positions are far from the objects in a scene. Gouraud

shading approximates light reflections from curved surfaces by calculating inten-

sity values at polygon vertices and interpolating these intensity values across the

polygon facets. A more accurate, but slower, surface-rendering procedure is

Phong shading, which interpolates the average normal vectors for polygon ver-

tices over the polygon facets. Then, surface intensities are calculated using the in-

terpolated normal vectors. Fast Phong shading can be used to speed up the calcu-

lations using Taylor series approximations.

Ray tracing provides an accurate n.ethod for obtaining global, specular re-
flection and transmission effects. Pixel rays are traced through a scene, bouncing
from object to object while accumulating intensity contributions. A ray-tracing
tree is constructed for each pixel, and intensity values are combined from the ter-
minal nodes of the tree back up to the root. Object-intersection calculations in ray
tracing can be reduced with space-subdivision methods that test for ray-object in-
tersections only within subregions of the total space. Distributed (or distribution)
ray tracing traces multiple rays per pixel and distributes the rays randomly over
the various ray parameters, such as direction and time. This provides an accurate
method for modeling surface gloss and translucency, finite camera apertures, dis-
tributed light sources, shadow effects, and motion blur.

Radiosity methods provide accurate modeling of diffuse-reflection effects
by calculating radiant energy transfer between the various surface patches in a
scene. Progressive refinement is used to speed up the radiosity calculations by
considering energy transfer from one surface patch at a time. Highly photorealis-
tic scenes are generated using a combination of ray tracing and radiosity.

A fast method for approximating global illumination effects is environment
mapping. An environment array is used to store background intensity informa-
tion for a scene. This array is then mapped to the objects in a scene based on the
specified viewing direction.

Surface detail can be added to objects using polygon facets, texture map-
ping, bump mapping, or frame mapping. Small polygon facets can be overlaid
on latger surfaces to provide various kinds of designs. Alternatively, texture pat-
terns can be defined in a two-dimensional array and mapped to object surfaces.
Bump mapping is a means for modeling surface irregularities by applying a
bump function to perturb surface normals. Frame mapping is an extension of
bump mapping that allows for horizontal surface variations, as well as vertical
variations.
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EXERCISES

14.1

14-2.

14.4.

14-6.
14-7.

14-8.

14-9.

14-10.

14-11

1412

14.13.

14-14.

14-15

14-16

14-17

14-18

14-19.

14-20

Write a routine to imglement Eq. 14-4 of the basic illumination mode! using a single
point light source and constant surface shading for the faces of a specified polyhe-
dron. The object description is to be given as a set of polvgon tables, including sur-
face normals for each of the polygon faces. Additional input parameters include the
ambient intensity, light-source intensity, and the surlace reflection coefficients. All
coordinate information can be specified directly in the viewing reference frame.
Modify the routine :n Exercise 14-1 to render a polygon surface mesh using Gouraud
shading

-3. Modify the routine in Exercise 14-1 to render a polygon surtace mesh using Phong

shading

Write a routine to implement Eq. 14-9 of the basic illumination model using a single
point light source and Gouraud surface shading for the ta:es of a specified polygon
mesh. The object description is o be given as a set of polygon tables, including sur-
face normals for each of the polygon faces. Additional input includes values for the
ambient intensity, light-source intensity, surface reflection (oefficients, and the spec-
ular-reflection parameter. All coordinate iniormation can be specified directlv in the
viewing reference frame.

. Moadify the routine 1n xercise 14-4 to render the potygon curfaces using Phong shad-

ing.

Madify the routine in Exercise 14-4 1o include a linear intensity attenuation function.
Modify the routine in Exercise @ 4-4 to renger the polygon surfaces using Phong shad-
ing and a linear intensity attenuation function.

Madify the routine in Ixercise 14-4 to impiement Eq. 14-13 with any specified num-
ber of polyhedrons and light sources in the scene,

Modify the routine in “xercise 14-4 to implement kg. 1414 with any specified num-
ber of polyhedrons and light sources in the scene.

Modify the routine in Exercise 14-4 to implement Eq. 1415 with any specified num-
ber of polyhedrons and light sources in the scene.

. Modify the routine 1 Exercise 14-4 to implement Egs. 14-15 and 14-19 with anv

specified number of i13ht sources and polyhedrons (e ther opaque or transparent: m
the scene.

Discuss the differences vou might expect to see in the appearance of speculas retlec

tions modeled with (N - Hi™ compared to specular reflectic ns modeled with (V- R

Verify that 2a = ¢ in Fig 14 18 when all vactors are coplanar, but that in general, 2¢
* .

Discuss how the di‘t:rent visible-surface detection methoss can be combined with
an intensity model for isplaying a set of polvhedrons with opaque ~urfaces

Discuss how the var ous visthle-surface detection methods can be mod et 1o
process transparent objects. Are there arv visible-surface detection metheds i
cannot Fandle transpaient surfaces?

Set up an algorithm, hised on one of the visible-surtace detection methods, that wi)
identify shadow areas n a scene jlluminated by a distant point source

How many intensity levels can be displayed with halftone approximations using n bv
n pixel grids where eich pixel can be displayed with m chfterent mtensities?

How many different color combinations can be generated s halttone approxima-
tions on a two-level RGB system with a 3 by 3 pixel prd-

Write a routine to disp.av a given set of sur'ace-intensiy variations using halftone ap

proximations with 3 bv 3 pixel grids and two intensity levels (0 and 11 per pixel

Write a "outine 100 generate ordered-dither matrices usine *“he recurrence relation in
£q. 14-34



14-21.

14-22.

14-23.

14-24.

14-25.

14-26.

14-27.

14-28.

14-29.
14-30.
14-31.
14-32.

14-33.

Write a procedure to display a given array of intensity values using the ordered-
dither method.

Write a procedure to implement the error-diffusion algorithm for a given m by n
array of intensity values.

Write a program to implement the basic ray-tracing algorithm for a scene containing
a single sphere hovering over a checkerboard ground square. The scene is to be illu-
minated with a single point light source at the viewing position.

Write a program to implement the basic ray-tracing algorithm for a scene containing
any specified arrangement of spheres and polygon surfaces illuminated by a given
set of point light sources.

Write a program to implement the basic ray-tracing algorithm using space-subdivi-
sion methods for any specified arrangement of spheres and polygon surfaces illumi-
nated by a given set of point light sources.

Write a program to implement the following features of distributed ray tracing: pixel
sampling with 16 jittered rays per pixel, distributed reflection diréctions, distributed
refraction directions, and extended light sources.

Set up an algorithm for modeling the motion blur of a moving object using distrib-
uted ray tracing.

Implement the basic radiosity algorithm for rendering the inside surfaces of a cube
when one inside face of the cube is a light source.

Devise an algorithm for implementing the progressive refinement radiosity method.
Write a routine to transform an environment map to the surface of a sphere.

Write a program to implement texture mapping tor (a) spherical surfaces and (b)
polyhedrons.

Given a spherical surface, write a bump-mapping procedure to generate the bumpy
surface of an orange.

Write a bump-mapping routine to produce surface-normal variations for any speci-
fied bump function.

Exercises
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ur discussions of color up to this point have concentrated on the mecha-
nisms for generating color displays with combinations of red, green, and
blue light. This model is helpful in understanding how color is represented on a
video monitor, but several other color models are useful as well in graphics ap-
plications. Some models are used to describe color output on printers and plot-
ters, and other models provide a more intuitive color-parameter interface for the

user.

A color model is a method for explaining the properties or behavior of
color within some particular context. No single color model can explain all as-
pects of color, so we make use of different models to help describe the different
perceived characteristics of color.

15-1

PROPERTIES OF LIGHT

What we perceive as “light”, or different colors, is a narrow frequency band
within the electromagnetic spectrum. A few of the other frequency bands within
this spectrum are called radio waves, microwaves, infrared waves, and X-rays.
Figure 15-1 shows the approximate frequency ranges for some of the electromag-

netic bands.

Each frequency value within the visible band corresponds to a distinct
color. At the low-frequency end is a red color (4.3 X 10" hertz), and the highest
frequency we can see is a violet color (7.5 X 10" hertz). Spectral colors range
from the reds through orange and yellow at the low-frequency end to greens,
blues, and violet at the high end.

2
® ® -
2 Q 2 2
2 k-] H ° °
2 & 8 S 2 3 e
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< ra 2 £ > 2 x
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T T S S S Frequercy
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Figure 15-1

Electromagnetic spectrum.
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Figure 15-2
Time variations for one electric frequency component of a plane-
polarized electromagnetic wave.

Since light is an electromagnetic wave, we can describe the various colors in
terms of either the frequency f or the wavelength A of the wave. In Fig. 15-2, we
illustrate the oscillations present in a monochromatic electromagnetic wave, po-
larized so that the electric oscillations are in one plane. The wavelength and fre-
quency of the monochromatic wave are inversely proportional to each other, with
the proportionality constant as the speed of light c:

c= A (15-1)

Frequency is constant for all materials, but the speed of light and the wavelength
are material-dependent. In a vacuum, ¢ = 3 X 10" cm/sec. Light wavelengths are
very small, so length units for designating spectral colors are usually either
angstroms (1A =108 cm) or nanometers (I nm = 10~7 cm). An equivalent term
for nanometer is millimicron. Light at the red end of the spectrum has a wave-
length of approximately 700 nanometers (nm), and the wavelength of the violet
light at the other end of the spectrum is about 400 nm. Since wavelength units are
somewhat more convenient to deal with than frequency units, spectral colors are
typically specified in terms of wavelength.

A light source such as the sun or a light bulb emits all frequencies within
the visible range to produce white light. When white light is incident upon an ob-
ject, some frequencies are reflected and some are absorbed by the object. The
combination of frequencies present in the reflected light determines what we per-
ceive as the color of the object. If low frequencies are predominant in the reflected
light, the object is described as red. In this case, we say the perceived light has a
dominant frequency (or dominant wavelength) at the red end of the spectrum.
The dominant frequency is also called the hue, or simply the color, of the light.

Other properties besides frequency are needed to describe the various char-
acteristics of light. When we view a source of light, our eyes respond to the color
(or dominant frequency) and two other basic sensations. One of these we call the
brightness, which is the perceived intensity of the light. Intensity is the radiant
energy emitted per unit time, per unit solid angle, and per unit projected area of
the source. Radiant energy is related to the luminance of the source. The second
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| Red tolet Energy distribution of a white-light
source.

perceived characteristic is the purity, or saturation, of the light. Purity describes
how washed out or how “pure” the color of the light appears. Pastels and pale
colors are described as less pure. These three characteristics, dominant frequency,
brightness, and purity, are commonly used to describe the different properties we
perceive in a source of light. The term chromaticity is used to refer collectively to
the two properties describing color characteristics: purity and dominant fre-
quency.

Energy emitted by a white-light source has a distribution over the visible
frequencies as shown in Fig. 15-3. Each frequency component within the range
from red to violet contributes more or less equally to the total energy, and the
color of the source is described as white. When a dominant frequency is present,
the energy distribution for the source takes a form such as that in Fig. 15-4. We
would now describe the light as having the color corresponding to the dominant
frequency. The energy density of the dominant light component is labeled as Ep
in this figure, and the contributions from the other frequencies produce white
light of energy density E,. We can calculate the brightness of the source as the
area under the curve, which gives the total energy density emitted. Purity de-
pends on the difference between E, and Ey,. The larger the energy Ep of the dom-
inant frequency compared to the white-light component Ey, the more pure the
light. We have a purity of 100 percent when E; = 0 and a purity of 0 percent
when Ey, = Ep,.

When we view light that has been formed by a combination of two or more
sources, we see a resultant light with characteristics determined by the original
sources. Two different-color light sources with suitably chosen intensities can be
used to produce a range of other colors. If the two color sources combine to pro-
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Dominant © Energy distribution of a light source
Frequency with a dominant frequency near the
L red end of the frequency range.
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Color-Matching
RGB Amounts

Alnm)

Figure 15-5
Amounts of RGB primaries needed to display
spectral colors.

duce white light, they are referred to as complementary colors. Examples of
complementary color pairs are red and cyan, green and magenta, and blue and
yellow. With a judicious choice of two or more starting colors, we can form a
wide range of other colors. Typically, color models that are used to describe com-
binations of light in terms of dominant frequency (hue) use three colors to obtain
a reasonably wide range of colors, called the color gamut for that model. The two
or three colors used to preduce other colors in such a color model are referred to
as primary colors.

No finite set of real primary colors can be combined to produce all possible
visible colors. Nevertheless, three primaries are sufficient for most purposes, and
colors not in the color gamut for a specified set of primaries can still be described
by extended methods. If a certain color cannot be produced by combining the
three primaries, we can mix one or two of the primaries with that color to obtain
a match with the combination of remaining primaries. In this extended sense, a
set of primary colors can be considered to describe all colors. Figure 15-5 shows
the amounts of red, green, and blue needed to produce any spectral color. The
curves plotted in Fig. 15-5, called color-matching functions, were obtained by aver-
aging the judgments of a large number of observers. Colors in the vicinity of 500
nm can only be matched by “subtracting” an amount of red light from a combi-
nation of blue and green lights. This means that a color around 500 nm is de-
scribed only by combining that color with an amount of red light to produce the
blue-green combination specified in the diagram. Thus, an RGB color monitor
cannot display colors in the neighborhood of 500 nm.

15-2

STANDARD PRIMARIES AND THE CHROMATICITY
DIAGRAM

Since no finite set of color light sources can be combined to display all possible
colors, three standard primaries were defined in 1931 by the International Com-
mission on lllumination, referred to as the CIE (Commission Internationale de
I'Ectairage). The three standard primaries are imaginarv colors. They are defined
mathematically with positive color-matching tunctions (Fig. 15-6) that specity the
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Amounts of CIE primaries needed
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to display spectral colors.

amount of each primary needed to describe any spectral color. This provides an
international standard definition for all colors, and the CIE primaries eliminate
negative-value color matching and other problems associated with selecting a set
of real primaries.

XYZ Color Model

The set of CIE primaries is generally referred to as the XYZ, or (X, Y, Z), color
model, where X, Y, and Z represent vectors in a three-dimensional, additive color
space. Any color C, is then expressed as

C,=XX+YY+ZZ (15-2)

where X, Y, and Z designate the amounts of the standard primaries needed to
match C,.

In discussing color properties, it is convenient to normalize the amounts in
Eq. 15-2 against luminance (X + Y + Z). Normalized amounts are thus calculated
as

X Y Z

=—2 = S 15-3)
T Xxvy+z YT Xrvy+z fTXiv+z (

with x +y + z = 1. Thus, any color can be represented with just the x and y
amounts. Since we have normalized against luminance, parameters x and y are
called the chromaticity values because they depend only on hue and purity. Also, if
we specify colors only with x and y values, we cannot obtain the amounts X, Y,
and Z. Therefore, a complete description of a color is typically given with the
three values x, y, and Y. The remaining CIE amounts are then calculated as

X= ;Y, z="1y (15-4)

where z =1 — x - y. Using chromaticity coordinates (x, y), we can represent all
colors on a two-dimensional diagram.

CIE Chromaticity Diagram

When we plot the normalized amounts x and y for colors in the visible spectrum,
we obtain the tongue-shaped curve shown in Fig. 15-7. This curve is called the
CIE chromaticity diagram. Points along the curve are the “pure” colors in the

Section 15-2

Standard Primaries and the
Chromaticity Diagram
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electromagnetic spectrum, labeled according to wavelength in nanometers from
the red end to the violet end of the spectrum. The line joining the red and violet
spectral points, called the purple line, is not part of the spectrum. Interior points
represent all possible visible color combinations. Point C in the diagram corre-
sponds to the white-light position. Actually, this point is plotted for a white-light
source known as illuminant C, which is used as a standard approximation for
“average” daylight.

Luminance values are not available in the chromaticity diagram because of
normalization. Colors with different luminance but the same chromaticity map to
the same point. The chromaticity diagram is useful for the following:

* Comparing color gamuts for different sets of primaries.
* Identifying complementary colors.
¢ Determining dominant wavelength and purity of a given color.

Color gamuts are represented on the chromaticity diagram as straight line
segments or as polygons. All colors along the line joining points C; and C; in Fig.
15-8 can be obtained by mixing appropriate amounts of the colors Cy and C,. If a
greater proportion of C, is used, the resultant color is closer to C; than to C,. The
color gamut for three points, such as C;3, C,, and Cs in Fig. 15-8, is a triangle with
vertices at the three color positions. Three primaries can only generate colors in-
side or on the bounding edges of the triangle. Thus, the chromaticity diagram
helps us understand why no set of three primaries can be additively combined to
generate all colors, since no triangle within the diagram can encompass all calors.
Color gamuts for video monitors and hard-copy devices are conveniently com-
pared on the chromaticity diagram.

Since the color gamut for two points is a straight line, complementary col-
ors must be represented on the chromaticity diagram as two points situated on
opposite sides of C and connected with a straight line. When we mix proper
amounts of the two colors C, and G, in Fig. 15-9, we can obtain white light.

We can also use the interpretation of color gamut for two primaries to de-
termine the dominant wavelength of a color. For color point C, in Fig, 1510, we
can draw a straight line from C through C; to intersect the spectral curve at point
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system of primaries.

C,. Color C; can then be represented as a combination of white light C and the
spectral color C,. Thus, the dominant wavelength of C, is C;. This method for de-
termining dominant wavelength will not work for color points that are between
C and the purple line. Drawing a line from C through point G, in Fig. 15-10 takes
us to point C, on the purple line, which is not in the visible spectrum. Point C; is
referred to as a nonspectral color, and its dominant wavelength is taken as the
compliment of C, that lies on the spectral curve (point C,,). Nonspectral colors
are in the purple-magenta range and have spectral distributions with subtractive
dominant wavelengths. They are generated by subtracting the spectral dominant
wavelength (such as C,,) from white light.

For any color point, such as C; in Fig. 15-10, we determine the purity as the
relative distance of C; from C along the straight line joining C to C;. If d,; denotes
the distance from C to C, and d,, is the distance from C to C,, we can calculate pu-
rity as the ratio d,,/d,;. Color C, in this figure is about 25 percent pure, since it is
situated at about one-fourth the total distance from C to C,. At position C,, the
color point would be 100 percent pure. ’

15-3
INTUITIVE COLOR CONCEPTS

An artist creates a color painting by mixing color pigments with white and black
pigments to form the various shades, tints, and tones in the scene. Starting with
the pigment for a “pure color” (or “pure hue”), the artist adds a black pigment to
produce different shades of that color. The more black pigment, the darker the
shade. Similarly, different tints of the color are obtained by adding a white pig-
ment to the original color, making it lighter as more white is added. Tones of the
color are produced by adding both black and white pigments.

To many, these color concepts are more intuitive than describing a color as a
set of three numbers that give the relative proportions of the primary colors. It is
generally much easier to think of making a color lighter by adding white and
making a color darker by adding black. Therefore. graphics packages providing
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Color Models and Color  vides an intuitive color interface for the user, and others describe the color com-
Applications  ponents for the output devices.

15-4
RGB COLOR MODEL

Based on the tristimulus theory of vision, our eyes perceive color through the stim-
ulation of three visual pigments in the cones of the retina. These visual pigments
have a peak sensitivity at wavelengths of about 630 nm (red), 530 nm (green),
and 450 nm (blue). By comparing intensities in a light source, we perceive the
color of the light. This theory of vision is the basis for displaying color output on
a video monitor using the three color primaries, red, green, and blue, referred to
as the RGB color model.

We can represent this model with the unit cube defined on R, G, and B axes,
as shown in Fig. 15-11. The origin represents black, and the vertex with coordi-
nates (1; 1, 1) is white. Vertices of the cube on the axes represent the primary col-
ors, and the remaining vertices represent the complementary color for each of the
primary colors.

As with the XYZ color system, the RGB color scheme is an additive model.
Intensities of the primary colors are added to produce other colors. Each color
point within the bounds of the cube can be represented as the triple (R, G, B),
where values for R, G, and B are assigned in the range from 0 to 1. Thus, a color
C, is expressed in RGB components as

C,=RR + GG + BB (15-5)

The magenta vertex is obtained by adding red and blue to produce the triple (1,
0, 1), and white at (1, 1, 1) is the sum of the red, green, and blue vertices. Shades
of gray are represented along the main diagonal of the cube from the origin
(black) to the white vertex. Each point along, this diagonal has an equal contribu-
tion from each primary color, so that a gray shade halfway between black and

Grayscale Green

0,1.0) Yeitow
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Red R
P (1.0,0) I -
y Figure 15-11
Biue Magenta The RGB color model, defining
(0,0, 1} (1.0, 1} . .
colors with an qddltlve process
] within the unit cube.
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{a) b}

Figure 15-12 _
Two views of the RGB color cube: {a) along the grayscale
diagonal from white to black and (b) along the grayscale diagonal

from black to white.
TABLE 15-1
RGB (X, Y) CHROMACITY COORDINATES
NTSC Standard CIE Model Approx. Color Monitor Values
R (0.670,0.330) (0.735, 0.265) (0.628, 0.346)
G (0.210, 0.710) (0.274,0.717) (0.268, 0.588)
B 0.140, 0.080) 0.167, 0.009) (0.150, 0.070)

Ll 1 |
0 0102 03 04 0.5 06 07 , Figure 15-13

RGB color gamut.

white is represented as (0.5, 0.5, 0.5). The color graduations along the front and
top planes of the RGB cube are illustrated in Fig. 15-12.

Chromaticity coordinates for an NTSC standard RGB phosphor are listed in
Table 15-1. Also listed are the RGB chromaticity coordinates for the CIE RGB
color model and the approximate values used for phosphors in color monitors.
Figure 15-13 shows the color gamut for the NTSC standard RGB primaries.
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15-5
YIQ COLOR MODEL

Whereas an RGB monitor requires separate signals for the red, green, and blue
components of an image, a television monitor uses a single composite signal. The
National Television System Committee (NTSC) color model for forming the com-
posite video signal is the YIQ model, which is based on concepts in the CIE XYZ
model.

In the YIQ color model, parameter Y is the same as in the XYZ model. Lu-
minance (brightness) information is contained in the Y parameter, while chro-
maticity information (hue and purity) is incorporated into the I and Q parame-
ters. A combination of red, green, and blue intensities are chosen for the Y
parameter to yield the standard luminosity curve. Since Y contains the luminance
information, black-and-white television monitors use only the Y signal The
largest bandwidth in the NTSC video signal (about 4 MHz) is assigned to the ¥
information. Parameter ] contains orange-cyan hue information that provides the
flesh-tone shading, and occupies a bandwidth of approximately 1.5 MHz. Para-
meter () carries green-magenta hue information in a bandwidth of about 0.6
MHz.

An RGB signal can be converted to a television signal using an NTSC en-
coder, which converts RGB values to YIQ values, then modulates and superim-
poses the I and Q) information on the Y signal. The conversion from RGB values
to YIQ values is accomplished with the transformation

Y 0299 0587 0144 [R
1 |=]059% -0275 -0321]-|¢G (15-6)
Q 0212 -0528 031} | B

This transformation is based on the NTSC standard RGB phosphor, whose chro-
maticity coordinates were given in the preceding section. The larger proportions
of red and green assigned to parameter Y indicate the relative importance of
these hues in determining brightness, compared to blue.

An NTSC video signal can be converted to an RGB signal using an NTSC
decoder, which separates the video signal into the YIQ components, then con-
verts to RGB values. We convert from YIQ space to RGB space with the inverse
matrix transformation from Eq. 15-6:

R 1000 095 062 ] [Y
Gl=|100c -0272 -0647|-| I (15-7)
B 1.000 -1.108  1.705 Q

15-6
CMY COLOR MODEL

A color model defined with the primary colors cyan, magenta, and yellow (CMY)
is useful for describing color output to hard-copy devices. Unlike video monitors,
which produce a color pattern by combining light from the screen phosphors,



hard-copy devices such as plotters produce a color picture by coating a paper
with color pigments. We see the colors by reflected light, a subtractive process.

As we have noted, cyan can be formed by adding green and blue light.
Therefore, when white light is reflected from cyan-colored ink, the reflected light
must have no red component. That is, red light is absorbed, or subtracted, by the
ink. Similarly, magenta ink subtracts the green component from incident light,
and yellow subtracts the blue component. A unit cube representation for the
CMY model is illustrated in Fig. 15-14.

In the CMY model, point (1, 1, 1) represents black, because all components
of the incident light are subtracted. The origin represents white light. Equal
amounts of each of the primary colors produce grays, along the main diagonal of
the cube. A combination of cyan and magenta ink produces blue light, because
the red and green components of the incident light are absorbed. Other color
combinations are obtained by a similar subtractive process.

The printing process often used with the CMY model generates a color
point with a collection of four ink dots, somewhat as an RGB monitor uses a col-
lection of three phosphor dots. One dot is used for each of the primary colors
(cyan, magenta, and yellow), and one dot is black. A black dot is included be-
cause the combination of cyan, magenta, and yellow inks typically produce dark
gray instead of black. Some plotters produce different color combinations by
spraying the ink for the three primary colors over each other and allowing them
to mix before they dry.

We can express the conversion from an RGB representation to a CMY repre-
sentation with the matrix transformation

C 1 K
M|=11]-1C (15-8
Y 1 E

where the white is represented in the RGB system as the unit column vector. Sim-
ilarly, we convert from a CMY color representation to an RGB representation
with the matrix transformation

where black is represented in the CMY system as the unit column vector.

15-7
HSV COLOR MODEL

Instead of a set of color primaries, the HSV model uses color descriptions that
have a more intuitive appeal to a user. To give a color specification, a user selects
a spectral color and the amounts of white and black that are to be added to ob-
tain different shades, tints, and tones. Color parameters in this model are e (H),
saturation (S), and value (V).

Section 15-7
HSV Color Model
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The CMY color model,
defining colors with a
subtractive process inside a
unit cube.
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When the RGH color cube (a) is viewed along the diagonal from
white to black, the color-cube outline is a hexagon (b).

The three-dimensional representation of the HSV model is derived frcm the
RGB cube. If we imagine viewing the cube along the diagonal from the white
vertex to the origin (black), we see an outline of the cube that has the hexagon
shape shown in Fig. 15-15. The boundary of the hexagon represents the various
hues, and it is used as the top of the HSV hexcone (Fig. 15-16). In the hexcone,
saturation is measured along a horizontal axis, and value is along a vertical axis
through the center of the hexcone.

Hue is represented as an angle about the vertical axis, ranging from 0° at
red through 360°. Vertices of the hexagon are separated by 60° intervals. Yellow is
at 60°, green at 120°, and cyan opposite red at H = 180°. Complementary colors
are 180° apart.
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(Y¥hite)
\
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\
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Y H{Hue Angle)

V=0 Figure 15-16
(Black) SiSaturation)  The HSV hexcone.
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Shades Figure 15-17
Black Cross section of the HSV hexcone,
N showing regions for shades, tints,
s and tones.

Saturation S varies from 0 to 1. It is represented in this model as the ratio of
the purity of a selected hue to its maximum purity at S = 1. A selected hue is said
to be one-quarter pure at the value § = 0.25. At S = 0, we have the gray scale.

Value V varies from 0 at the apex of the hexcone to 1 at the top. The apex
represents black. At the top of the hexcone, colors have their maximum intensity.
When V =1and S = 1, we have the “pure” hues. White is the pointat V = 1 and
§=0.

This is a more intuitive model for most users. Starting with a selection for a
pure hue, which specifies the hue angle H and sets V = 5 = 1, we describe the
color we want in terms of adding either white or black to the pure hue. Adding
black decreases the setting for V while S is held constant. To get a dark blue, V
could be set to 0.4 with S = 1 and H = 240°. Similarly, when white is to be added
to the hue selected, parameter S is decreased while keeping V constant. A light
blue could be designated with S =0.3 while V =1 and H = 240°. By adding
some black and some white, we decrease both V and S. An interface for this
model typically presents the HSV parameter choices in a color palette.

Color concepts associated with the terms shades, tints, and tones are repre-
sented in a cross-sectional plane of the HSV hexcone (Fig. 15-17). Adding black to
a pure hue decreases V down the side of the hexcone. Thus, various shades are
represented with values 3 =1 and 0=V =1. Adding white to a pure tone pro-
duces different tints across the top plane of the hexcone, where parameter values
are V=1 and 0=5=1. Various tones are specified by adding both black and
white, producing color points within the triangular cross-sectional area of the
hexcone.

The human eye can distinguish about 128 different hues and about 130 dif-
ferent tints (saturation levels). For each of these, a number of shades (value set-
tings) can be detected, depending on the hue selected. About 23 shades are dis-
cernible with yellow colors, and about 16 different shades can be seen at the blue
end of the spectrum. This means that we can distinguish about 128 X 130 X 23 =
82,720 different colors. For most graphics applications, 128 hues, 8 saturation lev-
els, and 15 value settings are sufficient. With this range of parameters in the HSV
color model, 16,384 colors would be available to a user, and the system would
need 14 bits of color storage per pixel. Color lookup tables could be used to re-

duce the storage requirements per pixel and to increase the number of available
colors.

Section 15-7
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15-8
CONVERSION BETWEEN HSV AND RGB MODELS

1f HSV color parameters are made available to a user of a graphics package, these
parameters are transformed to the RGB settings needed for the color monitor. To
determine the operations needed in this transformation, we first consider how
the HSV hexcone can be derived from the RGB cube. The diagonal of this cube
from black (the origin) to white corresponds to the V axis of the hexcone. Also,
each subcube of the RGB cube corresponds to a hexagonal cross-sectional area of
the hexcone. At any cross section, all sides of the hexagon and all radial lines
from the V axis to any vertex have the value V. For any set of RGB values, V is
equal to the maximum value in this set. The HSV point corresponding to the set
of RGB values lies on the hexagonal cross section at value V. Parameter S is then
determined as the relative distance of this point from the V axis. Parameter H is
determined by calculating the relative position of the point within each sextant of
the hexagon. An algorithm for mapping any set of RGB values into the corre-
sponding HSV values is given in the following procedure:

#include <math.h>

/* Input: h, s,

Outputs: r, g, b in range
void hsvToRgb(float h. float s,
{

int i:

float aa, bb, cc, t-

v 1n range [0..1]
[0..1] =7

float v, float * r, float * g, float * b)

if (s == 0) /* Grayscale */
*r = *g = *b = v;
else {
if (h == 1.0) h = 0;
h *= 6.0; |
i = ffloer (h); i
£ =h - 1;
aa = v * {1 - s)
bb = v * {1 - (s * £)}:
cc=v * (1 -8 * (1 - £)});
switch (1) {
case 0: *r = v; *g = cc; *b = aa: break;
case 1: *r = bb;, *g - v; *b = ad; break;
case 2: *r = aa; *g = v; *b = cc; break;
case 3: *r = aa; *g = bb; *b = v; break;
case 4: *r = cc; *g = aa; *b = v; break;
case 5: *r = v; *g = aa; *b = bb: break;

J

We obtain the transformation from HSV parameters to RGB parameters by
determining the inverse of the equations in rgbToHsv procedure. These in-
verse operations are carried out for each sextant of the hexcone. The resulting
transformation equations are summarized in the following algorithm:

#include <math.h>

#define MIN(a,b)
#define MAX(a, b)

{a<d?a:b}
{a>>?a:b)



#define NO_HUE -1

/* Input: r, g, b in range [0..1]
Qutputs: h, s, v in range [0..1]
./
void rgbToHsv (float r, float g, float b, float * h, flecat * s, float * v}
(
float max = MAX (r, MAX (g, b)). min = MIN (r, MIN (g, b))
float delta = max - min;

Section 15-9

*v = max;
1f (max '= 0.0)
*s = delta / max;
else
*s = 0.0;
if (*s == 0.0) *h = NO_HUE:
else {
if {r == max)
*h = (g - b) / delte; |
else if (g == max}
*h = 2 + (b - r} / delta:
else if (b == max) !
*h = 4 + (r - g) / delta;
*F *= 60.0;
if (*h < 0) *h += 360.0;
*F /= 360.0;

15-9
HLS COLOR MODEL

Another model based on intuitive color parameters is the HLS system used by
Tektronix. This model has the double-cone representation shown in Fig. 15-18.
The three color parameters in this model are called hue (H), lightness (L), and
saturation (S).

Hue has the same meaning as in the HSV model. It specifies an angle about
the vertical axis that locates a chosen hue. In this model, H = 0° corresponds to
blue. The remaining colors are specified around the perimeter of the cone in the
same order as in the HSV model. Magenta is at 60°, red is at 120°, and cyan is lo-
cated at H = 180°. Again, complementary colors are 180° apart on the double
cone.

The vertical axis in this model is called lightness, L. At L =0, we have
black, and white isat L = 1. Cray scale is along the L axis, and the “pure hues” lie
onthe L = 0.5 plane.

Saturation parameter S again specifies relative purity of a color. This para-
meter varies from 0 to 1, and pure hues are those for which S = 1and L = 0.5. As
S decreases, the hues are said to be less pure. At 5§ = 0, we have the gray scale.

As in the HSV model, the HLS system allows a user to think in terms of
making a selected hue darker or lighter. A hue is selected with hue angte H, and
the desired shade, tint, or tone is obtained by adjusting L and 5. Colors are made
lighter by increasing L and made darker by decreasing L. When S is decreased,
the colors move toward gray.

HLS Color Model
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Figure 15-18
The HLS double cone.

15-10
COLOR SELECTION AND APPLICATIONS

A graphics package can provide color capabilities in a way that aids us in making
color selections. Various combinations of colors can be selected using sliders and
color wheels, and the system can also be designed to aid in the selection of har-
monizing colors. In addition, the designer of a package can follow some basic
color rules when designing the color displavs that are to be presented to a user.
One method for obtaining a set of coordinating colors is to generate the set
from some subspace of a color model. If colors are selected at regular intervals
along any straight line within the RGB or CMY cube, for example, we can expect
to obtain a set of well-matched colors. Randomly selected hues can be expected
to produce harsh and clashing color combinations. Another consideration in the
selection of color combinations is that difterent colors are perceived at different
depths. This accurs because our eyes focus on colors according to their frequency.
Blues, in particular, tend to recede. Displaying a blue pattern next to a red pattern
can cause eye fatigue, because we continually need to refocus when our attention



is switched from one area to the other. This problem can be reduced by separat-
ing these colors or by using colors from one-half or less of the color hexagon in
the HSV model. With this technique, a display contains either blues and greens
or reds and yellows.

As a general rule, the use of a smaller number of colors produces a more
pleasing display than a large number of colors, and tints and shades blend better
than pure hues. For a background, gray or the complement of one of the fore-
ground colors is usually best.

SUMMARY

In this chapter, we have discussed the basic properties of light and the concept of
a color model. Visible light can be characterized as a narrow frequency distribu-
tion within the electromagnetic spectrum. Light sources are described in terms of
their dominant frequency (or hue), luminance (or brightness), and purity (or sat-
uration). Complementary color sources are those that combine to produce white
light.

One method for defining a color model is to specify a set of two or more
primary colors that are combined to produce various other colors. Common color
models defined with three primary colors are the RGB and CMY models. Video
monitor displays use the RGB model, while hardcopy devices produce color out-
put using the CMY model. Other color models, bdsed on specification of lumi-
nance and purity values, include the YIQ, HSV, and HLS color models. Intuitive
color models, such as the HSV and HLS models, allow colors to be specified by
selecting a value for hue and the amounts of white and black to be added to the
selected hue.

Since no model specified with a finite set of color parameters is capable of
describing all possible colors, a set of three hypothetical colors, called the CIE
primaries, has been adopted as the standard for defining all color combinations.
The set of CIE primaries is commonly referred to as the XYZ color model. Plot-
ting normalized values for the X and Y standards produces the CIE chromaticity
diagram, which gives a representation for any color in terms of hue and purity.
We can use this diagram to compare color gamuts for different color models, to
identify complementary colors, and to determine dominant frequency and purity
for a given color.

An important consideration in the generation of a color display is the selec-
tion of harmonious color combinations. We can do this by following a few simple
rules. Coordinating colors usually can be selected from within a small subspace
of a color model. Also, we should avoid displaying adjacent colors that differ
widely in dominant frequency. And we should limit displays to a small number
ot color combinations formed with tints and shades, rather than with pure hues.
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EXERCISES

15.1.
15.2.
15-3.

15-4.
15-5.
15-6.

15-10.

15-11.

15-12.

Derive expressions for converting RGB color parameters to HSV values.
Derive expressions for converting HSV color values 1o RGB values.

Write an interactive procedure that allows selection of HSV color parameters from a
displayed menu, ther the HSV values are to be converted to RGB values for storage
in a frame buffer.

Derive expressions for converting RGB color values to HLS color parameters.
Derive expressions for converting HLS color values to RGB values.

Write a program that allows interactive selection of HLS values from a color menu
then converts these values to corresponding RGB values.

-7. Write a program that will produce a set of colors that are linearly interpolated be-

tween any two specified positions in RGB space.

. Write an interactive routine for selecting color vatues from within a specified sub-

space of RGB space.

. Write a program that will produce a set of colors that are linearly interpolated be-

tween any two specified positions in HSV space.

Write a program that will produce a set of colors that are linearly interpolated be-
tween any two specified positions in HLS space.

Display two RGB color grids, side by side on a video monitor. Fill one grid with a set
of randomly selected RGB colors, and fill the other grid with a set of colors that are
selected from a small RGB subspace. Experiment with different random selections
and different RGB subspaces and compare the two color grids.

Display the two color grids in Exercise 15-11 using color selections from either the
HSV or the HLS color space.
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S ome typical applications of computer-generated animation are entertain-
ment (motion pictures and cartoons), advertising, scientific and engineering
studies, and training and education. Although we tend to think of animation as
implying object motions, the term computer animation generally refers to any
time sequence of visual changes in a scene. In addition to changing object posi-
tion with translations or rotations, a computer-generated animation could dis-
play time variations in object size, color, transparency, or surface texture. Adver-
tising animations often transition one object shape into another: for example,
transforming a can of motor oil into an automobile engine. Computer animations
can also be generated by changing camera parameters, such as position, orienta-
tion, and focal length. And we can produce computer animations by changing
lighting effects or other parameters and procedures associated with illumination
and rendering.

Many applications of computer animation require realistic displays. An ac-
curate representation of the shape of a thunderstorm or other natural phenomena
described with a numerical model is important for evaluating the reliability of
the model Also, simulators for training aircraft pilots and heavy-equipment oper-
ators must produce reasonably accurate representations of the environment. En-
tertainment and advertising applications, on the other hand, are sometimes more
interested in visual effects. Thus, scenes may be displayed with exaggerated
shapes and unrealistic motions and transformations. There are many entertain-
ment and advertising applications that do require accurate representations for
computer-generated scenes. And in some scientific and engineering studies, real-
ism is not a goal. For example, physical quantities are often displayed with
pseudo-colors or abstract shapes that change over tune to help the researcher un-
derstand the nature of the physical process.

16-1
DESIGN OF ANIMATION SEQUENCES

In general, an animation sequence is designed with the following steps:

¢ Storyboard layout
Object definitions
* Key-frame specifications

* Generation of in-between frames



This standard approach for animated cartoons is applied to other animation ap-
plications as well, although there are many special applications that do not fol-
low this sequence. Real-time computer animations produced by flight simulators,
for instance, display motion sequences in response to settings on the aircraft con-
trols. And visualization applications are generated by the solutions of the numer-
ical models. For frame-by-frame animation, each frame of the scene is separately
generated and stored. Later, the frames can be recorded on film or they can be
consecutively displayed in “real-time playback” mode.

The storyboard is an outline of the action. It defines the motion sequence as a
set of basic events that are to take place. Depending on the type of animation to
be produced, the storyboard could consist of a set of rough sketches or it could be
a list of the basic ideas for the motion.

An object definition is given for each participant in the action. Objects can be
defined in terms of basic shapes, such as polygons or splines. In addition, the as-
sociated movements for each object are specified along with the shape.

A key frame is a detailed drawing of the scene at a certain time in the anima-
tion sequence. Within each key frame, each object is positioned according to the
time for that frame. Some key frames are chosen at extreme positions in the ac-
tion; others are spaced so that the time interval between key frames is not too
great. More key frames are specified for intricate motions than for simple, slowly
varing motions.

In-betweens are the intermediate frames between the key frames. The num-
ber of in-betweens needed is determined by the media to be used to display the
animation. Film requires 24 frames per second, and graphics terminals are re-
freshed at the rate of 30 to 60 frames per second. Typically, time intervals for the
motion are set up so that there are from three to five in-betweens for each pair of
key frames. Depending on the speed specified for the motion, some key frames
can be duplicated. For a 1-minute film sequence with no duplication, we would
need 1440 frames. With five in-betweens for each pair of key frames, we would
need 288 key frames. If the motion is not too complicated, we could space the key
frames a little farther apart.

There are several other tasks that may be required, depending on the appli-
cation. They include motion verification, editing, and production and synchro-
nization of a soundtrack. Many of the functions needed to produce general ani-
mations are now computer-generated. Figures 16-1 and 16-2 show examples of
computer-generated frames for animation sequences.

Figure 16-1

Orne frame from the award-winning
computer-animated short film Luxo
Jr- The film was designed using a
key-frame animation system and
cartoon animation techniques to
provide lifelike actions of the
lamps. Final images were rendered
with multiple light sources and
procedural texturing techniques.
(Courtesy of Pixar. ©1986 Pixar.)

Section 16-1
Design of Animation Sequences
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Figure 16-2

One frame from the short film Tin
Toy, the first computer-animated
film to win an Oscar. Designed
using a key-frame animation
system, the film also required
extensive facial expression
modeling. Final images were
rendered using procedural shading,
self-shadowing techniques, motion
blur, and texture mapping. (Courtesy
of Pixar. © 1988 Pixar.)

16-2

GENERAL COMPUTER-ANIMATION FUNCTIONS

Some steps in the development of an animation sequence are well-suited to com-
puter solution. These include object manipulations and rendering, camera mo-
tions, and the generation of in-betweens. Animation packages, such as Wave-
front, for example, provide special functions for designing the animation and
processing individual objects.

One function available in animation packages is provided to store and man-
age the object database. Object shapes and associated parameters are stored and
updated in the database. Other object functions include those for motion genera-
tion and those for object rendering. Motions can be generated according to speci-
fied constraints using two-dimensional or three-dimensional transformations.
Standard functions can then be applied to identify visible surfaces and apply the
rendering algorithms.

Another typical function simulates camera movements. Standard motions
are zooming, panning, and tilting. Finally, given the specification for the key
frames, the in-betweens can be automatically generated.

16-3
RASTER ANIMATIONS

On raster systems, we can generate real-time animation in limited applications
using raster operations. As we have seen in Section 5-8, a simple method for trans-
lation in the xy plane is to transfer a rectangluar block of pixel values from one
location to another. Two-dimensional rotations in multiples of 90° are also simple
to perform, although we can rotate rectangular blocks of pixels through arbitrary
angles using antialiasing procedures. To rotate a block of pixels, we need to de-
termine the percent of area coverage for those pixels that overlap the rotated
block. Sequences of raster operations can be executed to produce real-time ani-
mation of either two-dimensional or three-dimensional objects, as long as we re-
strict the animation to motions in the projection plane. Then no viewing or visi-
ble-surface algorithms need be invoked.

We can also animate objects along two-dimensional motion paths using the
color-table transformations. Here we predefine the object at successive positions
along the motion path, and set the successive blocks of pixel values to color-table



Figure 16-3
Real-time raster color-table
animation.

entries. We set the pixels at the first position of the object to “on” values, and we
set the pixels at the other object positions to the background color. The animation
is then accomplished by changing the color-table values so that the object is “on”
at successively positions along the animation path as the preceding position is set
to the background intensity (Fig. 16-3).

16-4
COMPUTER-ANIMATION LANGUAGES

Design and control of animation sequences are handled with a set of animation
routines. A general-purpose language, such as C, Lisp, Pascal, or FORTRAN, is
often used to program the animation functions, but several specialized animation
languages have been developed. Animation functions include a graphics editor, a
key-frame generator, an in-between generator, and standard graphics routines.
The graphics editor allows us to design and modify object shapes, using spline
surfaces, constructive solid-geometry methods, or other representation schemes.

A typical task in an animation specification is scene description. This includes
the positioning of objects and light sources, defining the photometric parameters
(light-source intensities and surface-illumination properties), and setting the
camera parameters (position, orientation, and lens characteristics). Another stan-
dard function is action specification. This involves the layout of motion paths for
the objects and camera. And we need the usual graphics routines: viewing and
perspective transformations, geometric transformations to generate cbject move-
ments as a function of accelerations or kinematic path specifications, visible-sur-
face identification, and the surface-rendering operations.

Key-frame systems are specialized animation languages designed simply
to generate the in-betweens from the user-specified key frames. Usually, each ob-
ject in the scene is defined as a set of rigid bodies connected at the joints and with
a limited number of degrees of freedom. As an example, the single-arra robot in
Fig. 16-4 has six degrees of freedom, which are called arm sweep, shoulder
swivel, elbow extension, pitch, yaw, and roll. We can extend the number of de-
grees of freedom for this robot arm to nine by allowing three-dimensional trans-
lations for the base (Fig. 16-5). If we also allow base rotations, the robot arm can
have a total of 12 degrees of freedom. The human body, in comparison, has over
200 degrees of freedom.

Parameterized systems allow object-motion characteristics to be specified
as part of the object definitions. The adjustable parameters control such object
characteristics as degrees of freedom, motion limitations, and allowable shape
changes.

Section 16-4 .
Computer-Animation Languages
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Figure 16-4
Base Degrees of freedom for a stationary,
o single-arm robot

Scripting systems allow object specifications and animation sequences to
be defined with a user-input script. From the script, a library of various objects
and motions can be constructed.

16-5
KEY-FRAME SYSTEMS

We generate each set of in-betweens from the specification of two (or more) key
frames. Motion paths can be given with a kinematic description as a set of spline
curves, or the motions can be physically based by specifying the forces acting on
the objects to be animated.

For complex scenes, we can separate the frames into individual components
or objects called cels (celluloid transparencies), an acronym from cartoon anima-
tion. Given the animation paths, we can interpolate the positions of individual
objects between any two times.

With complex object transformations, the shapes of objects may change
over time. Examples are clothes, facial features, magnified detail, evolving
shapes, exploding or disintegrating objects, and transforming one object into an-
other object. If all surfaces are described with polygon meshes, then the number
of edges per polygon can change from one frame to the next. Thus, the total num-
ber of line segments can be different in different frames.

Morphing,

Transformation of object shapes from one form to another is called morphing,
which is a shortened form of metamorphosis. Morphing methods can be applied
to any motion or transition involving a change in shape.

Given two key frames for an object transformation, we first adjust the object
specification in one of the frames so that the number of polygon edges (or the
number of vertices} is the same for the two frames. This preprocessing step is il-
lustrated in Fig. 16-6. A straight-line segment in key frame k is transformed into
two line segments in key frame k + 1. Since key frame k + 1 has an extra vertex,
we add a vertex between vertices 1 and 2 in kev frame £ to balance the number of
vertices (and edges) in the two key frames. Using lincar interpolation to generate
the in-betweens, we transition the added vertex in kev frame k into vertex 3'
along the straight-line path shown in Fig. 16-7. An example of a triangle linearly
expanding into a quadrilateral is given in Fig. 16-8. Figures 16-9 and 16-10 show
examples of morphing n television advertising.



Key Key
Frame k Frame k + 1

Figure 16-6
An edge with vertex positions 1 and 2 in key frame k
evolves into two connected edges in key frame k + 1.

Figure 16-7
Linear interpolation for transforming a line segment in

key frame k into two connected line segments in key
frame k + 1. :

—
-— - -
——

Figure 16-8
Linear interpolation for transforming a triangle into a quadrilateral.

We can state general preprocessing rules for equalizing key frames in terms
of either the number of edges or the number of vertices to be added to a key
frame. Suppose we equalize the edge count, and parameters L, and L;,, denote
the number of line segments in two consecutive frames. We then define

Lyax = max(Ly, Liyy), Loin = mun(Ly, Lisy) (16-1)
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and

N,=L.modl_.

L
N, = int(—"‘") (1o-2)
me ’

Figure 16-9
Transformation of an STP oil can
into an engine block. (Coursesy of
Suticon Graphcs, Inc )

"R Ry

td}

Frgure 16-10
Transtormation of a moving automobile into a running tiger. (Courtesy of

590 Exxan Company USA and Pacific Data Tmages )



Then the preprocessing is accomplished by

1. dividing N, edges of keyframe,,, into N, + 1 sections
2. dividing the remaining lines of keyframe,;, into N, sections

As an example, if L, = 15 and L, = 11, we would divide 4 lines of keyframe,,,
into 2 sections each. The remaining lines of keyframe, ., are left intact.

If we equalize the vertex count, we can use parameters V, and Vy,, to de-
note the number of vertices in the two consecutive frames. In this case, we define

Vs = max(Vy, Vir ), Vi = min(V,, Viiy) (16-3)
and
N = (Vpax— D mod (V .~ 1)

Vioax — 1
=y Ymax T 2 »
N, mt(V-—l) (16-4)

Preprocessing using vertex count is performed by

1. adding N, points to N, line sections of keyframe,,
2. adding N, — 1 points to the remaining edges of keyframe,,

For the triangle-to-quadrilateral example, V, = 3 and V., = 4. Both N, and N,
are 1, so we would add one point to one edge of keyframe,. No points would be
added to the remaining lines of keyframe, .

Simulating Accelerations

Curve-fitting techniques are often used to specify the animation paths between
key frames. Given the vertex positions at the key frames, we can fit the positions
with linear or nonlinear paths. Figure 16-11 illustrates a nonlinear fit of key-frame
positions. This determines the trajectories for the in-betweens. To simulate accel-
erations, we can adjust the time spacing for the in-betweens.

For constant speed (zero acceleration), we use equal-interval time spacing
for the in-betweens. Suppose we want n in-betweens for key frames at times ¢,
and t, (Fig. 16-12). The time interval between key frames is then divided into n +
1 subintervals, yielding an in-between spacing of

L4 !
At———n+1 (16-5)

We can calculate the time for any in-between as
tBy=t +jAt, =12 .. ,n (16-6)

and determine the values for coordinate positions, color, and other physical para-
meters.

Nonzero accelerations are used to produce realistic displays of speed
changes, particularly at the beginning and end of a motion sequence. We can
model the start-up and slow-down portions of an animation path with spline or

Section 16-5
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Between

Figure 16-11
Fitting key-frame vertex positions with nonlinear splines.

trignometric functions. Parabolic and cubic time functions have been applied to
acceleration modeling, but trignometric functions are more commonly used in
animation packages.

To model increasing speed (positive acceleration), we want the time spacing
between frames to increase so that greater changes in position occur as the object
moves faster. We can obtain an increasing interval size with the function

1 — cosé, 0< o< /2

For n in-betweens, the time for the jth in-between would then be calculated as

- _ _L] - i
tB; !,+At[1 msz(nﬂ)’ j=1,2...,n (16-7)

where Af is the time difference between the two key frames. Figure 16-13 gives a
plot of the trigonometric acceleration function and the in-between spacing for n

We can model decreasing speed (deceleration) with sin8 in the range 0 < ¢
< w/2. The time position of an in-between is now defined as

- N LS
=H + = -
tB; = t, + Atsin 2ty 1,2, n (16-8)
1 ! 1 -4 i Il 1
1 L 1 1 T L 1 t
t

Figure 16-12
In-between positions for motion at constant speed.
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Figure 16-13

A trigonometric acceleration function and the corresponding in-between spacing for n = 5
and 6 = jm/12 in Eq. 16-7, producing increased coordinate changes as the object moves
through each time interval.

A plot of this function and the decreasing size of the time intervals is shown in
Fig. 16-14 for five in-betweens.

Often,

motions contain both speed-ups and slow-downs. We can model a

combination of increasing-decreasing speed by first increasing the in-between
time spacing, then we decrease this spacing. A function to accomplish these time

changes is

1.0

sin 6

05

(=]
-
N+
w
-4
o+
-

Figure 16-14

A trigonometric deceleration function and the corresponding in-between spacing forn = 5
and 8 = jo/12 in Eq. 16-8, producing decreased coordinate changes as the object moves
through each time interval.
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Figure 16-15
A trigonometric accelerate—decelerate function and the corresponding in-between spacing
forn = 5in Eq. 16-9.

%(1 - ¢os6), 0<8<7/2

The time for the jth in-between is now calculated as

1 — cos[jn/An + 1)]

tBI = tl + Af{ 2

}, j=12...,n (169

with At denoting the time difference for the two key frames. Time intervals for
the moving object first increase, then the time intervals decrease, as shown in Fig.
16-15.

Processing the in-betweens is simplified by initially modeling “skeleton”
(wireframe) objects. This allows interactive adjustment of motion sequences.
After the animation sequence is completely defined, objects can be fully ren-
dered.

16-6
MOTION SPECIFICATIONS

There are several ways in which the motions of objects can be specified in an ani-
mation system. We can define motions in very explicit terms, or we can use more
abstract or more general approaches.

Direct Motion Specification

The most straightforward method for defining a motion sequence is direct specifi-
cation of the motion parameters. Here, we explicitly give the rotation angles and
translation vectors. Then the geometric transformation matrices are applied to
transform coordinate positions. Alternatively, we could use an approximating
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Figure 16-16

Approximating the motion of a bouncing ball with a damped sine function (Eq. 16-10).

equation to specify certain kinds of motions. We can approximate the path of a
bouncing ball, for instance, with a damped, rectified, sine curve (Fig. 16-16):

y(x) = Alsin (wx + g e © (16-10)

where A is the initial amplitude, w is the angular frequence, 6, is the phase angle,
and k is the damping constant. These methods can be used for simple user-pro-
grammed animation sequences.

Goal-Directed Systems

At the opposite extreme, we can specify the motions that are to take place in gen-
eral terms that abstractly describe the actions. These systems are referred to as
goal directed because they determine specific motion parameters given the goals
of the animation. For example, we could specify that we want an object to “walk”
or to “run” to a particular destination. Or we could state that we want an object
to “pick up” some other specified object. The input directives are then inter-
preted in terms of component motions that will accomplish the selected task.
Human motions, for instance, can be defined as a hierarchical structure of sub-
motions for the torso, limbs, and so forth.

Kinematics and Dynarnics

We can also construct animation sequences using kinematic or dynamic descrip-
tions. With a kinematic description, we specify the animation by giving motion
parameters (position, velocity, and acceleration) without reference to the forces
that cause the motion. For constant velocity (zero acceleration), we designate the
motions of rigid bodies in a scene by giving an initial position and velocity vector
59!
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for each object. As an example, if a velocity is specified as (3, 0, —4) km/sec, then
this vector gives the direction for the straight-line motion path and the speed
(magnitude of velocity) is 5 km/sec. If we also speafy accelerations (rate of
change of velocity), we can generate speed-ups, slow-downs, and curved motion
paths. Kinematic specification of a motion can also be given by simply describing
the motion path. This is often done using spline curves.

An alternate approach is to use inverse kinematics. Here, we specify the ini-
tial and final positions of objects at specified times and the motion parameters are
computed by the system. For example, assuming zero accelerations, we can de-
termine the constant velocity that will accomplish the movement of an object
from the initial position to the final position. This method is often used with com-
plex objects by giving the positions and orientations of an end node of an object,
such as a hand or a foot. The system then determines the motion parameters of
other nodes to accomplish the desired motion.

Dynamic descriptions on the other hand, require the specification of the
forces that produce the velocities and accelerations. Descriptions of object behav-
ior under the influence of forces are generally referred to as a physically based
modeling (Chapter 10). Examples of forces affecting object motion include electro-
magnetic, gravitational, friction, and other mechanical forces.

Object motions are obtained from the force equations describing physical
laws, such as Newton’s laws of motion for gravitational and friction processes,
Euler or Navier-Stokes equations describing fluid flow, and Maxwell’s equations
for electromagnetic forces. For example, the general form of Newton’s second
law for a particle of mass m is

d
F= E(mv) (16-11)

with F as the force vector, and v as the velocity vector. If mass is constant, we
solve the equation F = ma, where a is the acceleration vector. Otherwise, mass is
a function of time, as in relativistic motions or the motions of space vehicles that
consume measurable amounts of fuel per unit time. We can also use inverse dy-
namics to obtain the forces, given the initial and final positions of objects and the
type of motion.

Applications of physically based modeling include complex rigid-body sys-
tems and such nonrigid systems as cloth and plastic materials. Typically, numeri-
cal methods are used to obtain the motion parameters incrementally from the dy-
namical equations using initial conditions or boundary values.

SUMMARY

A computer-animation sequence can be set up by specifying the storyboard, the
object definitions, and the key frames. The storyboard is an outline of the action,
and the key frames define the details of the object motions for selected positions
in the animation. Once the key frames have been established, a sequence of in-be-
tweens can be generated to construct a smooth motion from one key frame to the
next. A computer animation can involve motion specifications for the objects in a
scene as well as motion paths for a camera that moves through the scene. Com-
puter-animation systems include key-frame systems, parameterized systems, and
scripting systems. For motion in two-dimensions, we can use the raster-anima-
tion techniques discussed in Chapter 5.



For some applications, key frames are used to define the steps in a morph-
ing sequence that changes one object shape into another. Other in-between meth-
ods include generation of variable time intervals to simulate accelerations and
decelerations in the motion.

Motion specifications can be given in terms of translation and rotation para-
meters, or motions can be described with equations or with kinematic or dy-
namic parameters. Kinematic motion descriptions specify positions, velocities,
and accelerations. Dynamic motion descriptions are given in terms of the forces
acting on the objects in a scene.

REFERENCES

For additional information on computer animation systems and techniques, see Magnenat-
Thalmann and Thalmann (1985), Barzel (1992), and Watt and Watt (1992). Algorithms for
animation applications are presented in Glassner (1990), Arvo (1991}, Kirk (1992), Gas-
cuel (1993), Ngo and Marks (1993), van de Panne and Fiume (1993), and in Snyder et al.
(1993). Morphing techniques are discussed in Beter and Neely 11992), Hughes (1992),
Kent, Carlson, and Parent (1992), and in Sederberg and Greenwood (1992). A discussion
of animation techniques in PHIGS is given in Gaskins (1992).

EXERCISES

16-1. Design a storyboard layout and accompanving key frames for an animation of a sin-
gle polyhedron.

16-2. Write a program to generate the in-betweens for the key frames specified in Exercise
16-1 using linear interpolation.

16-3. Expand the animation sequence in Exercise 16-1 to include two or more moving ob-
jects.

16-4. Write a program to generate the in-betweens for the key frames in Exercise 16-3
using linear interpolation.

16-5. Write a morphing program to transform a sphere into a specified polyhedron.

16-6. Sel up an animation specification involving accelerations and implement Eq. 16-7.

16-7. Set up an animation specification involving both accelerations and decelerations and
implement the in-between spacing calculations given in Eqs. 16-7 and 16-8.

16-8. Set up an animation specification implementing the acceleration-deceleration calcu-
lations of £q. 16-9.

16-9. Write a program to simulate the linear, two-dimensional motion of a filled circle
inside a given rectangular area. The circle is to be given an initial velocity, and the
circle is 10 rebound from the walls with the angle of reflection equal to the angle of
incidence.

16-10. Convert the program of Exercise 16-9 into a ball and paddle game by replacing one
side of the rectangle with a short line segment that can be moved back and forth to
intercept the circle path. The game is over when the circle escapes from the interior
of the rectangle. Initial input parameters include circle position, direction, and speed.
The game score can include the number of times the circle is intercepted by the pad-
dle.

16-11. Expand the program of Exercise 16-9 to simulate the three-dimensional motion of a
sphere moving inside a parallelepiped. Interactive viewing parameters can be set to
view the motion from different directions.

1612, Wirite a program to implement the simulation of a bouncing ball using Eq. 16-10.

16-13. Write a program to implement the motion of a bouncing bail using a downward

Exercises
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16-14.

16-15.

gravitational force and a ground-plane friction force. Initially, the ball is to be pro-
jected into space with a given velocity vector.

Write a program to implement the two-player pillbux game. The game can be imple-
mented on a flat plane with fixed pillbox positions, or random terrain features and
pillbox placements can be generated at the start of the game.

Write a program to implement dynamic motion specifications. Specify a scene with
two or more objects, initial motion parameters, and specified forces. Then generate
the animation from the solution of the force equations. (For example, the objects
could be the earth, moon, and sun with attractive gravitational forces that are propor-
tional 10 mass and inversely proportional to distance squared.)
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‘ omputer graphics algorithms make use of many mathematical concepts

and techniques. Here, we provide a brief reference for the topics from ana-
lytic geometry, linear algebra, vector analysis, tensor analysis, complex numbers,
numerical analysis, and other areas that are referred to in the graphics algorithms
discussed throughout this book.

A-1
COORDINATE REFERENCE FRAMES

Graphics packages typically require that coordinate parameters be specified with
respect to Cartesian reference frames. But in many applications, non-Cartesian
coordinate systems are useful. Spherical, cylindrical, or other symmetries often
can be exploited to simplify expressions involving object descriptions or manipu-
lations. Unless a specialized graphics system is available, however, we must first
convert any non-Cartesian descriptions to Cartesian coordinates. In this section,
we first review standard Cartesian coordinate systems, then we consider a few
common non-Cartesian systems.

Two-Dimensional Cartesian Reference Frames

Figure A-1 shows two possible orientations for a Cartesian screen reference sys-
tem. The standard coordinate orientation shown in Fig. A-1(a), with the coordi-
nate origin in the lower-left corner of the screen, is a commonly used reference

Figure A-1
Screen Cartesian reference systems: (a) coordinate origin at the lower-
left screen corner and (b) coordinate origin in the upper-left corner.



Figure A-2
A polar coordinate reference frame,
formed with concentric circles and

radial lines.
y axis
¥ T P
r
\o Figure A-3
+ ~  Relationship between polar and
x x8xis  Cartesian coordinates.

frame. Some systems, particularly personal computers, orient the Cartesian refer-
ence frame as in Fig. A-1(b), with the origin at the upper left corner. In addition,
it is possible in some graphics packages to select a position, such as the center of
the screen, for the coordinate origin.

Polar Coordinates in the xy Plane

A frequently used non-Cartesian system is a polar-coordinate reference frame
(Fig. A-2), where a coordinate position is specified with a radial distance r from
the coordinate origin, and an angular displacement & from the horizontal. Posi-
tive angular displacements are counterclockwise, and negative angular displace-
ments are clockwise. Angle 6 can be measured in degrees, with one complete
counterclockwise revolution about the origin as 360°. The relation between Carte-
sian and polar coordinates is shown in Fig. A-3. Considering the right triangle in
Fig. A-4, and using the definition of the trigonometric functions, we transform
from polar coordinates to Cartesian coordinates with the expressions

x=rcosf, y=rsind (A-D

The inverse transformation from Cartesian to polar coordinates is

r=Vei+y, 6= tan"(z) (A-D)

x

Other conics, besides circles, can be used to specify coordinate positions.
For example, using concentric ellipses instead of circles, we can give coordinate
positions in elliptical coordinates. Similarly, other types of symmetries can be ex-
ploited with hyperbolic or parabolic plane coordinates.

Section A-1
Coordinate Reference Frames
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Figure A-4

Right triangle with
hypotenuse r and sides x and
v.
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Figure A-5

An angle @ subtended by a
circular arc of length s and
radijus r.

602

Angular values can be specified in degrees or they can be given in dimen-
sionless units (radians). Figure A-5 shows two intersecting lines in a plane and a
circle centered on the intersection point P. The value of angle 6 in radians is then
given by

o=" (A-3)
r

where s is the length of the circular arc subtending 8, and r is the radius of the cir-
cle. Total angular distance around point P is the length of the circle perimeter
(27) divided by r, or 27 radians.

Three-Dimensional Cartesian Reference Frames

Figure A-6(a) shows the conventional orientation for the coordinate axes in a
three-dimensional Cartesian reference system. This is called a right-handed sys-
tem because the right-hand thumb points in the positive z direction when we
imagine grasping the z axis with the fingers curling from the positive x axis to the
positive y axis (through 90°), as illustrated in Fig. A-6(b}. Most computer graph-
ics packages require object descriptions and manipulations to be specified in
right-handed Cartesian coordinates. For discussions throughout this book (in-
cluding the appendix), we assume that all Cartesian reference frames are right-
handed.

Another possible arrangement of Cartesian axes is the left-handed system
shown in Fig. A-7. For this system, the left-hand thumb points in the positive z
direction when we imagine grasping the z axis so that the fingers of the left hand
curl from the positive x axis to the positive y axis through 90°. This orientation of
axes is sometimes convenient for describing depth of objects relative to a display
screen. If screen locations are described in the xy plane of a left-handed system
with the coordinate origin in the lower-left screen corner, positive z values indi-
cate positions behind the screen, as in Fig. A-7(a). Larger values along the posi-
tive z axis are then interpreted as being farther from the viewer.

Three-Dimensional Curvilinear Coordinate Systems

Any non-Cartesian reference frame is referred to as a curvilinear coordinate sys-
tem. The choice of coordinate system for a particular graphics application de-
pends on a number of factors, such as symmetry, ease of computation, and visu-

y axis y axis
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1
/It\/ \:\:\ \\
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z axis x axis
(a) ib}
Figure A-6

Coordinate representation of a point P at position (x, y,
2) in a right-handed Cartesian reference system.
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Figure A-7
Left-handed Cartesian coordinate system superimposed on the surface
of a video monitor.

Figure A-8
A general curvilinear coordinate

~ 27 X, axis
P I reference frame.

alization advantages. Figure A-8 shows a general curvilinear coordinate reference
frame formed with three coordinate surfaces, where each surface has one coordi-
nate held constant. For instance, the x,x, surface is defined with x; held constant.
Coordinate axes in any reference frame are the intersection curves of the coordi-
nate surfaces. If the coordinate surfaces intersect at right angles, we have an or-
thogonal curvilinear coordinate system. Nonorthogonal reference frames are
useful for specialized spaces, such as visualizations of motions governed by the
laws of general relativity, but in general, they are used less frequently in graphics
applications than orthogonal systems.

A cylindrical-coordinate specification of a spatial position is shown in Fig. A-
9 in relation to a Cartesian reference frame. The surface of constant p is a vertical

Z axis
LN
’ Plp, 6, 1)
1
1
i
1
i
]
.
L~ : y axis
(€] i
) > . Figure A-9
x axis

Cylindrical coordinates: p, 6, z.
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P(r, 6, ¢}

Figure A-10
Spherical coordinates: r, 6, ¢.

cylinder; the surface of constant & is a vertical plane containing the z axis; and the
surface of constant z is a horizontal plane parallel to the Cartesian xy plane. We
transform from a cylindrical coordinate specification to a Cartesian reference
frame with the calculations

x = pcost, y = psiné, z=12z (A-4)

Figure A-10 shows a spherical-coordinate specification of a spatial position in
reference to a Cartesian reference frame. Spherical coordinates are sometimes re-
ferred to as polar coordinates in space. The surface of constant r is a sphere; the sur-
face of constant 6 is a vertical plane containing the z axis (same 6 surface as in
cylindrical coordinates); and the surface of constant ¢ is a cone with apex at the
coordinate origin. If ¢ < 90°, the cone is above the xy plane. If ¢ > 90°, the cone
is below the xy plane. We transfrom from a spherical-coordinate specification to a
Cartesian reference frame with the calculations

x = rcosfsing, y = rsin@sing, z = rcos$ (A-5)

Solid Angle

We define a solid angle in analogy with that for a two-dimensional angle 6 be-
tween two intersecting lines (Eq. A-3). Instead of a circle, we consider any sphere
with center position P. The solid angle w within a cone-shaped region with apex
at P is defined as

w= g (A-6)

where A is the area of the spherical surface intersected by the cone (Fig. A-11),
and 7 is the radius of the sphere.

Also, in analogy with two-dimensional polar coordinates, the dimension-
less unit for solid angles is called the steradian. The total solid angle about a
point is the total area of the spherical surface (477?) divided by r, or 4=
steradians.



Figure A-11

A solid angle » subtended by a
spherical surface patch of area A
with radius r.

A-2
POINTS AND VECTORS

There is a fundamental difference between the concept of a point and that of a
vector. A point is a position specified with coordinate values in some reference
frame, so that the distance from the origin depends on the choice of refer-
ence frame. Figure A-12 illustrates coordinate specification in two reference
frames. In frame A, point coordinates are given by the values of the ordered pair
(x, y). In frame B, the same point has coordinates (0, 0) and the distance to the ori-
gin of frame B is 0.

A vector, on the other hand, is defined as the difference between two point
positions. Thus, for a two-dimensional vector (Fig. A-13), we have

V=P,-P
=X, ~ 1, Y~ %) (A-7)
=(V, V)

where the Cartesian components (or Cartesian elements) V, and V, are the projec-
tions of V onto the x and y axes. Given two point positions, we can obtain vector
components in the same way for any coordinate reference frame.

We can describe a vector as a directed line segment that has two fundamental
properties: magnitude and direction. For the two-dimensional vector in Fig. A-
13, we calculate vector magnitude using the Pythagorean theorem:

Oa] frame B

(o x frame A

Figure A-12
Position of point P with respect to two different
Cartesian reference frames.
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Figure A-14
Direction angles «, 8, and .

Figure A-15
A gravitational force vector F
and a velocity vector v.
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Figure A-13
Vector V in the xy plane of a Cartesian
reference frame.

lv| =VvvZ+ V2 (A-8)

The direction for this two-dimensional vector can be given in terms of the angu-
lar displacement from the x axis as

a= tan“(%) (A-9)

X

A vector has the same properties (magnitude and direction) no matter where we
position the vector within a single coordinate system. And the vector magnitude
is independent of the coordinate representation. Of course, if we change the coor-
dinate representation, the values for the vector components change.

For a three-dimensional Cartesian space, we calculate the vector magnitude
as

vl =vVZ+VZ+V2 (A-10)

Vector direction is given with the direction angles, a, 8, and v, that the vector
makes with each of the coordinate axes (Fig. A-14). Direction angles are the posi-
tive angles that the vector makes with each of the positive coordinate axes. We
calculate these angles as

1%
, cosB= |—VL| ,  cosy == (A-11)

[vi

The values cosa, cosB, and cosy are called the direction cosines of the vector. Actu-

ally, we only need to specify two of the direction cosines to give the direction of
V, since

cos?a + cos?p +costy = 1 (A-12)
Vectors are used to represent any quantities that have the properties of

magnitude and direction. Two common examples are force and velocity (Fig.
A-15). A force can be thought of as a push or a pull of a certain amount in a par-
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Figure A-16

Two vectors (a) can be added geometrically by positioning the
two vectors end to end (b) and drawing the resultant vector from
the start of the first vector to the tp of the second vector.

ticular direction. A velocity vector specifies how fast (speed) an object is moving
in a certain direction.

Vector Addition and Scalar Multiplication

By definition, the sum of two vectors is obtained by adding corresponding com-
ponents:

Vit Vo= (Vi + Vy, Vi, + Vg, Vi, + V) (A-13)

Vector addition is illustrated geometrically in Fig. A-16. We obtain the vector sum
by placing the start position of one vector at the tip of the other vector and draw-
ing the sumination vector as in Fig. A-16.

Addition of vectors and scalars is undefined, since a scalar always has only
one numerical value while a vector has n numerical components in an n-dimen-
sional space. Scalar multiplication of a three-dimensional vector is defined as

av = @Vv,,av,aV) (A-1H

For example, if the scalar parameter a has the value 2, each component of V is
doubled.

We can also multiply two vectors, but there are two possible ways to do
this. The multiplication can be carried out so that either we obtain another vector
or we obtain a scalar quantity.

Scalar Product of Two Vectors

Vector multiplication for producing a scalar is defined as
V, Vo= |V, [V,lcos8, O<B<q (A-15)

where 6 is the angle between the two vectors (Fig. A-17). This product is called
the scalar product (or dot product) of two vectors. It is also referred to as the
inner product, particularly in discussing scalar products in tensor analysis. Equa-
tion A-15 is valid in any coordinate representation and can be interpreted as the
product of parallel components of the two vectors.

Section A-2
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Figure A-17

The dot product of two
vectors is obtained by
multiplying parallel
components.
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In addition to the coordinate-independent form of the scalar product, we
can express this product in specific coordinate representations. For a Cartesian
reference frame, the scalar product is calculated as

vl ’ vZ = Vlzle + V]yVZy + Vlzv?.x (A-16)

The dot product of a vector with itself is simply another statement of the
Pythagorean theorem. Also, the scalar product of two vectors is zero if and only
if the two vectors are perpendicular (orthogonal). Dot products are commutative

ViV, =V, V, (A-17)

because this operation produces a scalar, and dot products are distributive with
respect to vector addition

V- (V;+ V)=V, -V, + V-V, (A-18)

Vector Product of Two Vectors

Multiplication of two vectors to produce another vector is defined as
VixV,=ulV,| |V,]sing, O=6=n (A-19)

where u is a unit vector (magnitude 1) that is perpendicular to both V; and V,
(Fig. A-18). The direction for u is determined by the right-hand rule: We grasp an
axis that is perpendicular to the plane of V, and V, so that the fingers of the right
hand curl from V, to V,. Our right thumb then points in the direction of u. This
product is called the vector product (or cross product) of two vectors, and Equa-
tion A-19 is valid in any coordinate representation. The cross product of two vec-
tors is a vector that is perpendicular to the plane of the two vectors and with
magnitude equal to the area of the parallelogram formed by the two vectors.

We can also express the cross product in terms of vector components in a
specific reference frame. In a Cartesian coordinate system, we calculate the com-
ponents of the cross product as

Vi XV, = (Vy,Vy, — VoV, ViV, — ViV, ViV — ViVo)  (A-20)

If we let u,, u, and u, represent unit vectors (magnitude 1) along the x, y, and z
axes, we can write the cross product in terms of Cartesian components using de-
terminant notation:

Vix V¥ Figure A-18

The cross preduct of two vectors is
a vector in a direction
perpendicular to the two onginal
vectors and with a magnitude equal
to the area of the shaded
parallelogram.




u, u, u,
ViXV,= |V, v,V (A-21)
VZ! va vlz

The cross product of any two parallel vectors is zero. Therefore, the cross
product of a vector with itself is zero. Also, the cross product is not commutative;
it is anticommutative:

VXV, = —=(V, X V) (A-22)
And the cross product is not associative:
V, X (V, X V,) #(V, X V) XV, (A-23)
But the cross product is distributive with respect to vector addition; that is,

V, X (V, + V) = (V, X Vo) + (V, X V) (A-24)

A-3
BASIS VECTORS AND THE METRIC TENSOR

We can specify the coordinate axes in any reference frame with a set of vectors,
one for each axis (Fig. A-19). Each coordinate-axis vector gives the direction of
that axis at any point along the axis. These vectors form a linearly independent
set of vectors. That is, the axis vectors cannot be written as linear combinations of
each other. Also, any other vector in that space can be written as a linear combi-
nation of the axis vectors, and the set of axis vectors is called a basis (or a set of
base vectors) for the space. In general, the space is referred to as a vector space
and the basis contains the minimum number of vectors to represent any other
vector in the space as a linear combination of the base vectors.

Orthonormal Basis

Often, vectors in a basis are normalized so that each vector has a magnitude of 1.
In this case, the set of unit vectors is called a normal basis. Also, for Cartesian
reference frames and other commonly used coordinate systems, the coordinate
axes are mutually perpendicular, and the set of base vectors is referred to as an
orthogonal basis. If, in addition, the base vectors are all unit vectors, we have an
orthonormal basis that satisfies the following conditions:

w e =1, forall k

u -y = 0, for all j# k (A-25)

Most commonly used reference frames are orthogonal, but nonorthogonal coor-
dinate reference frames are useful in some applications including relativity the-
ory and visualization of certain data sets.

For a two-dimensional Cartesian system, the orthonormal basis is

Section A-3

Basis Vectors and the Metric
Tensor

Figure A-19

Curvilinear coordinate-axis

vectors.
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u,=01,0, u,=(070D (A-26)
And the orthonormal basis for a three-dimensional Cartesian reference frame is

u, =(1,0,0), u, ={0,1,0), u.=(0,0,1 (A-27)

Metric Tensor

Tensors are generalizations of the notion of a vector. Specifically, a tensor is a
quantity having a number of components, depending on the tensor rank and the
dimension of the space, that satisfy certain transformation properties when con-
verted from one coordinate representation to another. For orthogonal systems,
the transformation properties are straightforward. Formally, a vector is a tensor
of rank one, and a scalar is a tensor of rank zero. Another way to view this classi-
fication is to note that the components of a vector are specified with one sub-
script, while a scalar always has a single value and, hence, no subscripts. A ten-
sor of rank two thus has two subscripts, and in three-dimensional space, a tensor
of rank two has nine components (three values for each subscript).

For any general (curvilinear) coordinate system, the elements (or coeffi-
cients) of the metric tensor for that space are defined as

S/A = u; (A'ZB)
Thus, the metric tensor is of rank two and it is symmetric: g, = g,,. Metric tensors
have several useful properties. The elements of a metric tensor can be used to de-
termine (1) distance between two points in that space, (2) transformation equa-
tions for conversion to another space, and (3) components of various differential

vector operators (such as gradient, divergence, and curl) within that space.
In an orthogonal space:

gi=0, for j#k (A-29)

And in a Cartesian coordinate system (assuming unit base vectors):

1, ifj=k
2 = (A-30)

0, otherwise

The unit base vectors in polar coordinates can be expressed in terms of
Cartesian base vectors as

u, = u,cos8 + u,sing, U, = —u,rsin® - u,rcosb (A-3D

Substituting these expressions into Eq. A-28, we obtain the elements of the metric
tensor, which can be written in the matrix form:

1 0
g~ 0 (A-32)

For a cylindrical coordinate reference frame, the base vectors are

u, _ u,cosd + u,sind, Uy . —u, psing + u,pcosh, u, (A-33)



And the matrix representation for the metric tensor in cylindrical coordinates is
1 0 0
0 0 1
We can write the base vectors in spherical coordinates as

u, = u,cosfsing + u, sindsing + u, cos¢
u, = —u,rsinfsing + u,rcosfsing

Uy = u,rcosfcosd + u,rsing cosd - u,rsing (A-35)

Then the matrix representation for the metric tensor in spherical coordinates is

1 0 0
g- 0 s‘m2¢ 0 (A-36)
0 0 r
A-4
MATRICES

A matrix is a rectangular array of quantities (numbers, functions, or numerical
expressions), called the elements of the matrix. Some examples of matrices are

X
360 —0.01 2.00 & x
[—546 0.00 1.63]’ LZ* xZ]' la, a; a5, y | A37)
z

We identify matrices according to the number of rows and number of columns.
For these examples, the matrices in left-to-right order are 2 by 3, 2 by 2, 1 by 3.
and 3 by 1. When the number of rows is the same as the number of columns, as
in the second example, the matrix is called a square matrix.

In general, we can write an m by n matrix as

ay  dp - &y,
aQ 8p ... Ay

A= : : : (A-38)
Gl Gpg - r By

where the a; represent the elements of matrix A. The first subscript of any ele-
ment gives the row number, and the second subscript gives the column number.

A matrix with a single row or a single column represents a vector. Thus, the
last two matrix examples in A-37 are, respectively, a row vector and a column vec-
tor. In general, a matrix can be viewed as a collection of row vectors or as a col-
lection of column vectors.

When various operations are expressed in matrix form, the standard mathe-
matical convention is to represent a vector with a column matrix. Following this
conventjon, we write the matrix representation for a three-dimensional vector in
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Appendix A Cartesian coordinates as

V=1V (A-39)

We will use this matrix representation for both points and vectors, but we must
keep in mind the distinction between them. It is often convenient to consider a
poirit as a vector with start position at the coordinate origin within a single coor-
dinate reference frame, but points do not have the properties of vectors that re-
main invariant when switching from one coordinate system to another. Also, in
general, we cannot apply vector operations, such as vector addition, dot product,
and cross product, to points.

Scalar Multiplication and Matrix Addition

To multiply a matrix A by a scalar value s, we multiply each element a; by the
scalar. As an example, if

1 2 3
A‘[4 5 '6]
then
3 6 9
3“_[12 15 ]8}

Matrix addition is defined only for matrices that have the same number of
rows m and the same number of columns n. For any two m by n matrices, the
sum is obtained by adding corresponding elements. For example,

12 3]+[ 0 15 0.2]{1 35 3.2]
4 5 6|/ |-6 11 -10] [-2 61 -4

Matrix Multiplication

The product of two matrices is defined as a generalization of the vector dot prod-
uct. We can multiply an m by n matrix A by a p by 4 matrix B to form the matrix
product AB, providing that the number of columns in A is equal to the number
of rows in B (i.e., n = p). We then obtain the product matrix by forming sums of
the products of the elements in the row vectors of A with the corresponding ele-
ments in the column vectors of B. Thus, for the following product

C=AB (A-40)
we obtain an m by g matrix C whose elements are calculated as

n
C,') = Eaikbk) (A-41)
k=1

In the following example, a 3 by 2 matrix is postmultiplied by a 2 by 2 ma-
trix to produce a 3 by 2 product matrix:



0 -1 1 2 0-1+(-1D-3 0-2+(-1)-4 -3 -4
5 7[3 4]= 5-1+7-3 5-2+7-4 |=] 26 38
-2 8 -2-1+8-3 -2:2+8-4 22 28

Vector multiplication in matrix notation produces the same result as the dot
product, providing the first vector is expressed as a row vector and the second
vector is expressed as a column vector:

4
[123]] 5)=1(32]
6

This vector product results in a matrix with a single element (a 1-by-1 matrix). If
we multiply the vectors in reverse order, we obtain a 3 by 3 matrix:

4 4 8 12
§{(123)]=|5 10 15
6 6 12 18

As the previous two vector products illustrate, matrix multiplication, in
general, is not commutative. That is,

AB#BA (A-42)
But matrix multiplication is distributive with respect to matrix addition:
AB+CO=AB+AC (A-43)

Matrix Transpose

The transpose AT of a matrix is obtained by interchanging rows and columns.
For example,

1 4 a
T
E : 2] =2 5| wear=|s (4-44)
’ 3 6 c
For a matrix product, the transpose is
(AB)T = BTAT (A-45)

Determinant of a Matrix

For a square matrix, we can combine the matrix elements to produce a single
number called the determinant. Determinants are defined recursively. For a 2 by
2 matrix, the second-order determinant is defined to be

a;, a
" 2= ayfy ~ 4,8y {A-46)

dy  an

Section A4

Matrices

613



Appendix A

614

We then calculate higher-order determinants in terms of lower-order determi-
nants. To calculate the determinants of order 3 or greater, we can select any col-
umn k of an n by n matrix and compute the determinant as

detA = > (~1)"*aydetA, (A-47)

1=1

where detA; is the (r—1) by (n—1) determinant of the submatrix obtained from A
by deleting the jth row and the kth column. Alternatively, we can select any row j
and calculate the determinant as

n

detA = 3 (~1)"*a,detA, (A-48)
k=1

Calculating determinants for large matrices (n > 4, say) can be done more
efficiently using numerical methods. One way to compute a determinant is to de-
compose the matrix into two factors: A = LU, where all elements of matrix L that
are above the diagonal are zero, and all elements of matrix U that are below the
diagonal are zero. We then compute the product of the diagonals for both L and
U, and we obtain detA by multiplying these two products together. This method
is based on the following property of determinants:

det(AB) = (detA)(detB) (A-49)

Another method for calculating determinants is based on Gaussian elimination
procedures (Section A-9).

Matrix Inverse

With square matrices, we can obtain an inzverse matrix if and only if the determi-
nant of the matrix is nonzero. If an inverse exists, the matrix is said to be a non-
singular matrix. Otherwise, the matrix is called a singular matrix. For most prac-
tical applications, where a matrix represents a physical operation, we can expect
the inverse to exist.

The inverse of an 1 by n square matrix A is denoted as A~'and

AAT'=ATA =1 (A-50)

where I is the identiy matrix. All diagonal elements of 1 have the value 1, and all
other (off diagonal)} elements are zero.

Elements for the inverse matrix A~! can be calculated from the elements of
A as

L, (=DM detAy

W= T delA (A=0

where aj;' is the element in the jth row and kth column of A™}, and A, is the

(n — 1) by (n -- 1) submatrix obtained by deleting the kth row and jth column of
matrix A. Again, numerical methods can be used to evaluate the determinant
and the elements of the inverse matrix for large values of n.



A-5
COMPLEX NUMBERS

By definition, a complex number z is an ordered pair of real numbers:
z=(x,y (A-52)

where x is called the real part of z, and y is called the imaginary part of z. Real
and imaginary parts of a complex number are designated as

x=Re(z), y=Im@) (A-53)
Geometrically, a complex number is represented in the complex plane, as in Fig.
A-ZO-Complex numbers arise from solutions of equations such as
2+1=0, x»2-2x+5=0
which have no real-number solutions. Thus, complex numbers and complex

arithmetic are set up as extensions of real numbers that provide solutions to such
equations.

Addition, subtraction, and scalar multiplication of complex numbers are
carried out using the same rules as for two-dimensional vectors. Multiplication of
complex numbers is defined as

Oy, y)(xa, y2) = (ixy — Yav, X0y + Xoyy) (A-59)

This definition for complex numbers gives the same result as for real-number
multiplication when the imaginary parts are zero:

(xy, 0)(xz, 0) = (xyxp, 0)
Thus, we can write a real number in complex form as
x = (x,0)

Similarly, a pure imaginary number has a real part equal to 0: (0, ).
The complex number (0, 1) is called the imaginary unit, and it is denoted by

i=0,1 (A-55)
imaginary axis
v+ ez
Figure A-20
. Position of a point z in the complex
x real axis  plane.
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symbol i is used to represent electrical current. From the rule for complex muiti-
plication, we have

2=(0,1)0,1) = (-1,0)
Therefore, 2 is the real number —1, and
i=VvV-1 (A-56)

Using the rule for complex multiplication, we can write any pure imaginary
number in the form

iy=0,100,y) = O,y
Also, by the addition rule, we can write any complex number as the sum
z=(x,0+0,y
Therefore, another representation for a complex number is
z=x+1iy (A-57)

which is the usual form used in practical applications.
Another concept associated with a complex number is the complex conjugate:

z=x-1y (A-58)

Modulus, or absolute value, of a complex number is defined to be
lzl =z =V + (A-59)
which gives the length of the “vector” representing the complex number (i.e., the

distance from the origin of the complex plane to point z). Real and imaginary
parts for the division of two complex numbers is obtained as

4 _ak
2, Tk
_ (Il; !1)(12,_!2)
- 3+y3 (A-60)

- ("ﬁz Y Xy — xlyz)
2 7 2
3 +y 3+ 43

A particularly useful representation for complex numbers is to express the
real and imaginary parts in terms of polar coordinates (Fig. A-21):

z = r(cosf + ising) (A-61)
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2= {xy)

Figure A-21
Polar coordinate position of a
| real xaxis  complex number z.
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We can also write the polar form of z as
=ref (A-62)
where e is the base of the natural logarithms (¢ = 2.718281828 .. .), and
e = cosf + ising (A-63)

which is Euler’s formula. Complex multiplications and divisions are easily ob-
tained as

Lzy = nredt®, ? =rneh - %
2

And the nth roots of a complex number are calculated as

+ 2% +
\'-/'=\'/;[cos(0 ‘”)Hsin(o :k")], k=0,1,2...,n-1 (A6d)

n
The n roots lie on a circle of radius ¥/r with center at the origin of the complex
plane and form the vertices of a regular polygon with n sides.

A-6
QUATERNIONS

Complex number concepts are extended to higher dimensions with quaternions,
which are numbers with one real part and three imaginary parts, written as

g=s+ia+jb+ke (A-65)

where the coefficients a, b, and ¢ in the imaginary terms are real numbers, and pa-
rameter s is a real number called the scalar part. Parameters i, j, k are defined with
the properties

f=jt=K=~1, ij=-ji=k (A-66)
From these properties, it follows that

jk=-kj=i, ki=—ik=j (A-67)
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Scalar multiplication is defined in analogy with the corresponding opera-
tions for vectors and complex numbers. That is, each of the four components of
the quaternion is multiplied by the scalar value. Similarly, quaternion addition is
defined as

g tag= (s, + 52) + i(“] +a,) + }(b| + bz) + k(C] + Cz) (A-68)
Multiplication of two quaternions is carried out using the operations in Eqs. A-66
and A-67.

An ordered-pair notation for a quaternion is also formed in analogy with
complex-number notation:

g =(s,v) (A-69)

where v is the vector (g, &, ). In this notation, quaternion addition is expressed as

g1t G2 =(sp + 5, vy + V) (A-70)

Quaternion multiplication can then be expressed in terms of vector dot and cross
products as

1y = (8157 — V1 -V, 51v; + 8 v + v X V) (A-7T)

As an extension of complex operations, the magnitude squared of a quater-
nion is defined using the vector dot product as

[gl2=s2+v-v (A-72)
And the inverse of a quaternion is

1
= W(S’ -v) (A-73)

so that

97 =q4=(10

A-7
NONPARAMETRIC REPRESENTATIONS

When we write object descriptions directly in terms of the coordinates of the ref-
erence frame in use, the respresentation is called nonparametric. For example,
we can represent a surface with either of the following Cartesian functions:

fix,y,2) =0, or z=flx,y) (A-74)
The first form in A-74 gives an implicit expression for the surface, and the second

form gives an explicit representation, with x and v as the independent variables,
and with z as the dependent variable.



Similarly, we can represent a three-dimensional curved line in nonparamet-
ric form as the intersection of two surface functions, or we could represent the
curve with the pair of functions

y=fix), z=gh (A-75)

where coordinate x is selected as the independent variable. Values for the depen-
dent variables y and z are then determined from Eqs. A-75 as we step through
values for x from one line endpoint to the other endpoint.

Nonparametric representations are useful in describing objects within a
given reference frame, but they have some disadvantages when used in graphics
algorithms. If we want a smooth plot, we must change the independent variable
whenever the first derivative (slope) of either {x) or g(x) becomes greater than 1.
This means that we must continually check values of the derivatives, which may
become infinite at some points. Also, Egs. A-75 provide an awkward format for
representing multiple-valued functions. For instance, the implicit equation of a
circle centered on the origin in the xy plane is

Ay =r
and the explicit expression for y is the multivalued function

y=xVr -1

In general, a more convenient representation for object descriptions in graphics
algorithms is in terms of parametric equations.

A-8

PARAMETRIC REPRESENTATIONS

Euclidean curves are one-dimensional objects, and positions along the path of a
three-dimensional curve can be described with a single parameter u. That is, we
can express each of the three Cartesian coordinates in terms of parameter u, and
any point on the curve can then be represented with the following vector point
function (relative to a particular Cartesian reference frame):

PGo) = (x(w), y(u), 2(w)) (A-76)
Often, the coordinate equations can be set up so that parameter u is defined over
the unit interval from 0 to 1. For example, a circle in the xy plane with center at
the coordinate origin could be defined in parametric form as

x(u) = rcos@@mu),  y(u) = rsinQQmu), wy=0, O0=u=1 (A-77)

Other parametric forms are also possible for describing circles and circular arcs.
Curved (or plane) Euclidean surfaces are two-dimensional objects, and po-
sitions on a surface can be described with two parameters 1 and v. A coordinate

position on the surface is then represented with the parametric vector function

P(u, v) = (x(u, v), y(u, v), z(u, v)) (A-78)
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Section of a spherical surface
described by lines of constant
u and lines of constant v in
Egs. A-79.
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where the Cartesian coordinate values for x, y, and z are expressed as functions of
parameters u and v. As with curves, it is often possible to arrange the parametric
descriptions so that parameters u and v are defined over the range from0 to 1. A
spherical surface with center at the coordinate origin, for example, can be de-
scribed with the equations

x(u,v) = rsin(au) cos(2mv)

y(u,v) = rsin(#u) sin(2mv)

z(u,v) = rcos(mu) (A-79)
where r is the radius of the sphere. Parameter u describes lines of constant lati-
tude over the surface, and parameter v describes lines of constant longitude. By
keeping one of these parameters fixed while varying the other over a subinterval

of the range from 0 to 1, we could plot latitude and longitude lines for any spher-
ical section (Fig. A-22).

A-9
NUMERICAL METHODS

In computer graphics algorithms, it is often necessary to solve sets of linear equa-
tions, nonlinear equations, integral equations, and other functional forms. Also,
to visualize a discrete set of data points, it may be useful to display a continuous
curve or surface function that approximates the points of the data set. In this sec-
tion, we briefly summarize some common algorithms for solving various numer-
ical problems.

Solving Sets of Linear Equations
For variables x;, k = 1,2,.. ., n, we can write a system of n linear equations as

apx; +apX; + o+ ax, = b

ApXy +apX, + o+ @x, = by

AnX, Y a,5x, + -+ a,x, =b, (A-80)

where the values for parameters a; and b; are known. This set of equations can be
expressed in the matrix form:

AX=B (A-8D)
with A as an n by n square matrix whose elements are the coefficients a, X as the
column matrix of , values, and B as the column matrix of b; values. The solution
for the set of simultaneous linear equation can be expressed in matrix form as

X=A"'B (A-82)
which depends on the inverse of the coefficient matrix A. Thus the system of

equations can be solved if and only if A is a nonsingular matrix; that is, its deter-
minant is nonzero.



One method for solving the set of equations is Cramer’s Rule:

detA,
%= oA (A-83)
where A, is the matrix A with the kth column replaced with the elements of B.
This method 1s adequate for problems with a few variables. For more than three
or four variables, the method is extremely inefficient due to the large number of
multiplications needed to evaluate each determinant. Evaluation of a single n by
n determinant requires more that n! multiplications.

We can solve the system of equations more efficiently using variations of
Gaussian elimination. The basic ideas in Gaussian elimination can be illustrated
with the following set of two simultaneous equations

X+ 2x, = —4

1

(A-84)

3x; + 4x,

To solve this set of equations, we can multiply the first equation by —3, then we
add the two equations to eliminate the x, term, yielding the equation

-2, = 13

which has the solution x, = —13/2. This value can then be substituted into either
of the original equations to obtain the solution for x|, which is 9. Efficient algo-
rithms have been devised to carry out the elimination and back-substitution
steps.

Gaussian elimination is sometimes susceptable to high roundoff errors, and
it may not be possible to obtain an accurate solution. In those cases, we may be
able to obtain a solution using the Gauss—Seidel method. We start with an initial
“guess” for the values of variables x, then we repeatedly calculate successive ap-
proximations until the difference between successive values is “small.” At each
iteration, we calculate the approximate values for the variables as

_ by ~apx, —apX; — -~ aLx,
X =
an
by —anx, —apxy — A
) nXy 1nX2 i
X, = e (A-85)
a;

If we can rearrange matrix A so that each diagonal element has a magnitude
greater than the sum of the magnitudes of the other elements acraoss that row,
than the Gauss-Seidel method is guaranteed to converge to a solution.

Finding Roots of Nonlinear Equations

A root of a function f(x) is a value for x that satisfies the equation f{x) = 0. One of
the most popular methods for finding roots of nonlinear equations is the New-
ton—Raphson algorithm. This algorithm is an iterative procedure that approximates
a function f(x) with a straight line at each step of the iteration, as shown in Fig,
A-23. We start with an initial “guess” x, for the value of the root, then we calcu-
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tangent line

Figure A-23
Approximating a curve at an initial
value x, with a straight line that is
tangent to the curve at that point.

late the next approximation to the root as x, by determining where the tangent
line from x, crosses the x axis. At x,, the slope (first derivative) of the curve is

af _ foxo_ (A-86)
dx  xy — x
Thus, the next approximation to the root is
_ o -
Xy = X £(xo) (A-87)

We repeat this procedure at each calculated approximation until the difference
between successive approximations is “small enough”.

If the Newton-Raphson algorithm converges to a root, it will converge
faster than any other root-finding method. But it may not always converge. For
example, the method fails if the derivative f'(x) is 0 at some point in the iteration.
Also, depending on the oscillations of the curve, successive approximation may
diverge from the position of a root. The Newton-Raphson algorithm can be ap-
plied to a function of a complex variable, fiz), and to sets of simultaneous nonlin-
ear functions, real or complex.

Another method, slower but guaranteed to converge, is the bisection method.
Here we need to first determine an x interval that contains a root, then we apply
a binary search procedure to close in on the root. We first look at the midpoint of
the interval to determine whether the root is in the lower or upper half of the in-
terval. This procedure is repeated for each successive subinterval until the differ-
ence between successive midpoint positions is smaller than some preset value. A
speedup can be attained by interpolating successive x positions instead of halv-
ing each subinterval (false-position method).

Evaluating Integrals

Integration is a summation process. For a function of a single variable x, the inte-
gral of f(x) is the area “under” the curve, as illustrated in Fig. A-24.

An integral of f(x) can be numerically approximated with the following
summation

a

f fydx = > filxrax, (A-58)
b

k=1

where f(x) is an approximation to f(x) over the interval Ax,. For example, we can
approximate the curve with a constant value in each subinterval and add the
areas of the resulting rectangles (Fig. A-25). The smaller the subdivisions for
the interval from a to b, the better the approximation (up to a point). Actually, if
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b
Area = L f{x) dx

Figure A-24

The integral of f(x) is equal to the
amount of area between the
function and the x axis over the
interval froma to b.

fix}

Xg=8 X vee x,=b
Figure A-25
Approximating an integral as the sum of the areas of small
rectangles.

the intervals get too small, the values of successive rectangular areas can get lost
in the roundoff error.

Polynomial approximations for the function in each subinterval generally
give better results than the rectangle approach. Using a linear approximation, we
obtain subareas that are trapezoids, ard the approximation method is then re-
ferred to as the trapezoid rule. If we use a quadratic polynomial (parabola) to ap-
proximate the function in each subinterval, the method is called Simpson’s rule
and the integral approximation is

b -
A n-1 n-2
j fx)dx = {[ﬂa) + ) + 4> flr) + 25 f(rk)] (A-89)

a oddk=1 evenk=2

where the interval from a to b is divided into n equal-width intervals:

Ax = (A-90)

=

where 1 is a multiple of 2, and with
Xy =a, X = X3 + Ax, k=1,2,...,n

For functions with high-fmquenéy oscillations (Fig. A-26), the approxima-

tion methods previously discussed may not give accurate results. Also, multiple

integrals (involving several integration variables) are difficult to solve with Simp-
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Figure A-26
4 A function with high-frequency
a b x oscillations.

son’s rule or the other approximation methods. In these cases, we can apply
Monte Carlo integration techniques. The term Monte Carlo is applied to any
method that uses random numbers to solve deterministic problems.

We apply a Monte Carlo method to evaluate the integral of a function such
as the one shown in Fig. A-26 by generating n random positions in a rectangular
area that contains f(x) over the interval from a to b (Fig. A-27). An approximation
for the integral is then calculated as

b
[ fwrax = b - ) e (A-91)

where parameter n.,, is the count of the number of random points that are be-
tween f(x) and the x axis. A random position (x, y) in the rectangular region is
computed by first generating two random numbers, r, and 7,, and then carrying
out the calculations

B = Yoax = Yourv x=a+nb—a), Y= Ymin T2 K (A-92)

Similar methods can be applied to multiple integrals.

Random numbers r, and r, are uniformly distributed over the interval (0, 1}.
We can obtain random numbers from a random-number function in a high-level
language, or from a statistical package, or we can use the following algorithm,
called the linear congruential generator:

i, = i, + ctmodm), k=1,2,3,...
(A-93)

1
yo= &
m

where parameters 4, ¢, m, and i; are integers, and i, is a starting value called the
seed. Parameter m is chosen to be as large as possible on a particular machine,
with values for a and ¢ chosen to make the string of random numbers as long as
possible before a value is repeated. For example, on a machine with 32-bit integer
representations, we can set m = 232, g = 1664525, and ¢ = 1013904223.

fix)

MW

Figure A-27
A rectangular area enclosing a
function f(x) over the interval (a, b).
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Fitting Curves to Data Sets

A standard method for fitting a function (linear or nonlinear) to a set of data
points is the least-squares algorithm. For a two-dimensional set of data points
e yo), k=1, 2, S we first select a functional form f(x), which could be a
straight-line function, a polynomial function, or some other curve shape. We then
determine the differences (deviations) between fx) and the y, values at each x,
and compute the sum of deviations squared:

E=5ly— folf (A-99)
k=1

Parameters in the function fix) are determined by minimizing the expression for
E. For example, for the linear function

f) =a, + ayx

parameters a, and 4, are assigned values that minimize E. We determine the val-
ues for 4, and a, by solving the two simultaneous linear equations that result
from the minimization requirements. That is, E will be minimum if the partial de-
rivative with respect to 4, is 0 and the partial derivative with respect to a, is 0:

JE oF
gﬂ =0, a—a, =0
Similar calculations are carried out for other functions. For the polynomial
f)=ag+ax +a,x>+ - +a,x"
we need to solve a set of n linear equations to determine values for parameters g;.

And we can also apply least-squares fitting to functions of several variables
fxy, x5, ..., x,,) that can be linear or nonlinear in each of the variables.

Section A-9

Numerical Methods
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