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CALCULUS- 1 / (Marks 50)
A Text Book on Differential calculus By Mohammed,
Bhattacharjee and Latif.

WML, SHIE-2 SIiE-9 (W Uniform continuity) f&f@d
SO, ST -1y STT-1V(a) IV(b) SU4@-(¢) Art 5.5, Art
5.6, Art 5.7, Art 5:8-etc.

W= Art 7.2 Art 7.3 Art 7.4 Art 7.5 9 @3 A
Se wETa=-X (A) Art 102, Art 103 S9iA-X (B) Art 108.
Sqm-X1 Art 11.1 Art 11.2 Art 11.3 Art 113(a), Art 11.5

Integral Calculus: A Text Book on Intgral Calculus By
Mohammed, Bhattacharjee and Latif.

WY (20 FAANT-Y Definite Integrals I4H~9 Art 22
SqjE-q(B) SIGR-Vli(c)

Paper II (417 =)

BASIC ALGEBRA.: (Marks 50)
See Shahidullah and Bhattncha:leesﬁ!’extbnok on
Higher Algebra, Modern Algebra, Theory of Numbers
and Trigonometry.

Elements of Logic (s "{%ﬁ"rﬂ) (Mathematical
Hlillt‘.!lleﬂtb o] { ok S A Deductic reasoning) see
Appendix (Sf® 98 @3 2919) Basic Algebra 93 & |
Elements of set Theory : BEfae 73 w3 wud Qe
(Sets and Subsets, Relation-Orders Equivalence;
Punctions ete. 4T A6 *1i@)

Real Number System : Field and order properties
Natural Numbers, Absolute value (See First Chapter
ol A Test Book on Differential Caleulus by Mohammed,
Bhattacharjee and Latif] '

Inequalities : Basic Inequalities :

Weler strass's: Tcheby chef's Cauchy's: A. M.
(Arithmetic Mean) and Geometrie Means Ufafde
GEATEAa] 4849 NS (Inequalities UM 9%, Art 2(i),
2(11), 2(ii1) Art 3 Art 4. Art 5, Art 8, Art 9. Hnldcrs
Inequality Art 14, @@ weR)

Complex number: System.' field of complex numbers
De moiver's theorem and its application- See Algebra
72 @3 Trigonometry. (fQIIIANIS) WA @F) w9y 7],
SqriH o9 |

Eleméntary Number Theory : Divisibility,
Fundamental Theorem Arithmetic, Congruence. See
Theory of Number of Higher Algebra-99 A4 ©F
(Theory of Numbers) 4 |

Summation of finite Series : Arithmetico-Geometric
Series, Method of Difference, Successive differences.
Use of mathematical induction : See Higher Algebra
(SgE—9 111 (A), HIE), HHC):

Theory of Equations : Synthetic division, Number of
roots of Polynomial, equations. Relation between
roots and coefficients. Multiplicitly of roots,
Symmetric functions of roots. Transformation of
equations. See Higher Algebra S4IA-8 (ch. IV) Art 50
(e Al [Vorda |

Linear Algebra :

Matrix, Determinant. 4t Applications of matrices
and determinants in solving system of linear
equiions—sSee Higher Algebra by Shahidulla &
Bhattacharjee :

w4 e (Determinants) J<E-y 8 GBS (Matrix)

General vector space (03 Cayley-Hameltion's
Theorem. Application-43 &7 (X (FF @F0  Linear
algebra 92 39 Schaums Serice @9 I3 B! T TS
AL | A 98 MR (TS A, O (@FA-QNET TAAW 8
9J9%/4 Sce Shahidullah and Bhattacharjee's Higher
Algebra &8 (¥ Matrix SEUTAT Art 115.11 (?TF  Art
115.14 RS =iieq 30 |
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PREFACE TO 10TH EDITION

In this edition Set Algebra has been used in delining Funetions,
Relations and related problems. A list ol formulae of Dillerential
Caleulus and sel Algebra is placed al the beginning ol (he subject
matters. Almost all the Chaplers are horoughly revised. altered
and adjusted. New sums both worked oul and in exercise have
been added. Due to readjustment, addition and alieralion there
may be some errors and maladjustments which we desire (o
correct in the next edition ol the book.

Suggestions for the improvement of the book and intimation of
errors will be cordially recieeved. AN i

May, 2001 AUTHORS



puhu ffER'S NOTE

The Present edition op Al book on Differential Calculus” is
published afier thorough re ﬁm of the whole book wilh a veiw Lo

enricing the contents with I}:eb ¢n ideas al home and abroad.

Md. Abdul Latif Dept Mathematics, Rajshahi Universily.
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in this respect.
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1992 Publisher
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"Integral Cajculus” and iy
Pass and Honours Studt’:nt%e
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of Universities. Attempts peen made to claberate each article
with a good numbers of € ples. The pass students may drop
harder sums and the g xag marked with asterisks. Honours
students should read th g k thoroughly. A good number of
examples gre given in th ak and for their collection foreign
books, Unijyersity questiq;: ?ers of various examinations have

been consy|ted.

The book consists of g

of. A. B. Mitra and Prof. H. N. Datta

" dng of some chapters of the book.
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vement ol the book, intimation of
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UNIFORM CONTINUITY
Definition : A function f(y) is said to be uniformly continuous

in la.b | if and only if (iff) for a

given arbitrary small positive
number ¢, there exisis

a number § | depending only on ¢, such that
V1. X2 € la.bl and | x—x, | <8= | fix, )=flxo) < &
D:fférenc‘e between conlinuity and uniform continuity.
Ans: Uniﬁ)rm continuity is a property a
interval not with a single point.

Note: The uniform continuity is defined with reference to a
linite closed interval la.bl. But no such restriction is necessary for
uniform cpntinu'i-ty. ‘The definition is also true f:-:r iqte:rva-ls {a,bj,
(a.<) Open intervals, = il

Art. A fmwtion which is cqn!:lﬁuo_us in a closed and bﬂuhded
Interval [a,b] is uniformly continuous in fa,b]. i O

Proof: Let the interval la,b]
PRSP e [xn_l,p] Lol 5 )

such that if z, z, e [y,
we have

ssociated with an

be divided info sub intervals
%] or belong to any subinterva,tl,

i
[fiz))-fl25) | <G E i)

Let us eonsider a small positive number

& such that_ ﬁ.— is' not
Mreater than the least of the numbers :
X|=~a, x2—x1, K=Kk, il b—x,,_l AT [3]1

Let us consider Z),Z9tW0 points in the same subinterval say x,-
¢ k

My then by (2) | 2z-2, | <8 (> 0) and| f (z) —f{zgl_IC;:"E

% % . 1
"[ X X X1 X }5-1-1 IEEn—l ]b

W%y, %y do not belong to the same interval (xp-x;) = [x;,xy],




8
;
let z)lies in xp-x;= [x.%] and zgin (xg—xg) = X2, X5l

i, e: one in each ol the two econsecutive intervals

Ix. Xz] and  [xg. x4]. then we have
X\ € 2y <Xp<Zp< Xy 1. € in general if 2;,zybe ihe points in

[ Xy, %) and [ X, X,s1] respectively, i & Xri Z,<X,<Z3<Xry 1}

. then | f(zy)-fz2) | = | fley) =flx) + ) - flzs) |
L 1 ;L

S| f lz) = Slx) |+ | F)-f)| s, er,e=¢

that for given £>0,there exists a small

But we have noticed
~flz;) | ¢ for any two points in

positive number >0 such that | f(z))
| @.b] such that [z-23| <8
Hence f(x is uniformly continuous in [a.bl

'Hl.l.. Prove. that _ﬂx] = x2for all x ¢ R is uniformly

continuous om (0,1l _
Ans; Let x;, X be any two points in (0.1], then
| fxg) ~flx2) | =|xz'1—1221;[x1—xgl [xp4xg | ereeee(D)
r be the values of xjand X3

X)X € (0, 1] = | xy4x2 | <2. whateve

Between 0 and 1. Now from (1)
| flxy) = Slxg) | <2 |xy-%z | --ne (2)
.&galﬁ if | xy-xg | <8, then from (2)
| Sl (xp) | <2] x-xg| <28 ...... from (3)
' 1 !
If €>0 Is given, let 8= o & then from (3)
1 1 v
| flx) = flxg) | <2. o€ =€and‘|x1—x2|<?”‘ e=0

or, | flx)) ~J (xp) < eand lxl-lecﬁ_
which are the conditions of uniform continuity.

Hence f( = x2is uniformly continuous.

¢

Ex. 2. Show that flx) = 1
Flx) = o (x>0) is nnt uniformly ontinuous*

in (0,1]
Ans: : 51
Let us consider two points Xy and xy such that
X1, x5 e (0,1], - i | L I.
”EhL I | % .\c2]<5=>]_,“|:.\qj—‘;l‘[x2|<e / .
If g= 2 al-qd §>0, any posilive number for- n>1/8 ¥
I = "
we take xy=1/n. xy=1/(n+1) : x;.x, ¢ (0,1], the
L) ~fl) | = 2= .
P | =|n-m+1)] = 1>¢
when |x;-x| <8
H
ence f(x) = 1/x is not uniformly continuous on (0,1]

Note. 1. The fu :
. netion is : y
Sheie 2o ‘-mfft.?rtn!y continuous on [a, o).

Ex. Show th ‘ |
at f(x) = x3+3x2-

uniformly continuous or not o o

Ex. !

Let x;x; be any two points on [-2.3], then
[ flxy) — Flxg) | = Ixl3+3112—2x|+?—x“2~3x22+2x 7|
- [ 21_
B | [XI1—)(23}"3[.{12—x22]—2[xl—leI

= | imxg) ber?4x0364252)-3x, 4 xg) (x1-x5) ~2(x1-x) |
‘ 1-X5

= |{x)~x; 2 .
17X2) {1+ x0) X1x2}=-3(x; +x5) (x7-x3) 2(x1-x2) ... (1)

Nowx),xp € [-2,3] — |1+ | <8, x1x5<3.
I |x;2|<|8 then from (1)
[F0a) <fle) | <] §(3-3) -3.3 § - 28| = | 8.0 - 9&5’3—28
or, |flxy) ~f(0| <118 ) Pl

| Fla=flow) | < 11.e/11=¢ where ¢= 11§

and | x-x |<8 :
1 1

e=— 1§ = : |
o + then 2«1 18 or, 8=1/22which lies between-2 and 3

T ) !
ence f(x) is uniformly continuous in [-2.3] :




Ay

continunity of the

Exercise. Test the uniferm
following functions
(1) Sl = 2alx in [-2.21

x+2

()" i = ox43 in [ -1.3]

(iil) ghow that f(x) = x2for all e R.flx) 1s unif_ormly

continuous on R

(lv) Jlx =~x in [0.2] Ans. yes
£ Gy
b o= e o R Ans. yes
(vi) JSflx) = sinmnx for x & (1,2) Ans. ves
: = x?-lfor x e(1.2)
i) fid =sin x on 10,2 Ans. yes
(vili) flx) = tan"'x on R Ans. yes
2. Prove that
1
Flx) = sin il x# 0
=0 ,x=0
=)

is not uniformly con(inuous on [0,

Sol: Let e=1/3 and >0 be such that 1/z<dfor all nzm.

Let x= Zi’; 0l [1?1%?}?: be any two points of [0,). then.

R et | : A
lx-y\=l'4—n; % {__«'-Lm+ 1) 1= m(4m+1) © | m(4m+1)7T “z =R
. : (Am+l)n
Now | f(¥) — fly)|=] sin mr = L |
|

B! I g
= | sin m- sin (mn + %)[{]Sm /4| = 1,f\l'2=—?2— =0.7/2

bute=; = 033 . 0. 7/2 1. €.,

£ - fy) | > e whi
% o wh 4 ] )
continuity ) ich does not salisfy the condition of unil
! orm. -

2 .
] ///Ex. Show that the function
i i

L\] = l—.t“‘- ] l— ] 1ous at x= i ﬁllotﬁ:a
Ix} [ x] s I]Ul C'Dl'lllﬂl OLUS { 0 I ] d

” 2 BIes I}
= i q r QS1L1V € ﬂ{g ll I { O al
1€ reatest 11[‘(_‘ [ “ Ve i al1ve 3 ot numerie 1}

greater than x.
Sol: We know

[x] <% [1is] < 1ix or, —.[]—xl >—]4x

[0! = 0 - : | - ."' 1 ar, 1 it =-1,0=x< ]
=

(1] =1, 1=sx<2
$ [1—21 =]=F=] )
==1, or, —[1-2]= 1,l<x<2

[2] = 2, 28 na
2. 2203 [1-8] =1-83="2 or, -[1-3]= 2.2¢
; J =dl= 2,2<x<3

[3] = 8, 3sx<4
Jlx)=1-
J=1-x+] x] l=x] = l=x+x-(1-x) =]l-T4x=x

fh) = 1-h+h-1+h=h

J-h) = 1+he0-h~(1-04h) = 1-1_h=-h |

_f:{O] = 1-0+[0] =1-0] = 1-0+0~1= ©
J0) = flO+h) = f(O-R) = O

Al x=0, f(x) is continuous,




Ex—iv(B)

142. If y = sin~ vl - X - Jx{1- »2)} then show that
dy AL
dx= -2  2Vx-2)

143. Iftan y = {iiv o 1
} i ﬂ1+x2}-‘\lﬁ-x2]
then W - - X —
B S T
fy = tan™ TR Sk (Tt

; Q(l:x’*}—\“l-'a-xal
e .
t-hm%‘ (1-x4

V(1 + sin'd + V(1 - sin
144. lf cot y =Ji’]—1~s—{ﬁ-—“ﬁ—+‘q[—l o HE then

day _1
bl v ) — (1 -x)
1-x)— =
148. Ify=tan‘—q{il—+ e then
dy 1

dx = 2J(1 - x*) 3
146. 11 V(1 - ) + V(1 - y*) = ap@ - y?), then
dy _xV(1-y*
dx y:.llll —er“) . }
1 £
147. If y = log v:: > 3 b ”:1_—’;]. then

e
dx”™ xl(1 - %)
L R
148. Iy = 1an—1(~f§¢5 tan 5) then
V@@~ 1)

dx " 2{a + bcos x)

149. If V(1 - 22 + V(1 - y?) = alx - y). then
dy YO -y)
dx (1 - 22

150. If V(1 + v) + (]l + W) =0,
du 1 i@
then show that 7 =~ T u# v

151. If y = Visin x + V{sin x + ........ to infinity}]
@ _cos x
Show that 7 = YT |
3 + 3cos x
5 + 3 cos x'
dy 4
Show that 7, = 533 ¢cos x

U s [ 8 |
183, If y = & ad. nﬁntty

xdg= ey i
dx ~ 1 -ylog x
154. If y = (sin 9 .........ad. infinity. ).

Ldy cot x
Show that (. = T ylog sin x
x+et i
155.10y =17 T ad. mfinity.

152. If y = cos™! then

, prove that

: day_ _y
Show that P T

Ex—v 93 Example

. Ex 5. Separate.the intervals in which the polynomials 2x3 -
15x2 + 36x + 1 is increasing or decreasing.
Ans Let fix) = 2x® - 15 x* + 36x + 1

(3 = 6x2 - 30x + 36 = 6(x* - 5x + 6)
= B{X = 3] {x "2}

Now fbd >0 for x> 2
fix)<Ofor2<x<3
S >0for x> 3
fx)=0for x=2 and 3.

Hence we see that f'(x) is positive in the interval ] - =,2 [ and |
3, = | and negative in the interval | 2. 3 | Thus fIx) is monotonically

increasing in the intervals | ~ =, 2'l . ] 3.« [ and monotonically
decreasing in the intervaL ] 2, 3 |

Ex: 6. et fld = 4+ 6x° + 1752 +32x + 32) e
F 4= 613 #1762 + 32x + 32— 4 (A + 1817+ 3dx + 32 e
——e X (¥t + 25 - 2 - 2= xe* (x2 + 2:2- x -2)
= - x(c+2){x-1){x+1) e™ ; :
= 1-0(1+x)(2+x) e * Ll




ple]

The function f(x) is positive in the ntervals [-2, ~1] and [0.1}

fx) is" monotoniclly
] and monotonically

and negative in |-=.-2 |. [-1,0] and [1.=<] Hence
increasing in the intervals ~2.~1] and [0,]

decreasing in intervals J- o, ~2[. [-1°,0] and [1.]
Ex. 7. Find the intervals in which the functio
1
JI) =8x - 60 2 + 144x + 15 is in
Sol : fix) = 8x% - 60 2 + 144x + 5
Sx) = 242 - 120 x + 144

=24(x% -5x + 16)
= 24(x¢ - 2)(x - 3)

creasing or decreasing,

Now [(x) >0 if x < 2 ......... (1)
SO<0if2<x<3.... (2)
R =0 g x> Fes i (3)

and fid=0forx=2,3 ... (4)

Hence f(x) 1s positive in the intervals from (1) and (3), (<. 2)
and (3. =) i. e; negative excluding x = 2 and x = 3 Thus ﬂ_ﬂ is

inereasing t'nnnotonical]y' in [~ oo 2), (3, =) of
monotonically decreasing in (2, 3) 'opé:::'in"ten?afpm intgrva-l_s i

Art. 17.23. A Function | '
satisfies the inequalities. il ki

| fix)| <A, | f"1x)| <B. in the range x>a;
Where A and B are constants. Prove that | fix)| <2V(AB).

Ans. For posilive number h, and xa:

; 2
Sl h)= fix)+ 0" (x)+ 22,"‘ Tx+6h). D<b<]

oy . 2
| Rf (| = | fix+h)- fix) - %_ﬂxﬁﬂl] |

2
<IN |+ flx) | +] 755 S (xs0h)

<A+A+Bh? /2
v 2A
or [ fx] < Tt B2 his+ee
|f1x) is Tree from h dnd also less than (2A/ h+Bh/2) for all

positive value of h_. Thus | I (x1] must be less than the least value of
(2ZA/h+Bh/2)

bR

Thus (24 /h+Bh/2)=1N2 A/hi-\ [B_h,/2}}2+2\'lﬂf3]
such that ZV(AB) = (2A/ h)+Bh/2 least value

Hence |[x)|<2A/h+Bh/222v{AB)

| 1x)| <2N(AB) i
Ex—vii 99 Are. 22, 23, 24, 25,

22. A function f(z) is defined in [0;2] as follows
Jlix)=2 for 0 < x <1

=3 for i <x<2
Show that flx) satisfies none of the conditions of Rolle's
Theorem yet f(x) = 1 for many points in [1,2]
Sol i -
Here we note that fla-h) = fl1-0) = 2. f{1+0) =3
ie [fl1-0) = fl1+0) T
Though f1140) = 3 = f1) # {1-0) .......(1)

Hence fix m'-dﬁcmunuom at x=1 Iy : |

But we know that continuity is a necessary condition for a finite
derivative, so the function f(x) does not exist for every point in 1 < x
I SR 1

Also fll) = 2 and fi2) = 3 given

So fl1) #.M12) coveevniiin. 13) -

Hence all the three conditions of Rolle's Theorem are not
satisfied by f0o tn {1.2] : i

Mere fix) is a function free from x i.e, a constant in [1,2]. There
in possibitlity of value of f7(x) to be one at many points in [1 2]

2%, Discuss the applicability of Rolle's Theorem to the
funotion
fix) = x* +1 when O< x= |
» 3-xwhen 1< x<2 .
ol fl0) =02 +1 =1 fi2)=3-x=3-2=1

BRI 2 = f12) ... isaeld)
[t us test the continuity of fld at x= 1
1A Lt :
)) = s P = 5 =92
Ji140) » '01'1 x) hB (3-1- h)

¥ It o
. = - =2
J11-0) -’HO,\F+ 1 h~>0“ e+ 1
M11-0) = fl140) =fl0) = 2
It & continuous at x = 1, so we infer that fix) is continuous in
the Interval [0,2]




| 3

Again f(d =2x, 0<x<1
=~], 1 <x<2

Let us suppose that ﬂxl is differentiable in the interval (0, 2)
exceft at x = 1

one
Lt m+n-f1) Lt (3-(1+h)}-2
Rﬂ”'h 0 h " h0 h
_ Lt 2-h-2 L
| “hao B hoD k1) sk
Lt m+h)-fM) L (1-H? +1 -2
: SRS i e e S i o Srit
{ _L 2hk2_
! hisQ " R W

. Rf(1)# If’(1); so f(1) does not exist. flx) is not differentiable in
) the cntirc region (0,2) and therefore Rolle’ s Theorem is not
! applicable to the given function f{x) in (0,2)-
;

nl.A!ucﬁwjﬂhmunwhclmd laternl (2,3] and
differentiable in the open interval (2,3), Prove that

i F(@ = fi3) - f12) where'2 <9 < 3.
The conditions of Mean value Theorem are f{x) is continuous in
the closed intersol [2,3] and differentiable in the open interval
L (2.3), if ¢ a value of x such that 2 < ¢ < 3,

Mb)-fia) = (b—a) f((c)

or; f13) - fi2) = (3-2) flc)

or; f(c) = f3) - fl2) .
Ex. 25. Meaning of the llgnol’deﬂvlt.tve
Lel ¢ be a interior point a < ¢ < b of the function S, if flc) > 0

X—=Cc X-—-C

If € > 0 be any number < f'(c). there exists a positive number 3 >

We infer that ;
Jix) flc)>0whenc<x< x+ 9

0 such that
|x-cl<d=| ﬂx} ﬂc} e | < &
; Where ¢ - a-‘:x<c+3
i : :“mi—___{k’! C ¢ (f(c) - ¢, f(c) + €)'in the open interval. Since € <
[ f (c). then we conclude that
! '—@;—i—{f—c‘l > 0 when x & [c — d.c+8]. x#c :

fIx) —ffc) < O When.c-d<x<c¢
If f(c) > O, there exists a neighbourhoed [c - 9, ¢+d] of ¢ such that
Jx) > flc) for all x & (c, c+d)
¥ < fle) for all x € (¢, 2. d)
If %) <0, then there exist a neighbourhood [¢-8.c+8] of ¢ such
that fix) > _f[c] for all xelc-5.c]

Slx) < {[c] for all x@c,c+3]

For the'end points a and b ®, it can be shown that there exist
intervals (a.a+d], (b,b—9] such that
fla) > 0= fix) > fla) for all x € (a, a+d
fla) <0 = fix) < fla) for all x ¢ (a, a+d|
fib)> 0= fIx}) < fib) for all x¢ |b-2, b

JS(b) < 0= flx) > fib) for all x¢ [b-d. b

Ex—vii

52. Prove thal ¢'( = F'({f)) o (. ¢(x) =f{f(x}

assume that the derivatives which are conlinuous and apply the
menn value lheorrm

$3. Examine whether all the conditions nf Rofle's Theorem are
snlisfied by the function fIx) = |- |xlin [-1.1] Whal is your
ronclusion?

B4. A function fid is mmlmmuq in (b (lu.'-ul interval 0 < x< |

pnd differentiable in the open interval 0 < x < | Prove that i) =
fi1) - 10) where 0 < xy <1°
85, Show that Rolle’s theorem is not valid [or the function [ix) =

vin =111 as (N does not 1~£1.M for a value of X In.l-- 1.1]
- . A “ : ¥ . Ll 3
86, Il 1) s vontinuons and not zerdal x = a. Show that h---aO“ :

- ; Where fix+h) = [lx) Hgf’tf.s_wﬂhi; OD<bh <1

B7. I'rpve that if Mxis coninuous
LU fix420) - 2fix+1) + fix) _ g

| . 2
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Ex—viii
75. Examiine whether the function f(x is continuous at x =0
Where [f(d) =x2%x20. f(0) =1
Sol, &A3@ A, [() = a2¥

ot if o B T s 08
] X log X L 1/x
{ Lt log x 3
PR e T
[0 S x-0 1fx |7 form =
Lt 175
= -2 & ‘{E} =
a0 S
s o e b s
x—r () ogllx) = log el J(xl

Lt :
TSI i (W= 0, T1H
1og.x_)olngj[x] 0. ¥
u ” e
T il
Lt
e SITE £(0) =1 F& flx = [(0)
x— 0

TEE v =0 [Fms [y S

: Ysin ba-Di'sin ax
76. st facfa =2 AL e T el G e ; ey
teua bastan ax R.U. 1988

Ex—ix

97. If z= x + f(u) and u = xy, the ahowmatxéi—éax.

éx &y

[ z=x+flu -ﬂ{u-:@ﬂ,ﬂﬂﬁﬂ#ax %—eys-xl

98. If ¢(x,y) = 0, w(y,z) = 0, show! that By, | ' 8a by
| dy 5z dx  bx By

Interpret the result geometrieally (w3 anggem e #3)

99. If Fixy) = x%2 sin 4 tan~! ¥ o B
fFixy = xty? sin 7 +tan rth:nxax-r ya;-GF‘

100. Ilf.z.tﬁflx[any‘th ﬂ-fz_
y enm » &yﬁx

INTRODUCTION

“The word Calculus is the latin name for a stone which
was employed by the Romans for reckoning i. e, for
'Calculation’. When used as in the title of the book, it is an
abbreviation for "Infinitesimal Calculus" which implies a
reckoning or Calculation with numbers which are
infinitesimally small. '

One of the most powerful methods in modern
mathematies is that of the Calculus, the ideas of which were
conceived by Archimedes in the third century B. C. By
dividing a segment of a parabola into thin strips and adding
{ogether thier areas, he found an approximation to the area
of the segment. He then obtained closer and closer
approximations by taking more and thinner strips. By this
method of exhaustion he found the area of the segment
exactly. : . '

About 1586 Stevinus of Bruges used a method similar to .
that of Archimedes to find the thrust of a liquid on a surface,
and a little later a Jesuit priest, Cavalieri, extended the
method to find the volumes of solids. The methods used by
these mathematicians to find the whole area or, volume, by

. dividing it up into small parts is now called "integration' i. e.

finding the whole.

In the beginning of the 17th century the French math-
ematician Fermat considered the ratio of infinitesimally
small increments so laid the foundation on which Newton
(1642—1727) and Leibnitz (1646—1716) later built the theory
of "differentiation” or finding rates of change from the
ratios of sfhall differences It was due to the genius of Newton
and Leibnitz that a great advance was made. Newton
conceived the idea of continuous change and rate of change
at an instant or flux, and he described his new subject as
"fluxions”. He found that his knowledge of rates of change
could be applied to calculate areas and volumes that is to
perform integration much. more easily than by the method
of exhaustion described above, Leibnitz discoverd the
method of differentiation about the same time and we are
specially indebted té him for his notation which. is
essentially that now in general use. In the last two centuries
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calculus has been developed to such an extent that it is now
used to deal with problems in branch of technical Science.’

Before taking up the subject matters of Calculus let us
first discuss something about numbers and’ related
quantities. : ' f

Borra afefe wrErgeeTR Beeife e ARy 22re wwEl fAEfe 39
were SrAIfrEe Ffare HAifa | FregeneR AR wEE g9 53

_ epgeyd faarma spmn Ffre «f )

(%) @36 @< (curve) SESRA (solpe) R A I
Tx@ wW fadfa sfars ofd

(d) @[ @ T e s crareE 9w 3% s Swe
yA ffg efres afar

fewmmE aregar () gurrs fEm ade () Tliars

“ifarsi=l

B EAS-ATL=T
Abnclssa —S5 .
Almolule value —#4 9=
Acceleration —2¢
Algebraic — woifeifes
Allernative —f<eg
Analytlical — e
Angtle ol incidence —=17T94 (FIF
Anjtle of reflection —&fowe (EI9
Angular displacement — 9% @9
Applicd —FFS
Athitrary —S@4
Arch —f=
Are length —5r1— 06
Assuimption —2fEgl
Anlrold —=nAGLTS
paymplote —SAmTos
wxlom —Ted %
Bearn —3T&18
Minomial —HR
Hineclor —frds
Chnin rule —ps<E
Lounter clockwise —<Riag
Critleal value —HsH
Crons multiplication —=EgGeH
Lons seclon —Serrgn
t hangie ol variables —551F oiETed
L hord ol curvatunre —3E79! =0

L lreular lunetion -ﬂ@ﬂ?ﬁﬁ'ﬁ

Plockwise -HfEeEe

B etliciant —=l

F d
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- Co-efficent of viscosily el A

Coincidence —FAPTe

Co-ordinale —ZFI%

Corollary —EFTaE

Concave downward _ Gifice vargfe/ fm w@eE
Concave upward —SHCE sUe/S T
Cone — FIF

Conic section — (T
Constanl —f%F

Continuity — CFaR

Continuity —&

Convergence — ]

Convergent

Cubical parabola —HRIS “EIF

Curvalure

Curve — &4, FF

Cycle —5%

Decreasing

Deflection — TSR

Delerminant

Differentiability —fewrafTre Ao | SERAFANCA

Dilferential 7
Dilferentiate _fewmatires Zql/ SR 'ﬂ'l

Direction cosines _stfeTamERs
{Disconlinuily —
discontinuous — (Y
Diserele — W

Divorgence —Fnfafe

divergent

Pomnin —«sl

Fecentricity —fafaeel

Dleetromotive force —G@%W'ﬁ@

Kllipsoid ——EW

Flement — TR

Kllipse —B+a

liminate —se=Age <

Knvelope —SIFA

Fyulangular spiral —ﬂ‘j‘ﬂﬂsﬁ IEcD
Pven — ST/

W snislon —BRERR

Exlicit —&

Exponential —p®

Cyclold —TE20IS

Foeal chord —GFrRem w01
Py — comy/afeR
folivim —fmRm i
Formula —1'
funetion —ie / e -
Oeneral formula —Fi4Ee 34
Genraliscd —-ﬂﬂ’ra'ﬁ '
Ueneralization —Ie@ad
Gradient —oTe/afewEs
Oraph —foa/edfea |
Homogenous —aTaaifae/ @y

Horlzontal —STEis

Hyperbola —sfef®

Hyperboloid ——Wﬁﬁm

Wumiination —APR

ainary number —3EfE SRt
plicil e

miproper fraction —Wﬁ?@iﬂﬁliﬂ
ndeterminate form —SfAF6s S




Inequiality — STl

Infintte _peffae /S
Infinitcsimal —99
nseribed _ A
Intensity —3e!

Integer — e

Interval .

Finite number — s AR
Finile series —AAW 4

Intrinsi —
Inverse cicular function _faoids 3@13 I

Involute
Irrational —S R
Kinetic energy —sife&
..Leﬂ hand limit A
Limit —
Limiting point —ES a5
Limitsign —a 52
Limiting value — e T
Limiting value of a limit g Aaifas =
Loop —Z/&#F .
Major axis R TE
Maximum —SFa
Mean value theorem ——W_@’I?ﬁﬁl
Method of induction -—-W%Ef
Minor axis —%4 5%
Moment j‘i‘ﬂ
Motion
Multiple valued i
Negative —aie GIHE
Node, @S, @ 6
Numerical —IFS

Invrsely proportional ﬁ’@mﬂi‘ﬂm

Interval of convergence — 3 fem =Y
Operator —SIFIERGY [ 96

Order —&

Ordinate — 6

Parabola —*798

Paraboloid —*RI§&F

Parametric —*IaIfGREE
Differentiation —fEmiaf, seteae
Partial fraction —Tf Sz
Particular solution —Rf#g 4=
Pendulum — @&

Perimeter —f@at

Periodic —SIR&®IE

Plane —5 %%

" Point of inflection —2T&FFF

Point of intersection — (@AR%
Polygon —&23

Polynomial —2&°@

Positive — @IMRIES

Powere series —>/f& ¥l
Probabltity curve —F 8RSl @
Process of summation — Gilsteif@En

Proper fraction —g% S
Properties —diia8t

Proportional— JFIf$s
Projection —2%¥

Range —31f8

Rational —Sieifes
Rationalization —I1fe®a -
Real number —a%9 H3l
Numerical — 5%

Ockd — BTG/ g

One dimensional —a&aiae

13
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: One o one correspondence —4d% I& B d
1 Operation —f/S R
| Resistance —&f6aqeol . -
} Repeated — 7RSS Sub-interval —Bo=52f
o Retardation —¥F ' Substilution —&fSg=H
? Regular pyramid —75% Prfe : Subset —BE
; Right hand limit _oRAs - Suecessive differentiation—a&fire fEHraficms 1 wﬂa-ﬂ-q
. Root —3F1 Surface —4
1% Sag —FH Sullix —Feps
! ' Secant — @< Symbolic —FIT{@ﬁﬁ
| Semi-axis —¢F Symmetrical —affe
Series —l Symmetry —2fe#
Set — G ’ ; Tangent —_ondtes
Sequence —SFE : 1 ; Temperature —8%o!
Sign —5z : . ; : Tetrahedron — CEHIEE .
Stmilar T ; . & Theorem —T=iF :
Single valued —@ A : Total differential —f%s mm
singular —&FE, i , Transcendental —gAm/wdeiFeR
Solution —IEH ! Uniformly —3SS{d
slope —GE®|/o™ ' ' Variable —5% :
Space —3H ; Velocity — @t
Speed —4% ; Vice-versa -ﬁ"ﬁtw
Sphere — CIF® Viscosity —aSte! i
Spherical shell — (TR (AT Viscous —=owg
Spiral —™Ewe/ Pl Vertex —Ardarg
Standard —&== ‘Vertical — @i
Strenght — &= .
- Strophoid — @MFES
[{ectangular hyperbola — ST Wﬁﬁ@
Parallclopiped "
Relerence line —fa@
Relative —SCAfmS

- Remainder —SRf8




™18

|yl sl gl
2. |x—yf2|xtﬂ| yl
3. Continuity at x = aof [
Lim Lir

x—a+ Jix) = K—20—

3. 1@y Jlarhj=ofia ~h=fia)

3. (b) or,| f-fla)| < &, | x-a | <8,£>0

Jx)=fla)

4. Limit ;
If Lim fix) =1L Lim a(x)=m. then
- x—a x—a
(@ Lim { flx) £ olx)=lfm
x—=a
(b} Lim flx) o(x)=lm
X—a
Jx) _ L .
[ = - if Lim ofg#o0
i Ji‘—l—r::lﬂ(xj Th f x—=a

Limit of a function of a function

Lim
Lim o(fixl}=0 {x; : ﬂxi}

! Important Formulae

6. Dfferential CQ-efficient of elementary functions

i NS g
-z.é ()= pxi-1 f« Eg L e
\/;—xwx;—gi,x /;‘ire%et
1o (@) =a¥log a ./d{ flog x) = 1/x

(sin x)= cos x

/E}t fcosx] =-sin x
- - 2
/dx fcot x) =cosec?x

/i (sec x]'z S€C x tan x /’1 [cosecx)=-cosecx cotx

d 1o
é{fﬂn g = 3 /&[ms"ﬂ

(Hm x) = sec?x

d
dx
i
dx

i ‘“-1—32] ‘t“ }
B s _ i
a1 )= b
(tﬂ'ﬂ x}*l*'ﬁ[a 1 [cot l] = i 2

¥ =1 gy e
x [seg x}_ﬂ,[sz”

d ;
ci_x [sinhx)=cos hx — [cos ha)=sin hx

dx

d d :
e (tan hx)=sechZx 74 (cot hi=-cosec hZx.

Ly

d d
dyx [8€¢ hxj=-sec hx tan hx  (cosec hiJ=-cosec hx cot hx.

xXx=rda dx
1Y e ity fel 1 . s
A sin X 3 (b) Lma (1 e ;) = e 1 ~m s-m.. 1 x]:jJ‘—'“[“.xz.} drc {cosh™! x}—\(lxg 1y
x—0 & X g5 % f
1 k|
: o IR
. 1 (tan h™'x)= TRl (cot h- xI-'—““ 1
@ Lim = clogea (d) Lim _log (1 +x) =1 o b W21y ™
] ";”U : h o a (sec h~1x —d . 1
x__l ﬁ*ﬂ_n_ n___l dx B 3 x\r[l'—ng)' x(_
(€) Lim S e th Lol P 1
1 2 x—0 (cosee h~lg)=—"—5—
x—0 i iy " ? x¥(x2+1)
R - ) :
(g) Lim x =




18

12. DMax+b)™ =

v : d o3 ’
8. —d‘ (c)=0. d ffx\ CdJ_c flx) T [flx) o (x))=f"(x)*0 le}
g du éu
9. ¥l (uv)= ud dx
di duv
L i
d{u ax; oo
e Bt PO e s
10. dx( v ) v2 i
11 y = flt), t= v
dy dy dt
dx~ dt dx

Successive Differenti'ation

mr
(mi—n)!
DMfax + b)™ = 0, (n>m).
Dn(nx-i-'b'}“vz an! if m = n.
13: U‘{e""} SR
DN(a¥) = (log a)"a*
1 !—l}nnf ah

(ax+b) ~ (ax+b)n+]

r{ ] (1) (m+n-1"1a”
15- D] (gxsp)m (m-1) 1 (ax+b)Tt+!

1)+ 1a-1) 1 a

aYfax-+b)"™ " (m>n)

14. D?

16. Dlog (ax +h) =

(ax+b)™
1
17. D“sm(ax+b} = a'lsin (ax+b + 5 n)
1
18. Dl'cos (ax+b) = a'cos({axth + nm

19, DMe™cos bx) = \I'[a2+b2]”e“"‘cos (bx+n tan 'b/a)

20, DY e™sin bx) = \l'(a2+b2] NelXgin (bx+ntan~!b/a)

217 2 2)=t1—}m—2n"fsm”+19{sm (n+1)0
+a a

Where 0 = tan"la/x or, cot™!x/a. .

=l
22. p* (tan‘l i) = lis ine 1) sin”@ sinnd

afl
Where 6 =tanla/x or, cot"'x/a
23. Leibnitz's Theorem

D™Muvl=unrv+ertt po v+ oyt g+

Expansions
24. Machlaurin's Series

2 Hgr
JI=J10) + xf10) + e ) ‘fr-“’h

25. Taylor's Series

Jlerh) = f) + hf ) +‘L S g p}_‘-ﬁu

26. J'fxlﬂf(ahrx-umal + ('—QLJM ‘.

e
2 A3 V!
27. ¢¥=1 + it AT i S
e R Wl W '
h ) a 1
X Vel -
=X X r —
'QII!+JTJT+ ....... ¢ (=1) I+
s 7
8in x = x 8 1*s 7 !+.
£ ki
(:‘ns,x—l—2 !+4 "6 l+ ..........
log (14x) ﬁ}‘éﬁ
& _x_2~3_4_
SN o)
x
log (1- x) =—x—"_—. e O
3
£B5 7

..... +Cp Uy gU+.. ...

19
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2
fanx = x + 3 + 15)&:5+

] X3 1820 dillerential co-efficient of u are
SHETA MK i h ¥ a e T I du du 6x du dv
gl des et ¥ 5r~ &x br ' 8y or

du  du 5x Su_ dy
0s  Ox Js 5y Ss
ou  du 5x ou dy
5t dx & 3y ot

(1 + 1) =l-x+ x%-22 + R A dee o
(-2 =14+2x432 +4° + s
(1+x2%=12x PR 1 e

1 j 1.3.5
G x2 S =
(-4 L 2x+ 2.4™ 2.4 12 I (x,y)=0 or c, then §i=—l{_x » Sy #0.
LR 185 _ y Jy
~12-_— Aoty - A, Euler Theorem
(1 +x / 1 24x2 2.4.8)63 1le COT

Il /vy be a homogeneous function of degree n, then
Of: . 4F
X bx +y Ey =1l
o B B
Ll R dy)

Partial Differentiation

28. f u = flxy)
Pu _ Pu
Sxdy  dyéx
29, if u= f (xy), x = fit)h y = ¥t then
:; f;; i’: ¥ 66"; cilﬂx (Totall differntial co-efficient for
variable (.}
cor : If u = flxyl. y=fld. then

.‘ M I us [(x.y), then 'du-—-(
| | ¥

~ il rf'u-(?;dx+ %{;dy)"u

AN Taylor's Theorem for n variables

. Jacobian

. ORI Su; & 8
0 du Ou ﬁu _6v TR EUt1 Mgt ={ =L ﬂ —u—l
B o e v Solx1. X9 0 Xn) | Oxp Bx2 Sxn
30. (a) Total Differential of u = flx.,y) g oug oy

ou ,  Ou
du_:(sxdx-l- ﬁydy.

6[1,1 6”.(1 ou 1

If x = ofr, s. O, y = Y(r. s, t}. then

_ dx dx ox
dx-:_b.rdr+5 ds+5td't

dxy Oxa T dxp

AF Bguation of tangent at (x.y)
B S s i f
%y Vo o (X0 for y=/ (x)

O
dy = gydr+‘“gds+5t

) [y WX [ =0 for f (x.y) =0

af of
BIh ke, z+l)= (XJ: oy 5z *") @ (Y2

21

3L W= Jix y, x=wafr, 5. 8, y= W {r. 5.1 the Partial




23

1

(b) Two curv t orthogonally br~¢o = — T
(a) Slope for the tangent or ) ) ves cul o g y ¢r~d2 o

46. Arc-length

ds . dy, T e G
dx __{l X [dx )} dy V{I 3] [dy .

(b) tangenl, is parallel to x—-axts : £ =0 or, [ x=0
(c] 1angent is pcrpendlcular to x—axis is
f "(x)=ce oL, fy=0

38. Angle of interscction of two curves (ds)? = (dx)2+(dy)?. (ds]2=|[rd9]2 +dr?
: ; 3
y = f 0 y =0 (x 47. Lanq}:%ﬁ, sirqu:j. cos =£
Jx @y-9xfY 4 s the angle of intersection 4 2
i fx9x *f)' Py llmlp=ra"’"_,sin(p=rg.cos(p=£
{a) Two Curves touch i

48. Negative Pedals
Put p =rand r=p?/rin fp,) =0 i e,
[{r,p?/r)=0 is the First Negative pedal.

Repeat  this proves for 2nd negative pedal, 8rd negative
ele,

fx 8. S (®)=0"(x)
fy %

(b) Two curves intersect orthogonally
Jx 0x +fyle=0 or, /¥ ') = —1.

St 2y, y;=dy/dx
39. Length of the tangent=y cosec Y= VT4 %): v1=ay Al (a) Inverse curve

-

lczx_ i ; .
4‘”2 - uz x2+y2 = 0 jor flxyl =0

Ic? :
1} ,f( g (2] ):O for fir, 8) =0

2
o p = 12 f(k2) Jor p = flr).

A8 (1) Pedal Equations of well known curve

hle : X2 + y? = a? (centre), r=p

e £ i 1 (_%_%; ___uz.,_[%jz' =" Lhivle v 4 42 = a? (point on the circumference, r2=2ap
g e - wboln : y?=4ax (focus), p? = ar

2 B2
oAl gl b 2a
- Glp R I (focus), 5= el

Length of the normal =y sec ¥
40. Subtangent = Y cot ¥ = Y/
Subnormal= y tan ¥ = Y¥1 | t
41. ¢, the angle between tne radius vector and tangent.
de [0l . ...
@)=r
tan ¢=r . =7 ) I

42. Pedal Equation _
p=rsin . p is the perpendicular from pole to the tangent.

e

44. Polar subtangent =T tan ¢= rZ d@/dr

Polar Subbnormal = T cot ¢ =dr/ dd |

45. o= ¢1~02, ¢ is the angle of intersection between U
curves r=f(8), r=0(0)

(a) Two curves tauch if ¢1=02

g 3 232
A 2B
: a? +!i:2 =1 (centre), 5 + T




L R M e
Hyperbola, 72 53 = 1 (focus), p2= +1
X2 y2 2b2
Hyperbola, —2—%2* =1 (centre), p2 -2 "bz
Rect. Hyperbola, x2-y% = Z(centre), pr= a?
- S (f I = ar
Parabola, r= 1'% o ocous), p© = ar.

Cardioide r = a (1 + cos 8) (pole), r®= 2ap?

. 2= a2cos 29} 13_- 2
Lemniscate _o_ .2, 29 i3

;I 0 ! g
2 an sy e, 1=
49. Indeterminate Forms =~
(a) If fla) = ¢ (a) =0, then
Lt fe Lt f . 0
x—a ¢6(x) x—a $(x) 0
(b) If f(a) = ala) = c=, thcn
2 5 for

Lt = Lt
Sl gl L (xJ

Maxima and Minima
50, If f’la) = 0, f’(a) # O for y = f(x), then
(a) j'{a]'is.‘ maximum if f”(a) is negative
(b) fla) is minimum if f”(a) is positive.’
Eell If Fa)i= fia)= ot =f0-1(a)=0 and fM(a) #0,
(1) JSix) is maximum if fM(a) is negative n is even
(11) f(x) fs minimum if fM(a) is negaive n is even
(i11) f(x) is neither maximum or minimum if n'is odd.

51, ¢(x, y) bt.' a functions of two variables x and y and r=

523 ‘e |6
= dxdy By?

, then for (a, b)

25
If rt-s%is positive, a(a, b) is maximum or minimum according
as r and t are both negative or both positive.
If rt-s2is negative, ofa, b) is neither maximum or minimumn.
52. For alx, y, 2) for a poeint a(a, b, ), :
A_igg e e L Py o Be .. P
ox% 5y2 “éz% ' T dudz’ §zﬁx T 6xdy
@la, b, ¢} is minimum | ;
il A, A H A H G | are all positive
H.B.. H-B I
G FC
and @ (a, b, ¢} is maximum if
AL AH A H G| are alternately negative and positive.
HB HBF|
e ol o

Asymptotes
53. ¥y = mx + ¢ be the asymptote of the curve
y = filx) if iR
m=Lt w/xandc= Lt . (Fmx)

X—yoc X—ex

54 ¢lx, YW =pn+ P31 +Pp-g* cccceiia, + Py, n indicated the
homogeneous function in x and y of degree n.

Asymptotes.

Fni

y-myx+ Lt =d

ERRIO 20 e o

' (a) If y-myx is repeated, then asymptotes are

: 2 Ry Y Fp-

(y-mx)2 + (y-m;x) Lt =l oLt n=2 _o
| X On-1 Negee On-2

(b) In @rly/x), Put y =m, x= 1, find ¢, (m)

Differentiate, @'(m).

Then put @(m) = 0, then m;, my etc are obtained.




For the roots of m, ¢ 9 pm) + @p_; (M} = 0, then c. s are
obtained.
Thus y= mx + c be the asymptote.

(¢c) For repeated roots of m, say two equal roots, th_e

2
'g_f 0" nlm) + ¢ @' n_1(m) + Gpo(m) =0

then put the valus of ¢’s in y = mx + ¢. two asymptotes will be

obtained.

In the same way for three equal roots etc.

55. Asymptotes in Polar Coordinates

If 0. be a root of f(B) = 0, then _

r sin (6 -a) = 1/ () is an asymptote of the curve 1/r= f(B)

Curvature
I :
o = fi ]
1] dl[J -] f‘l’
_ 2)3/2
: AL y = f0d, ys# O
Y2 . +
3/2 :
p=[l+i€%]_ oox= fly), x9# 0
X9
2 2)3/2
p:‘“x] +y1}—‘x=q)[tl,y=l‘{/(t}
Yz
2. ¢ 213/2 :
pP=TE fox i) 5 - flx. yl =0
Sxxly ~2fngxfy+fyyfx
P=12 4 2r12- rrp s
‘ 213/2
Wen 5 A
P ) .u-f.( )
dr d’p
p=';;r,r=f{r):p=p+dw_z ot
2

p =Lt = (at the origin, y-axis ( x = 0) being tangent)

2x
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2
X
p= ley {at the origin, x axis (y = 0) being tangent.

2o
p = Va2 + b2) Lt ———2— (at the origin ax + by = O being
ax + by
tangent)

Chord of curvature through the pole = 2p sin
Chord of curvature Parallel to x-axis is 2p sin Y
Parallel to y-axis is 2p cos Wy

Centre of curvature

—_nleym? o Lryd
X = x= e ,y:gl+ v &S u= A
e T T x1(1 + x12)
Fi=ha i 'Y =Y = x= fly
X =xpsiny y=y+peosy
A : N Sets
1.1. Finite sets : A ={1.2, 3, 4}
2. Infiniteicets < B =10 iG]
3. Empty set : A = A (§) or, ¢ or {0}
4. ae Ameans a contains in A or belongs to A.
5. a& Ameans a does not belong to A.
6. Unit set : A = {a)
7. Subset : A B Proper subset : AC Bif A= B
8. Union of sets: AU B={xe AorxeB} .. Read A cup B
9. Intersection of sets : AnB={xe A andxe B) .. Read A cup E
10. Disjoint sets : An B=¢ = {x¢ A and x ¢ B}

11. Difference of two sets : A and B. A-B = {xeA and x ¢ B}

12, Universal sel = U (Union of all sets)

13. complement of a set : AC+A'={xeX: xgA] L e,
xeA®= Al e xgA.

14. Power set of S = 2%




28

15. Countable set : A set is' countable if it finite or
denumerable. i

16. AUB=BUA ANnB=Bn A,

17. AuvuBuUC=AU(BU C);

18. (ANnBINnC=An(BnC

19. AnBulC=AnBuAnC)

200 AUBNCl=AUB N AV C

21. (AY=A AL B =A B ADB =AY B
22, A-B=A-{A N B)

23. (A-B] NA=A, (A-B) " B=gp

24. A-B=AnN B =B-A’

25. B-A'=BnNn A AB=AuB AU (B-A) =B

Set Theory
11, Meaning of Sets : An object which belongs to a diven
set is called a number or an element of the set. We designate sets
by the Capital letters A, B, C etc and elements of a set by small
letters a, b, c ete. Generally we say a is an element or member of
Ai e;aec A Sels may be finite and infinite. Set which does not
contain any element is called an empty set and is denoted by ©.

Description of Sets : A set generally dscribed by two
methods :

(i) Roster method, (ii) Rule method :

In Roster method, We include a set by listing the elements
and enclosing them with braces {'}. Thus the set consisting of
Rahim, Jack, Ram be written as {Rahim, Jack, Ram]

In the Rule method, we describe the set by a phrase "the set
of all books ol Rajshahi University Library." It is written as {xis a
book in the Rajshahi University Library} or, as {x/xis a book in the
Rajshahi University Library}

The obligiie line standing for "such that"

Roster method is used for finite sets while Rule method is used
for infinite set or sets containg large number of elements.
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Subsets : A set A is a subset of B if every element of A is
ulso as element of Bi.e: ASBor BS A

Example : Let A = {1, 2, 3, 4} and B={1, 2, 3, 4, 5}

Here every element of Aisin Bi.e. A G B

Every set is a subset of itself thus A & A, because A certainly
contains A i. e.. x € A implies x in A’

The null set o is a subset of every set. Thus ¢ & A because A
certainly ‘contains' @.

2.2 Equality of sets :

Two sets A and B are equal (svmbolically A = B) if and only if
ASBandB € A i e, Ais a subset of B and B is also a subset of A,

Example : Let A = (2, 3, 5} and {3, 5, 2}

Here every element of A is in B and every eviement of B is in
A Here ASBand B G A .- A B

2.3 Proper mm

A set A is aPrapErsuh’sq,ofa sét B(symblokaﬂy ACS BifA
C BandA+B

Thus A € B means that A is a subset of B but B is not a subset

of A, i. e. every element of A is in B but B has at least one element
which is not in A.
Example : Let A = (1, 2, 3, 4fand B ={ 1,2, 3, 4, 5}
Here every element of A is in B, but B, has the element 5 which
is not in A, .
Here AS BbutA#B. ». AS B,
Example : Let A={ 2, 3, 5}, B={3, 5.2} and C= {3, 2}.
Here every element of A is in B and every element of B is in A.
AS Band B € A and hence A=B
But though every element of C is in A or B the element 5 of /
or B is not in C,
~CSAand CS BbutCzAorC#B.. CCA CCB.
2.4 disjoint sets :
Two sets A and B are disjoint if A and B have no commo
elements.

Example : The sets {0, 2, 3} and (4, 5, 6} are disjoint.
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2.5 Number of Subsets or a set; Power set P (S) .

The set of all subsels s of a set S is called the power set of S
and is denoted by P(S) = (s/s € ) if § contains n elements, the
power (S) = P set 2™ or the number of subsets s of a sel 5.

Example : Let A = [a, b} and B = {a, b, ¢}

(i) the subsets of A are @, {a), {b}, {a. b}

{here being 2Cg =1 subset with no element. 2¢,=2 subsets with
one clement and 2Co = 1 subset with two elements.

Thus the set A containing 2 elements

has 4{=22= 2Cg + 2Cy + 2C9) subsets.

(ii) the subsets of B are

o, (a), (b}, {c) : {a. b} : {a, c}; {b. c}: {a. b, ¢

there beiné 3¢y =1 subset with no elements, and 3¢y = 1 subset
with three elements.

Thus the set B containing 2 elements

has 8( = 23 = 3Cq + 3C) +3Cy + 3C3) elements)

I'r(;m the above consideration, it is clear that a set containing n
elements has

HCpH = 1 subset with no element.

N, = n subsets with one element.

nn-1)

L) subsets with two elements and so on, the total

g =

number of subsets thus being _
ACge 4Nt & RCY covmisvlnenit M= N 25

2.6. about the Symbols € and C

The two symbols € and € should not be confused with
each other. The symbols £ denotes the relationship
between a set and its elements. where as the symbol C
denotes the relationship between two sets.

Thus if D = {5. 2. -3}, then it is true that {5} € D Ift is not,
however, correet to write 5¢cDor, | 5| CD.
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2.7 Finite Set : A sel is finite if it consists of a specific
number of different elements.

Infinite set : A set is infinite if it is equivalent to a proper
subswet of itsell otherwise, a set is finite.
Example : A = { SM.T'W.Th. F sat} A is finite

B ={x | x is an integer}, B contains infinite numbers of
intergers, B is infinite.

Power Set : The family of all the subsets of any set S is
called the power set of S. The power set of S is denoted by 28

Let S = {2, 3}, then subsets are { 2, 3}, {2}, {3]. ¢, there- are
four subsets = 25, Hence Power set 25 = 22 =4.

Countable Set : a set is called countable if it is finite or
denumerable e.g. {(1,1). (4.8), (9.27)} vootovivrnin.. (n2n3)).

3.1 Union of two Sets :

The union of two sets A and B is the set of elements which are

in at least one of the sets A and B ze which belongs to either A
or B.

Symbolically we write the union of A and B as A UB. read 'A
union B, or ' A cup B'

Thus AUB =B {x/xE A or, xEB)} It follows from the defmltmn

that, AUB =BUA i €., the equation of union is commutative.

Example : Let A={a.b,c), B={d.e}, C=(be), D={a,c}) then
AUB= {a, b, ¢, d, €}, BUC = {b, d, e) AUD = {a, b, c],

Note—In the above example:

DU A and AUD = A. This is true for two such sets. In particular
AUA=Aand AU o = A for any set A.

3.2 Intersection of two sets:

The intersection of two sets A and B is the set of elements
which belong to both A and B.

Symbolically we write the intersection of two sets A and B as
A M Bi A intersection B or A cup B.




32

Thus A NB={x/x € A and x £ B). If follows form the definition
that A ™ B = BNA, ie., the operalion of its intersection is
commultalive.

Example : Lel A, B. C, D be sets as in the previous example in
Art. 3.1 :

Then A B=o. An C=1{b}, An D={a, d

Note- in the sbove example

A and B are disjoint sets and A N B = @. This is true for any
two such sets. Also D & A and A m D=D. This is also true for aby
two such sets. In particular A " A=A and AN o = ¢ for any set A,

3. 3. Complement of a set.

If A is a subset of a universal set U then the complement of A is
the set of elements which belongs to U are not contained in A.

The complement of a set A is denoted by A’ read 'A prime' and
is defined relative to a particular universal set U.

Thus A’ = {x/x € VU and x, does not belong to A}

Example — Let U ={0, 1, 2, 3, 4,5, 6,7, 8, 9}

A={1,7 6,,and B=1{2,5, 8 9 0, 3, 1}

Thus A’= (0, 2, 3,4,5,8, 09) and B'= {4, 6, 7]

Note- In the above example.

we change U, A”and B’ will be changed. This is true in all cases.

the following results directly obtained from definitions.
(1) U'=@ i. e., the complement of the universal set is the null

set
(2) 8'=U, i e, the complement of the null set is the universal

set
(3) (A7 = A, 1, e. the complement of the complement of any set
is the set itsell.
. (4) AUA"=U, i e, the union of any set and complement of the
universal set.
(5) AnNA’ = 0, i.e., the intersection of any set and its
complement is of the null set.
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4. 1. Venn Diagrams.

It is often convenient lo draw

between sels or Operations on sets.
dlagrams.

diagrams to represent relation
Such diagrams are called Venn

In the following illustions, we have represented the univer- sal

sl U as L i
( as the set of points in a rectangle and other sets as sets of
points a circle within the rectangle, : i

Laws of Algebra of Sets
Art.4.2. A. B, C are sets A’

B, C’ ar :
Al and C respectively U—universal S R e

set, 6 = null set

Identity Laws
lodY cAUgi=-a (ii) Ane = ¢

(iii) AuvU = U (iv) AnU =4

Idempotent Laws
2. (i) AuAa =24 (ii) AmA =4

Complement Laws
(ii) AnA’=p

{ [V] n'=U f\.’ tJ '= @

3. (i) AuA’=U
(iii) (A’ =A
Commutative Laws
) ALB = BUA [i1i) ANB=Br
Assoeiative
v} TAUB)OC = AauBy 'C)
(i} ANBN C)=(An Binc

Distributive Laws
6. (i) Au(BNC) = (AuBIN (AuQ) .
(if) AN(BUEC) = (AN BluauC)
Mhe distributive laws take on the general forms

ANA(B; u Bg v

.......... v Bhl = j
VIANB,) e LT ey

LY

L Wi )

AUIBIN BaN....... NBhl=(A UB)) N (Aw 82}-0 el {AQB,IJ




De Morgan's Laws

7. (1) (BUB)'= BNB’

(if) (BNB)'= B'UB’ ' ..
Art. 4.3 (1) Prove De Morgans :l‘heorem $
(AUB)’= A'N B"= [x/xe (AVB)} :

Proof : (AUB) = {x |x € AuB)= {x]|-(xe Aor x€ ).

=|x| x¢ A’and xe Bl=x|{x& A and x¢& Bl=ANB

A]lernativc' Method:

x¢ A or x¢ B thus x & Aa ’ ‘
is that x € (AUB’) Hence (AuB)’S A’VUB. (1)

i 4 “then y
'AB’then, ye A'andy € B
gl (AUB)’we have shown, that

hence yg€ AUB) soy € ( e have : i e
implies that y & (AV B)’Hence A’NB’'& (AUB] ... (2)

From (1) and (2}, (A UB)'= A’0B’ proved.
'44.[2) Prove that (ANB)’A” UB’

Proof : (A NB)' = {x | (x€ (A NB)’)

= (x| xe(AuvB)I- x| (xe=A and x € B)] ’ Rt
= x| x& Aorx€B)-x | xeA’ or x¢ (EB) =A"UB

nd xe B’ So ag A’/nB’ But our assumption__j:.

¢ A and yéB. |

De Morgan's Laws
without proof here :— I y , s ,
(AjUAZUAZU...... Ap) = (A1) 0 (A2) N(AZ)N ...Tm{An)

(A1NA2NAZO woiNAR), = (A;)’U (Ag)’uAaz)V .U (Bn)

4.5 (1) difference : The differenc
(relative to A) is the set of elements whict
belong to B. The difference is writen as A-B. _

which reads' "A difference B" or, simple, 'A

B}
e A-B=(x.|x€ Aand X & |
= nce of two sets A and B (relative to B) i

e of two sels A and

minus B

Similarly.- the differe

. defined as B-A =[x | X € Band x€ A} T
For example, if A = {a. b. C. d) and B = {a. ¢. [, d} 1
A-B = (b, ¢/

But B-A = {e. f]

—Let xe(AUB), then x& (AU B). Therefore .'

ye A’0 BT

can be extended and this has been Stated

1 belong to A but do.

i

Art. 2. In Venn Diagram, the difference A-B and B-A are
shown. The dotted area is the dilference A-B and cross cut area is
the difference B-A. U represents the universe.

Art. 2. (i) Prove thal A-B = A-(A N B) ]

Let x € (A-B) (if and only iffcdxe Aand A& B+>x € A and x“
g [ANB)&xe _'A—(A N B)

A—-B:A—{AOB]

Art. 3. Prove that (A-B)C A

.i. e, set A contains A-B as a subset :
Proofl : Let x be any element of A-B. Then we have x€ A and x
€ B iLe, x belong to A but we have shown that x € A-B implies that
x € A. Hence (A-B) CA : :
Art, 4. Prove that (A-B) N B= o ;
Let x belong to (A-B)» Bi e, x€ (A-B) NB by the
intersection of two sets. we hav¢ x € A-B and x € B but by the
definition of difference (A-B), we have x €A and x € B. Hence there
is no element satisfiecs both x €B and x ¢B then.

(A-BfNn B=ga
Art. 5. rove that A-B = A N B’ = B'-A’ where A’ is
the complement of A, B’ is the complement of B. ;
Proof : A-B = {x:xe Aand x ¢B)
={x:xe Aand xe B}=AnNn B’
={x:x€ A'and xe B}
- =(x:x€ B and xg A} =B~4A"’
Alse B-A = A-B’ :
Note : The complement of a set A is the set of elements which
are nol present in A, i e, the difference of the universal set U and.
A. we represent the complement of A by A, concisely we define
A’ By
A'={ x is such that x € U. x & A}
=ixlxe Uxe A}
or, simply, A"=(x | x & A).
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Art. 6 Prove B-A is a subset of A’

Proof : Suppose x€ B-A..e.x€ B and x ¢ A. Hence x € B
and x € AL e. x belongs to B but x € B-A impies that x € A’ B-A

is a subset of A’ i e. B-AC A",
Art. 7. Prove that B-A' =B n A.

Proof : Let x € B-A” which means that x € Bandx ¢ A, 1. e X
¢ B and x € A which means that xe BNA, Hence B-A’={x € B and X

gA)l=1x | x€ Band Al=Bn A
L B-A'=Bna, i
Art. 8 Prove that A-B is subset of AUB.
Proof : Let x € A-B means x € A and x ¢ B, therefore x € AUE
i. e, A-B SAUB. hEY g
Art. 9. Prove that A C B inplies. that subset
AU(B-A) = B _ e
Proof: AU (B-A)={x| x€ aor. x€ (B-A)]
={x|xe Aor, [x€ B'and‘xe A)}
=lx|xeAnxe B
={x | xe B} since A CB

Hence A is the Proper subset of Bi. e, A C B.

Example 10. To show thar for any three sets A, B and C |
NnB NC=AnN(BNQC). ;

we show that (1) (AN BINC S A n(BNC)

‘and WMANBNCOSMANBNC

(i) Let x be any element of the set (A N B) N C, Then

xe (ANB)and xe C. But xe (A ~ B) implies that'x € A “af!
x€ B. Thus xe Aand x¢€ B and x € C and as such x € (B Q)
well. Hence x € A N (B NC). Therefore : I

ANBNCEANBNMNAO. i s

(i) Let y be any element of the set A M (B C). Then, y € (E
€). Bul y € (B N C) implies that y€ B and y € C. Thus yeA and §
Band ye C, and as suchy € (A N B) as well. '

Hence (AN B N C

Therefore AN(BNC) S ANB NC

Hence the conclusion
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Ex. 11. prove that (A-B) U (B-A) = (AUB)= (A UB}~( A " B)

when A=1{1,2, 3,4, 5land B=1{2,3,5,6, 7] C.U 1982
Ans. A -B={x:xe€ Aand xe B = (1. 4}

B-A =|{x.x€ B and x¢ A}={6, 7}

Now (A-BJu(B-A)={l, 4} U 6. 7} = (1. 4, 6, 7} .............[1)
Again Av B =1, 2, 3, 4, 5, 6, 7}

ANB-= {2 3,5

(AUB -ANB) =ix:xe (AuB) and x€(A N B)

& e T @)

From (1) and (2)

(A -B) U (B-A) = (AU B)-(A N B).

Ex. 11 (@ T U = {1, 2, 3 ........0) A = {1, 2, 3, 4,

B =42,3,4,'85) 7 :

Find A n B.and the complement of A-B. C, U. 1982.

2. A few examples : '

Example. 1. Find the union and intersection of the sets

A = {n/n is and integer and n =9}. -

and B = {n/n is an interger and n > 2}..

Answer. Since A is the set of integers 29 and B is the set of

integers 22 . .. AS B.

Every element of A being also in B.
Hence AuB=Band An B=A.
Example 2. For the set A={a. b, d, B = {b. d, €] and .C =iy

f. g} veryfy that
' _An{AuC}=[AnB]urA_nC].

Answer : Here BUC ={a.b'}e}l U”(d, f.gl= (b, d, e,f.g)
= AN(BUC) = {a.b,c} Ulb,d fg}=(b}
Also AnB={a .b,c} (b, d, e. f, g} = {b]

And AN C={a, b,c}n(d. [ g)l=0

S ANnBuU@AnNC=(buvoe =(bl

Hernce the conclusion.
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g . .
xample 3. Given any set A in the universe U, show that

there exists a unique set X satisfying the conditions
[a)JAUX = U and (b) AnX = o.

Ans : i
There exists a set X = A satisfying the conditions

because AVA’=UandAnA’=0
[Art. 3,3; Properties (4) and (5) ]
Il Y be any other sel salisf .
S ying the conditi
AUY=uand ANnY=¢ e
Bul Y= YnU [ since Y C U]
=YNAUuX)=(YNn A)u (¥YNnX
) | Property (5
=9 U(YNX) (since. YNA = AAY = a) g i
= YNX (since @ Uk = k for any set K)
s YC XAt 4.1 AR
Also, by similar argument, X< Y
Y= ¢/
Hence there' . 7
ce t};er: t;:;: sett;{ satisfying the given condition is unique
- Show that for any two sets A ! /
onlymmplﬂ o . and B: AC B if and
Let A & B. Then x € A implies that x € B and as such x is not in

B’. Hence A and B are di
ol sl sjoint sets. Having no common eléments so

Now B’=
w B'=BnNnUu (U is the universal set)

= B’ N (AUA)’ - (since AUA” = U)
= (B ;;A'Ju {B}’n A (property (5) Art. (4.2) -
=oUB'NA)=(B'NA) (0uUK=Kkfor

= an
il y §et (K)
Example 5. show by means . . -

r of Venn Diagra
denotes the number of elements of the finite set xgrth?n g

n(AUB) = n(A) + n(Bl-n(AnB)

A le'ld B bElI‘lg L Hn[te tS . H CS mo cd
wno se ow iS tlle

Ans : Visualising the sets A and B as the sets of points within

the two circles,
vegtoiae, p. q. r denote the number of points in the

a9

P, @, remarked in the diagram. Then

nlA) = number of points in the reglons PandQ=p+q

n (B) = number of points in the regions Qand R=gq+r

n (ANB) = number of points in the regions @=¢

n (AnB) = nﬁmbcr ol points in the regions P. @ and R=p+qg+r.

Hence n{AuB) = p + g+r = p+q g+ r-q= n(A) + n(B)-
n(AnB) ' _

If A and B are disjoint sets then A AB=a so that n(ANB) = o, In
that case, n(AwB) =n(A) + n(B) simply.

6.2 Ordered Pairs : :

A pair element is said to form an ordered pair if il is specified
which of the two comes first and which comes second.

An ordered pair in which a is the first component and b is the
second component is denoted by the notation (a. bJ

It should be noted that (a,b) # (b, @) :

unless a=b although {a, b} = {b. a}. Morover. wc¢ speak of
orderd pairs of Lhe form (a, b) even though tlere is no set (a, a)

Two orderedl pairs (a, b) and (c, d) are said to be equal i, e. (a,
b) = (c, d) if and only if a =c and b = d. . :

Example : In plane analytic geometry, the position of a point
in the plane is determined by an ordered pair (x.y) of real numbers,

_ the first component x being the abscissa of the point and the second

component y being the ordinate of the point. The ordered pair (2, 3)
is c':erta.i'nly different from the ordered pair (3, 2) as .they
represent differents points in the plane. o)
" Example. Given a set A ={a. b) the ordered pairs “which
formed with elements of A are (a. a). (a, b). (b. @), b, b) "
 Example. Given two sets a = (@ b} and X = {x. y} the ordered
pairs which can be formed with an element of A as the first

component and an element of X as the second component are (a. xJ.
(a, y). (b, x) . (b. Y] '
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7.1 MAPPINGS

et X and Y be two sels nol necessarily distinet. A mdpp.ng of X
into Y is a correspondence Lhal associales with each element of X
wilh unigue element of Y. :

A mapping is usually denoted by a single letter such as f g, a,
etc. The fact that f is a mapping of X Inlo Y is often indicated by the
symbol f: X =Y.

If'f: X—Y. then for each x € X, the corresponding element of Y
is called the image of x under the mapping [ and is denoted by (x),
The sel X is called the domain of the mapping [ and the set Y is
called its image space. The subset of Y consisting of those elements
of Y which are image of some x€ Xie. { y/y € Yand y = f{x) for
some x € X} is called the range of the mapping I.

If may be noted that under a mapping fof Xl into Y, every x € X
has one and exactly one image in Y. Where as the same y € Y may
be the image of more than one x € X and there may be some y € Y
which Is not the image of any xe X.

A mapping of X into Y is defined if we know the image of of each
x € X. The notation f : x— f(x) is used to indicate that upder the
mapping of X into Y, x is mapped into f(x), i. e, flx) is the image
of x.

A mapping [ X—Y can be pictorially represented by listing the
elements of X and Y inside two closed curves and drawing arrows
. 1 X the coresponking image y € '
Example : Let a mapping [ Y=Y be delined as follows. 13,
33, 722, 925,

Hi the domain of f is x= {1, 2, 4, 7, 9} and the range of f is
{1%"2.3. 5] :

Example : Let x = {1, 2, 3, 4,5, 6, 7, 8} and JF i xX be a
mapping delined as follows :

fiy=1. fl2 =5 fBl=4 ~ [f(4)=8

S(5)=6 J(6)=3, f(7)=17, f(8)=2.

Hence the domain as range of f is the x.

Example : Let X= (1, 2. 3)and Y ={a, b, c}.

- The correspondence dcfined as.

1—a, 1=>b, 2= b, 3-¢, is'not a mapping because under the
correspondence, two distincl elements Y correspond to the
eleinents 1 of X, i

CHAPTER-1

NUMBERS
1.1 The set of Real Numbers

Az7~ Integers ( ss{meq11 ) The numbers 1, 2,3, «vovran.
are known as the matural or counting numbers. The natural

numbers, their negatives and zero form the set of integers
Z. Thus

'(Zb?q- veer =3, =2, —1,0,1,2,8, seens } v
Y Rational numbers (SrgArfes Ay ) ¢ Any number
which can be expressed in the form -f-, where p and g are
integers with g0, is called a rational number. Clearly any
integer is8 a rational number (corxesponding tog=1).

Examples of rational numbers are 2, & £, % 1.2, etc. &~

In decimal representation of a rational number, the steps
will either terminate Or a certain part of the steps will repeat.
For example,

} = 0125 ; here the steps terminate.

I =0:3333 ... = 0.5 ; here the steps do not terminate,

but 3 is repeated which is indicated by putting a dot over 3-
7 = 0.142857 142857 142857 +eer» = 0142857 ; the dots

ovW that the part ¢142857" is repeated.
ational numbers ( orzsiy 72wt ) ;. A number which
represents a certain length on a straight line but cannot be

represented in the form?p- (p, g being integers ¢ = 0) is
called an irrational number. _-

In decimal representation of' an irrational number the steps
involved one non-terminating and nin-recurring.

J 2, A/3, m, e, etc. are irrational numbers. ¢~
vtAll the rational and jpra!ional number together are said
to form the continunm of Real numbere or the Set of real
numbers, denoted by IR, ]




