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CHAPTER X111
CURVATURE

13.1. Definitions 3 —
(a) Angle of Contignance,

Let F and Q be two neigh-

k- —
55. wirawrefnd slem 0=— aft n2lgn few afn<lg

©L3 (FTA BicaN] ZRCIA 1
56, r cosB=-a. 7. +da=\/r(3sin 03 cos )

- 58, r=1 59. r=1 60. r=5/3. 6l. r=1 62. r=a.
73, bxply*—a®)+a(aP—b2)(x2+)2—a%)=0

74. (i) x=0, y=0, x4+y-2=0, x+y+2=0 bouring points on the curve
(i) x=2=0, x-3=0, y—1=0, y—2=0 APQ.
(iii) x=0, P=0’ x=1, J"=1' Let arc AP=3,
(iv) x=0, y=0, xx2y=0 arc AQ=s43s
) 24x—48y+13=0 then arc PQw=3s. :
9. et ol T T X

; (Vi) x=znaf2. (vii) x=0, y=2, 2p—3x—14=0 :
' : Let the tangents PT and 07" at P and Q of the curve make
angles ¢ and ¢ +8} respectively with the positive direction of
X—axis
LORL=[TRT = [ RT X— [ RTT ={+3y— =3¢
Thus 8¢=(y+ d¢—4y) is the change in inclination of the tangent
line as the point of contact of the tangent describes the arc 3s.
The angle 8p is called the angle of contignance of PQ provided
the bending of the curve between P aad Q is continuous in one

=

direction only.
(b) Average Curvature or Average bending
The average curvature of arc FQ is the ratio of the corres-
ponding angle of contignence 8} to the length of the arc §s, that
3

is average curvature or averag: bending of the ar¢ PQ= o
For onc and the same curve the average curvature of is

difference parts may be different.
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(¢) Corvatare

The cucvature at a given point Pis the umit (fit exists) of
the average carvature (bending) of the arc PQ when the length of
this arc 8s ‘approaches zero. The curvature at P is denoted by M.

s Carvatore at P=% R e

‘Hence the curvature or bending is the rate of change of direc-
tion of the curve with respect to the arc or roughly speakiog the
curvature is the “rate at which the curve carves” or how much the
curve is curving,

(d) Radius of Curvature.

The reciprocal of the curvature X is called the radius of
curvature of the curve at P. '

The radius of curvature is usually denoted by e.

] d
Thus p= -—;—ﬂ%t;ﬂ'uf' PQ-T;-

() Radius of Curvature (Geometrically)

Let the normals at P and Q to the given curve iatersect at N.
“he limiting position of N as Q=»P is called the centre of curva=
rure at P In the fig. 14 5 Cis the centre of curvature at P,

The radius of curvature at P.

Lim
2 _3:—»'.') PN)
From the ANPQ,

; PN sin NQP  sin NQP =5Ai“ NQP
chord PQ — sin PNQ _ sin TRT  singy

Lim Lim sin NQP
e=3. 507 N= 3530 chord PQ—7ro5%
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lim chord PQ 3s 3¢ :
=sy-»0" 8§~ 8%  sindd’ sa e
Now, 5y-»0, NQP->ir  as 5s=30.
im chord PO  3s B9 _cin NQP

P=35y=30 ArcPQ ° 8¢ sin ¢
ds, ,_ Gs

which is the radins of curvature at P,

Noteg @ is positive or negatlve accordisy as C is on the
positive or negative side of the normal.
(f) Circle of curvatare

If a circle is drawn having C as centre and ¢=PCas radius
then the circle is called the circle of curvatuie at P.

(g) Carvature and radius of Curvatare of a circle.

Let C be the centre of a circle of radius a, P and Q be two

points very near to cach other on the circle. Let PT and QI" be
tangents drawn at P and Q respectively

Let : ,—\
L PTX={ ' pibls : 5
LOT X=4+8¢ L
Join CP and CQ. P
/ y +5¥
5 PO Lty T i~ 78
Fig 15
S0 LTPT _LPCQ 3sla | 3s
i Tt Y st LPCQH;—

Ze=Curvature at any point P.=le E‘iz“‘!ﬁ
85=>0 35 a

1
radius of the circle

==gonsiant
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P=-};' —radius of curvature of a circle=a=the radius
of the curve:

{3, 2. Formula for the radius of Curvatare.

(2) Explu:it eguation (i. ¢. when ¥ is expressed dircctly in ferms

of x) or, Cartesian formula for radius of curvature for y=1(x)

We know that g;—=tan ¢ 3 (48]

Differentiate . r. to x. Then
e ds
‘!-j;:-:--.=se{:2 [ %msecﬂ b T‘I%_' b v
i

gl dx '
=sec® ¢ 1 see ( i -z;a::cos- (p.)

e p==sec? ¢/ ‘i%’: =(l—{—t-anﬂ ,{,).s[gi ‘;_i:i ..

dy 2 sli -
{1+( _QE o
dx' 3

provided ¥,#0.

Tn the formula (2) we have not mentioned about the sign of ps
> may be positive or negative according as y, is positive or nega-
tive. It iscustomary to attach that sign to the radical which
will give a positive signto ¢ The radius of curvature is zero at
point of inflexion. :

The above formula fails when's; is infinite (i, ¢) when tangent
is parallel to y—axis.

In the case, follow the process shovm in the corollary.
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Cor. The value of ¢ does not depend on the azes but depends
on the curve. Hence interchanging x and y the formula (2) cen

be written as

3[2
’l H'( } AEXPP ey 0,
d"x i g
dy?

(b) Xmplicit equations f(x, y)=0

gy = S R ’;_-I_ where fy7#0

f:"l'f;—-'"‘o

Differentiate to. 7. to X, again

frutfer Bt (b 5 40 5

=0

or, Jeat2fay %-&"f}y (%) f, P =0 - Sev=l
dy S
Putjﬂ--‘ T. Then _
_fxﬁfv _"zfl}f f+£.uﬂ¢

dx“
2
Now put the Value of%, %{ in {a)

R I (e 0
Ya fx‘f,ﬁ—2f=,f,f- +‘f11f:g

wheie fﬂf'g"’zf:r fnfy +fﬂ fx?#0

o Pe=
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(c) Parametric equation § x=¢ (t), y=1% (1)
dy

== ]dt 4% = y"[x, where x #0

dzy d __) d( )dﬂ Xy—xX'y 1 X y —xy

aE=dr = dx oy ¥ ()P

Put the values of —a;aud '?x—g 2 in (g) and simplify
3
pe (‘.I+J’1’}"‘f2 {x }'*‘+(J-' )"}f{'"' {fx)’+(JJ)’} i
Y2 Xy —yx X ¥ =y x°
where X ¥ '—y X“#0.
Dashes indicate the aumber of differentiation w. r. to 2,
(d) Polar eqnation r==f (8)
The radins of curvature
pude_ e B0_dt i
we know U=0+¢ s see Ar*!, 10.8. Eg. 35

tan $=r —%_a--rfn s $p=tan™lr/r;

tlva—g-tan*‘r[r;, where rln.—%

Differentiate w. 7. to §

@ _, 5 1 rif—rra _r’+2rl2-rr3
a6 14r2fr2° n* r2-+4ry?

But —== A (P2 41it) =~ see Art. 10.8. Eq. .34 (i}

Now put the Values of dq'ﬁ and%m e.
(24 r2)3?
r2--2r2—rry
Cor. 1fr=1fu. then
{un o (n')ﬂ}‘-" 2
ud(u4+u)

Hence Pe=

P= if u® (u-+u")#0.

Differential Calculus 569

(¢) Pedal Equation g p=1(r)

The radius of curvature P=-§T
1 dy d Al
or, 5 =-:[,—;=‘—d‘;"(ﬁ+ ¢) ] 'J"B+¢
e dé ;
Eﬂ-&-.;-—a‘--—ds- - Ve (l)

we know p=r sio ¢

d dg.
. *d—f-—-:.ln fi-+r CO8 ¢f>-——‘f_- sin -1 -E‘S- %
i a9 ar dé ds dn dip
e Pon o R N T

s Sin ¢=r-%i;—, coS p= %

g, de\ _r dr
Hr( 3;-+-—d}-)=“-?— or, p‘—‘-ra h}' (1

13. 3. Carvature at the origin.
Method of substitution 3 In ths formula Art. 13, (a).
=(I +Va2)* 2
Ya

put x=0 and y=0 in the Value of ¢ or, by substituting the Value
of (y1)e and (¥2)e in ©

If y is expanded is powers of x by any method and

ye=pxt gl _24 -

which shows that the curve passes through the origin,

e el % g
ax Jx=0, y=0; * - \dx? | x=0, y=0
The radius of curvature at the origin is

. S g
q
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(b) Newton's Method 5

(i) If the curve passes through the origin and axis of x is
the tangent at the origin then

RIS
ATORIE,
2y

x-=0
y-—-}ﬁ

dy
At the origin, x=0. y=0 and y-=—d— =0 (for the x-axis)

Expand y=f(x) by Maclaurin’s theorem S
=040 x+qx=/|_z+ 451l Lials
or, i': =g+ ...term x containing x aad higher point af x°

Lim Mﬁnq il 2oy T
e sh(ﬁ.ﬂ} |
So. Pe= M % [ &% p=n (0), g=y, (0)]
=-hﬂ'l£
2y
x=0
y-0

(ili) If the curve passes through the origin and the y-axls is
rhe tangent at the origin the radius of curvature at the origin is
p=lim Ty
x~=0
y=20

(li) Generalised Newtonian Formula.

Let ax+4by=0 be the tangent OT at the origin O. Take point
(x, ¥) on the curve. Diaw PM perpendicular to the tangeat.
IPP=xP4 37,
ax+by

M=
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Let OB be the diameter of the circle through O and PN be the

perpendicular to OB. Y

We have =

or, ON(OB—ONy==PN? -\

4 7 A
0 M X
Pig 16

or, OB-PN’/ON +ON=(PN*+ ON’){UN =0P*/ON=0P2/PM

o, IrmOBS Fhpmimr BT
where r is the radius of the circle,

If p-»0, x+0 y~»0 then res
tnuatth«dﬂﬁn.' Hence

o= lim—;‘.-,z'ﬁ =4$4/(a% + 62) Lim .f;'_"‘b-"_z.

‘where pis the radins of curva-

; ax+4by
HB' y—’O x._).o’ y=0
P 2242
S p=3JS(a? +52) lim g
x=50
=20

13. Chord of the Curvatare through the origin

Let APB be a curve and QPD
be the circle of curvature at P
with centrc at C. Join OP meeting
the circle at Q. Thus PQ is the
chord passiog through the origin
O. Join PG amd produce it to
meet. D. Join DQ.
LPOD=90° as PD is the dia-
meter of the circle,
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Let PT be the tangent to the curve at P.

[ QPTes¢, the angle between the radiuns vector and the tan-

gent.
[ QP D=90°— / OPT=900—f, as PD is perp. to PT.
From AQPD
Chord PQ=PD cos QPD
=PD cos (iz—0)
or, Chord PQ=2psin §

dr. P . p=rsind

i dp r

dr
Chord PQ=2p. EF
Cor. If the chord does not pass through the origin, the angle
L OPT=x (say)
Hence the chord of curvature,
PQ=2p sin«
Cor. 2. If the chord PQ is parallel to x—axis then LPDQ={
Heice the chord of curvature parallel to x—axis=2p sin §
Cor. 3. If the chord PQ is parallel to y==axis,
then [PDQ=}r—1,
Hence the radius of curvature paratlel to the y— axis
=2p sin (Jrm—y)=2p coOs .
13.5. Centre of Curvature
Centre of curvature corresponding to any point P(x, y)ona
curve is the limiting position of intersection of two consecutive

normals.

Let the given curve bz y=f(x) and the iwo neighbouring.

points be P(x, y)and O(x-+3x, y43y)

- 3x=»0
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Let G(x, B) be the centre of curvature for P.
- d
Now f (xp= 22 at P(x, 3) £+ 83)= Tt (485, p+7)

The equations of normals at P and Q are respectively
(Y—y) [(x)+(X—x)=0 ()

(Y=y—3y) f (x4 3x)+(X=x-3x)=0 (2)

Now find the intersection of two normails.

Substract (1) from (2) =

(Y= f (x4 8x)—f (x]}=83f" (x+8x)—8xm0
or, (¥—= yf—(fi—%i‘)—ui} —f (% +3x) -—-..1 3

1f O tends to P, 3x tends 10 zero and hence X=»« and Y-8

Lim f'(x 4 Sx)—f’{x e, #
AlSO 5ves0 =) =
Ll & -
aad 50l 0= o
so from (3)

30— (x) Ui
(¥gy LEE B0 gf_,or( x+85) 1m0

or, (B=p)f “()—f ) (x)—1=0

or, Be=y+ lt{_f"’%l' ! O
>

L+ (dyldx): |

| d2y[dxe J

Since the point C (%, ) is on (1), then
(B=9f” () <—x=0 '

or, p=y+

ory, K=3—(B—))f" (x)=x—f" (x) I-}{,{}ﬂgj‘ by (4)
e I+ /o)
gypdes T T Rk )
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Thus C (%, B), the centie of curvature, can be determined
from (4) and (5).

Note 1.

Let the tangent PT at (x, y) make an angle ¢ with x —axis.
PC is the normal which makes an
angle 90°+{ with the x—axis, 1Y
Let (¢, B) bs the co-ordinates of
the centre of curvature C at
P(x, y) of the curve.

Therefore PC=p, Then ° v 90 +¢

o] T N X
L—x ' f—y Fig 18
cos (rt9) — sin (Zn+d) T
or, ®m=x—p sin{, B=p+p cosY ¢))]

' dy g gy »
B R P T G

1 (14+,9)°°
cos §= mand pa—T—-
Putting the values of p, sin ¢ and cos ¢ in (1), the co-ordinates
of centre of curvature < and 8 will be determined,
Note. 2. Let C(«, B) be theceatre of curvature at P(x, ¥) of
curve y=f(x).
The equation of the normal at P(x, y)
X—x+(Y—y) y1=0
Since it passes through C (%, f),

£ —x+(f—y) y1=0 0
But PC=p (See) fig.  (18)
s (e=x)24(B—y)=p? ™ :
(1 + 2)!/2 /
where pﬂ-—yj;——-—— (
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From (1) and (2),

14 P] ’
Byt ——tr— P o (3)
From (1) and (3)

Yi(l 4 31?)
<= —_— . ... (4

- Tn @

Thus from (3) and (4), (¢, B) the co-ordinates of centre of
Curvature can be determined.

Ex. 1. Find the radius of curvature at the point (s, ) on the
curve smc log sec §, '
The radius of curvature.

Pa;‘.'_.. 2 (c log sec §)=c se:e%%{;

e p=¢ tan {.

Ex. 1. (a) Whatis the geometrical shape of the curve for
which s=5¢.

We have, s=5{

ﬂiscanstant or, p=3§

@

The curve is such that the radius of cu;‘vafure at every point
is 5. The curve is a circle of radius 5.

Ex. 2. Find the radius of curvature at the point (x, y) of the
curve ayl=x8. ‘

Here ayl=x3 L Zay-g?y-fo

dy 3z 3x2 i s
or, 3’1=‘—d-r' .'——-W W:BIZ(}:{{:}’F as ayi=x%

dzy ] 1 1
n=ga=ilt o Tt T




I
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3/2
Hence pa.-.‘.«.‘.i'%”.’-’—” ﬂ( 1+9f4..§-) Paps(ax)
2

..3:;—(4;: +9XP2 x.

Ex 3. Show that for the curve ro==g™ co8 mi.
R. U, 1962
L e
P= =

Now rB=g™ cOs 18
m log r=m log g+ log cos mé.

0or,
m dr _m sm mi dr
Pl R == {20 M8
“ F ds.  cosmb oh. FU Tl “
d7r dr 2
o da? — —-—:1-8- tan mﬁ rim 8EC mb
OF; reesr tan2 mO—rm sec? mb
(124r0/e

But =,

(r24-72 tan? m)3/2
=+ 2rtian®mb—r? 1anmB + mriacc2mb)
R i r Vil
T m+1)atsec2my ~ (m+l)cosmb " (m4 Lr

" a®
e P -W_—.-i— Proved. /

. Ex. 4. For the curve x=a cos® 6, y=a sin%
:Show that the radius of curvature is
p=3asin § cos 6.
Here z=a cos%f, y=a sin3 0
s ‘dx|dé=—3a co:%) sin 6, dy/d8=13a sin20 cos O

ay i}_*_ dz 1z sin?f cc+@
e dx_ do [W T3z cos § sind

D. U. 1966

e=.—1anf

37
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dg -

r dvﬁ— e 2
and = = (tan H)=—secc?@ g

=S CC2g _————I— = 1—- sect B cosec O
3a cos?f sing Ja

(14y22 _3a (14-tan20)%/®
Va 5ecid cosec 0

Hence p=

3a secd g

e e 22 3 5100 B COS @
sect O cosec @

p=3a sin 6 cos 0. Proved.

Ex. 5. Find the radius of curvature at the point (r, 8) on the

curve r=a (1—cos 8)

r=a(l—cos §)=g sin® 40 . (M

e

; 1 dr cosip
2 * e e —
or, logr=log2a+log sin® 36 .. I e T ) =Ccotil
or, cot g=cot 30 [As r—--.—_'tan ]
g=16.

But p=rsin ¢= rsin 30 (2)
From (1) and (2), we have
r=2ap?rz or, r¥=2agp* - 3

Differentiate (3) w, r. to p, then

dr dr ap
3 B anmetdd] GRS sl
rzan_ 4ap or, 5 4/3 e

ar a
But p=r -‘E-=r. 4]3—-—3 p

1 B2 22
=43 o, W2 2 fr../a-g.f(zar)

s pe=gy/(2ar)
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Ex. 6. Fi.nd the radius of curvature at the origin of the ourve
Yo xt—4x3—18x7
Th;.- tangent at the origin is y=0, ive
to the given curve at the origin.
Hence.by Newton’s forhula,“ﬁe have

Lim x3
= — .. I
P= 0 2y M
y=»0
Divide the given equation by y, then
2
‘3: 4x3 —13 x‘—-’—1=0
¥
3 2 2
or, Mty X 18 Zm1=0
Yy ¥y F 5

when x-»0, y-»0, then
or, 0. 2p—4.0.2p—18.2p —1=0 by (1)
er, 35p=-1 or, p=—1/36
Hecnce the radius of curvature at the originis 136

Ex. 7 Find the radius of cu vature at the ongin of the csrve.

JP—2xy—3x2 —4x3 —x2y? =0
The tangents at the origin are given by yi—2xy—=3x%=20
or, (p+x)p—3x)=0 i.e y+x=0 and y—3x=0
Lt ye=px+gx®[l_2+ .
Put the value of p in the given equation.

Then
(pz+qx8 2+ e 2-’-'[_(?3!’(,73"/[_2—-— ) —3x2—4x®
—x3(px+qx* 24 .. ):=0
or, (p*=2p-3)x"+(2pql2 ~2gf(_2—4,x3 — =m0
Equdte the ci-sficient of x2 to zero, thén
pl—2g—3=0 or, (p=3ptN=0 & p=3,—I

; x—axis is the tangent
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Also equate the co-efficient of x3 to zero, then
Pg=—g=4=0 when p=3, qe=2.
and when p=-—1, then ¢=—2.

(1 L p23[a (149)32
Pmye— m e e

o P‘-Jl quzl p= -:SJIO

Hence radius of curvature are 54/ 10,—-4/ 2

Fx. 8. Show that the chord of Curvature through the pole
of the cardiolde r=2a(l 4 cos @) is 4/3r.

Now r=a(l+cos 0)=2a Cos2G[2 s (¢))

or, log re=log 2a+42 log cos 6,2 '

?-or cot @=-—tan }#

or, cot ﬁ-cot (ix +10)

o ¢=in+10 A

we know p=r sin g=r sin (i= +16) by (2)
or, percos §f2=4/(r/2a) by (1)
or, 2ap*=r% or, r3=2agp? e 1(3)

dr dr 4
e 3."2‘_"-‘4 Ty -rap_
ap ap or, r dp = 3r
dr 4a 4a r}j2 :
B=r = F v ¥ O
Hence the chord of curvature through the origin (pole)

in g=p Ao P

s pmr——-

,_.__._E“ 3 8a - 4
34/ (2a) vr (20 ) 324 e

& A 1A
Henee the cnord of carvature through Pole is 4/3r.
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Ex. 9. Find centre of curvature of xy=16 corresponding to
the point (4, 4) R.U. 1965 ¢ D. Us 1983

Here xy==I16 or, y=16/x.
—ﬁ%=ﬁ1wﬂ—lﬁlx‘, when x=4, then yj=—1

g;f"' yg'g 32/x3, when x=4, then yo=%

Let (-t,l B) be the co-ordinates of the centre of curvature at (4,49)

e
2= — —’-’-‘—(1 =t — (1 Dmd 48

_4+ 1.“‘?1-_44.4_3

ﬂ=y+ =
Hence the centre of curvature is at (8, 8)
Ex. 10. Show that the radius for curvature at the erigin for

k!

)tl".e curve r=a sin (20/m) is a/m.
By Newtons formula.

2
p=lim —— when x=%, =50
y
Lim r2 cos?@ Lim 7
="9-302rsin@ 0-0 26

In this case,
hm a sin (20,fm).-_-.11m a 20 22
~Sen W 7O

{to the first approximation)

3—?9 29 8—>0 23
lim fa 28%a e a
= —— — T — L — ]
o=»0\ m 3m® ) m

p=afm. (Proved).
Ex. 11. If Crand C,be the chords of curvature parallel to
the axes at any poiat of the curve y=ae*/?, prove that

_ .l__ __E_-_ 1
3 e Cy? aCs

Differential Calculus

Here j=gex/=

1
yy=a—e*[*=c*[*=y/a

1
yzﬂﬂ-ai'g‘/‘- y/an see

s

(3)

Cxe=chord of curvature parallel to x-axis=2p sin &

L

Ya ' ¥ (l+n?

of, =222 (1 +y,2)=2. 2, 12( Ry
Ya a y tat S

tan 1!-?1, sin IP’T(%‘W] by (2’ and. (3)

or, Ci=2(a*4y*)fa - Q)
Similarly,
C,=2p cos y=2 - {1H+21%2 i
¥z © (147
as cos q.-_.__'__
V(T +y?)
Cy=2 ), (Ltp?a) 2(a24y2)
Y2 yfa‘ i '_y_
% E!"RJ‘-'L:' A (a?+5?)
2 Gy “‘(‘““‘f'.ﬂ”)z 4((&3 —¥%)2 4(0’-[-}')‘?
1
"W TEG W @
i 1
Hence = -]-(-:—F = _“‘2:3, Proved.

Exercise— XIII

(a) Give an example of a curve of constant curvature

I (b) Fiad the radius of
curvatuse at a .
following curves, py point (s, §) on the




Curvature

(i) s=a}

(i) s=a tand

(i) s=alogtan (3r+3f) (W)s=a\ ™Y 1)

(v) p=a(l4siry) at any point. R. U. 1987

2. Find the radius of curvature at the indicated points of
the curve. = ')(3_27&24-71 at (o,0) N.U. 1994
(8): (i) y=tan x at x=n/4 (ii) y=x*at x=1 R.U. 965,
(iii) y=slog cos x at x=m/4 .

* (iv) x=14cos 2nt, y=3+2:sin=l at t=3

(V) %+ pS=m3axy at (.3_;_’ -.3;_) D. H. 1965‘
(vi) yIx2=4a%(x>—a2) at (a, 0) R. H, 1962
(vii) -':‘-:-—.[_-g:— =1 at (0, b) o s
(viii) ;-s—n at (0, 1) @ itz 3G aiom
(b) (i) r==a sin 3¢ at (a, 7/6)

(ii) r2==03cos 20 at (a, ®) \

(iiiy r=asect at (a, 0)

(iv) resaf(l—cos @) at (g, %/2)

(v) xw=acos 0, y=a sin 6 at (g, 0) C. U, 1990, "84
(vi) xe==a(6+sin @), y=a(l—cos 0) at vertex (a7, 2a)

R. U. 1979
{(c) (i r®=2ap3 at(p,v)
(i) par=ra* at(p,7) C. U. 1983
3. {(a) Prove that p= )3/ for the curve
yr=g24-52
3, {b) Prove that for the curve (i 1,995

s=a log cot (}r—gy)+a (sin Y/coszy),
p=2a sec? §.

3. (c) Show that the radius of curvature of the catenary
y=¢ coshx/c at (0, c) is y?/c. D. H, 1983
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3. (d) Find the radius of curvature of the curve
rie=g? cos 24, at (r, 8) a0 D. U. 1967, D. U 1966
4. If x=gq (cos ¢+£sin t), y=a (sint—tcosf)
prove that p=at D. U, 1955
5. In the curve p==ra*! go, show that the radius of curvature
raries fnvarsely at the'(n+ )th power of the radius vector.

6. Find the chord of curvature through the pole of the fol-
owing curve.

() r2=aZcos 20 :

(ii) re=a (1—cos 6)

(iii  r°=g® cos (n9)

7. Find the radius of curvature at the origin of the following
ourve. :

(i) )e=mz3+5x2-}6x
o(i). PR=3xy—2x3 {-x8—y*

(i) *0+)%=2x2—6y

(iv) y*(a*—x*)=a3x,

) y=x%a+x)/(a—x)

(vi) S5x34-Ty3+4x2y+xp242x2 +3xy+ 2 + dx=0

(viii) x® —2x%y4-3xy2—4)s8 +5x2—6xy 4 Ty2—8y=0

7. Find the radius of curvature of the parabols y2=16x
at an end of the tatus rectum.

8. Show that the curvature of the point (3a/2, 3a/2) of
the curve x3-y*=3axyis —84/2/3a. R, U. 1961, D. H. 1963

9. Prove that chord of carvature ﬁara.’del to the axis of y for
the curve., ' R. H. 1960

R. U. 1964

y==a log sec xfa is of constant length.
10, Show that in the curve 8 =3xy—4x24x34ex'y4y3=0.

the radii of curvature at the origin are $854/17 and 54/2.
C. H. 1986, D. H, 1960
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11, Show tkat the chord of curvature through the pole of the'

enquiangular spiral re=ae®f is 2r.

12. Show that the chord of curvature through the pole of the

curve p=f{r) is 2f(r)/f r).

13. Prove that the points on the curve r==f (9) the circle of
curvature at whick pass through the origin are given by the

equation f(e)+S"" (#)=0.
14. Find the radius of curvature of the curve r=asinnd at
|

the origin. |

14, (a) For thei curve x=2c0s%, ymss2sin®g show that th

radius of curvature. i3 3 at @=wn/d D. U. 1987

15. Find the centre of curvature of the following curves at

the indicated poiats. D. U. 1989

() xy=xtidat(2,4)
(i) p=3x842x2—3 at (0,—3)
(iii) x8-+yd=3axy at (3af2, 3a/3)

16. Prove that the centre of curvature at the point to (acosi:

b «in 6) of the ellipse.
ag_ba

bt—a® .
x?a?4-2[b? =1 is (““"a'“-“sg i aE Sln’ﬁ) D. U, 1969

7. Show that thz centre of curvature of the cycloid
x=a(@—sin 0), y=a(1—z0s6) lics on a similar cycloid. D H. 1960

18. For the equiangular spiral rmag™ot % prove that the
centre of curvature is at the point where the perpendicular tg

the radius vector intersect the normals. R. H, 196
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19. If (=, B) be the co-ordinates of centre of curvature of the
parabola #/x+4/y=4/a at (x, ) then prove that « +B=3(x+3)
R, U. 1983

20. Obtain the formula for radius of curvature p=rdr/dp.
Use the formula to obtain the radius of curvature to the parabola
at ope end of the latus rectum, D. U. 1954

21. Ifp; and p; be the radii of curvature at the exiremilies
of a focal chord of y?=4ax, show that R.U. 1988

1 1 1
@PT @2 T (27
22. The tangents at two points, P, @, on the cycloid
x=g(@—sin §) § y=a(l—cos @) are at right angles ; show that if
P, £ be the radii of curvatures at these points.

then pi2+ o= 1042

23. Find the circle of curvature of the following curves.
(1) y=x3-6x+410.
Hints g —
«e=3, =132 Find p=}. The cquation is
(x—3+(y—3/2)= (3)
(i) r=x242x24+x+1 at (0, 1)
24. Prove that the locus of the centre of curvature of the
parabola x2=4ay is
4(y—2a)* =2Tax? ' C. H. 1983
23. Find the radius of curvature of the curve given by

x=a(l+cos20) sin2g y=a(l—cos2¢) cos20.
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ey X
l. (@ #7333 1fifE a3b amrawra Sargaq are

&) @ @A Ry (s ¢) @ Faffke a3 aueka 33 em
wmard fada s31 -

() s=atan ¢ (i) s=ay

(iii) s=alog tan (x/4+3y) (iv) s=a (em‘&__l)

2. fRalafes @2 0as agcea wnet”afie Raf o9 amard

fada =3,
(@) () y=tan x g x==/4 fa=r%1
(i) y=x'azgx=1{z7qs R.U. 1965
(i) y=log cose x €q y=n/4 fTALE -
(iv) x=I4cos2nt, y=3+42 sin nt @7 t=} fivre

32 3a _
(9 *+yi=daxy aq (5, ) feves 1 D. H. 1965
(o)) yx*=0%(x'—0%) @7 (0, b)) fgge1  R.H. 1962

a2 2
(0l) <5 +%=13 (0, 5) foqes (oif) 3 434=9(x-+3)
= s : C. U. 1590

(b) (i) r=asin 30 a7 (g, =/6) fRges 1
(ii) r*=a*cos 20 @z (o, =) fawrs 1
(i) r=a sec 0 a3 (g, 0) famzs |

(iv) r=(l__:m)aa' (@, =2 fagrs

(i) pac=ri*1 ag (p, r) fRgEe

(?) x=acos6. y=a sin 6 a7 (a, 0) fms C.U. 190, '84
(vi) x=a(3_+sin 8), y=9(1—cos 0) ug T3 (ar, 20)-a 1
© @) rP=2ap*az (p,r) fawre N T
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3. (@) FWLAN Y=ctist ey @Y AT FF A p=yiC
. 7 h sin ¢
(b) a3 13N s=alog cot (T' = )-{-—a (_—_"m:.’ 7 a3 =9

oTe  FALT p=2a sect ¥ .
() (A4re I FITLGATAT (catenary)
y=c cosk ({-—) az (0, ¢) fages 33,513 QAT 2203 yile '
D.H. 1983
(@) Fwcawy 12=a* cos 20 &g (, 8) frges [>0] 3zem AT
fadz 321 D,U. 196% D.U. 1566

4. ’Iﬁ x=a (GOS f-l—f sin fj  y=a (sin 1—1 cos f)ﬂ Sy =4

37 (4 p=at. D.U. 1970 D.U. 1955

5. amad] ﬁ=r=+= a-sm @I (R4Te 14, 2%1A (8 (FA TaTa
awea g .8 frra B3 pmnda (radius vectory(n-+-1) v wfea

(Power) yTaTAses ! _

afngzd fAdn &3
(i) r*=a"cos29 "
(ify r=a (1—cos )
(iify re=a" cos (n0)
7. sefycs e seagrefa awe armd i Fa 1
(i) ;’=-=a,"+5x=+6r (i) y*=3xy—2%+ad—y!
(i) *+)P=2x°-0y (i) yH@*—a%)=a’x
(y yr=x%a+x)(e—%)
o) SP+TA Ayt a2 43X+ y2+4x=0
(cii) 3 —2x2p43xy? —4)3 465763y +7*—8y=0
7. (a) @f¥ye (Parabola) y*=16x «3 Sorafmes mvez ( latus
rectum) 6% 0% AYA IF01F AFE {7 7

R.U. 1564
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8. (H¥T@ (4 L3N] 4>+)°=3axy a7 (32/2, 3a2) fFYA T

- 8v2[3p. R.U. 1s6, D.H. 1963
9. oMTq 39 (73413 y=alogsec X/a a7 y-ATFA AAIATE
35,913 oi-aa tRdF #u 2R : R.U. 1960

10. cagre (3 FT,@4 P -3ry—dxP P4ty 4+°=0 (a7 I

v s 33,513 U E 2203 —5%‘/17 a 5v2 D.H. 196
11, @re @ wAcstfae wfwe @wi ( Equiangular spiral)

mJ
r=ge .03 cIERRATN F@ETd Wied AT 2

12, re @ p=/(r) I=Taara aFEfggan (Pole) F@s] "=

cter o 1)
a3 LA )

13. omrd 33 @ r=/0) IwAY3 o3 03 safeEa I@ER: 1@
aafegond gea cvie KA adra AnEn g’ O+ =0
14, r=a sin 8 3wCze qAREE-TTE fdowE ’
15. o fes fafafve qataviefn wwe@ vw ff w7
() wy=x+4 smcaqEd B (2 4) &
) y=3x*+222—3 qwavia Te@ (0,-3) Freg
(i) 3*4)*=3 @y HANTE Bo (39/2, 3a2)1
16. ey ¢ ( @ cos B, b sin 0) RS Briva

xt )0 =
-aT+-t-'?=1 €3 2%,C73 (FLTT TTART LA

—b? $.a8 ..
(a* 5 cos’J,b—'b-f- in% )

a
17. rare 3 or91d (cycloid)
x-=a(f—sin 0), y=a(l—cos f) aq IBTF QT FR T 3B
721313 5Tz (cycloid) A7 waf7s 2EL4 ! D.H, 1960,
18. ey #7 (a, Avceif wfwa ca”

D, U. 1969,
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- (equiangular spiral) r—ae’ " %z 23 w13 @w AL VA 31T
(ol oo afEe wr e Afearma (w3 A R. H, 1965
19, wfgys /x+V/y=yvaaa Evg (v, y) (373 3o (3EA
7R (=, P) TXLA (418 (T
a-+B=3(x+y) R.U. 1983
201 TS WA T@ AL p=r£§ wal aiedAma A1 aX

53 sgan afiacea Sraads acag ( latus reetum ) &3 2TL fam a3
Fwerd Ay fada a0 D.U. 1954
w1 afige yi=dax-az SoczfEs ®| a3 wrefaw ICHd 3TN
3TATE” oy @R Py RECA (FUTE (A
1 1 1
GIPTGOF Qo
2. warei oww (Cycloid) x=a (0—sin 8), y=a(l—cosb) a3
P o Ofmaa mies wMam "R-ECE ATSIA (2w | A
& AW I@S1A WA WA 9 © P2 W TR ¢uTe (3
PJ."‘I' Psg'-—' 16a*.
| fufafas asavefsa aweE 36 (ads 391
(i) y=x*-6x+10
Sfirs e aem 1=3, p=3/¢ ax =} #rent MR
s rza wwad (x-3)H( 327 =)
(i) y=x3+24x+1 amaqra (0, 1) famre!

a0
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ANS W_ERS
Exercise XIII

1. (a) s=ay, the curve is a circle of radius a.

1L, (b) () asec®y () a (#i) asec § () ame™d
2 (a) (1) N2 w 3 Ql);f i) —2 () TN 716

0] 3—‘{?- (Vi) a (vii) a%b

®) G) a/10, (i) fa Gii) © () 24/2a

© @ 2v/Qa3 G (_“;T)‘r‘-"-‘l‘ 3(d) a3

6. () 23 (H) 4rf3 (i) 2rf(m+1)

.6 3 G 2W52—N2 (i) 32 G0 1)2
) a2 () 2 (i) 45, . (a) 16v2 14, an2
15. () (2,5 Gi) (0,~28) (iif) 21a/16,21a/(16)

23. (i) x?4y3+4x—3y+2m0

CHAPTER XIV
SINGULARITIES
14. Concavity and Convexity s—

Let P be a point of the curve y-f(x}.' Let ABbe a straight line
which does not pass through the point P. Draw a tangent at P.

AT7a B “Q

0 (0]
Fig. 19 Fig. 20

Then the sufficiently small arc containing P lies eatirely with

in (fig. 20) or without (fig 19) the acute angle made by the tangent

and the line 4B.
The curve at P in the fig. 19 is called convex to AB and the

curve at P in ﬁg 20 is called the concave to AB.
Matbemtucalty a curve is convex cr Concave at P to the axis

of x according as y ?;T is positive »r negative at P, (For proof

any Higher Calculus),

s sp 0X
Similarly a curve is convex at P zo. 1. to y-axis 1fx-d—5 is

. dax
positive and the curve is concave at P. w. r. to y-axis if x v

is negative. , i
14. 2, Poiot of inflexion 3 As regards the point of inflexion

we discused in chapter XI. Chapter on maxima and minima. A
point P of inﬂexio_n is a poiat on the curve such that on one side
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of it the curve is concave and on the other side it is convex with
respect to any line AB. The point P is called 2 poiat of
inflexion.

In other way we caa define the 0
point of inflaxion ; We kaow that _ 7

ordinarily a curve does not cross

its tangent. Ifa curve crosses its 7a
tangent at a point, then the point '

is called a point of inflexion. .
! Fig. it

i. ¢. A point at which a curve crosses its tangent ls gaid to be
a point of inflexion,

Test for point of Inflexion.

(a) For Cartesian carves 3—

A point of inflexion at P exists if g%-—-o d2 9720 but i::#‘{}

(b) For Polar curves 3—

A point of inflexion at P exists if u—!—:—? changes sign

Put u+§;-;"=o and find for what values of @ changes of sign
can occurs

(c) For pedal curve
A point of inflexion at P exists if

dp dp
?;_—»ao as p=rf =

For a point of inflexion :;-:i- changes sign.
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14. 3. Double point —1If two branches of a curve pass through
a point then the point is called double point.

A curve has two taogents at a double point, one for cach
brarch.

If three branches of a curve pass through a point, then the
point is called triple point.

Maltiple Points —If more than one branch of a culve passes
through a polat, then the point is called a multiple point. Ifr
branches of a curve pass through a point, then the point is called
a multiple point of the rth order on the curve. The curve has r
tangents (real or imagioary) at that point one for each branch.

Singular point E—A multiple point is sometimes called a
singular point.

Point of Undalation 3—When a straight line meets a curve at
four coincident point of contact is called = point of nndulation.
In this case the tsnge:-nt does not cross the curve but is indistin-
guishable from an ordinary tangent.

For example, is p—x=x44y* there fs point of undulation at
the origin. ,

14, 4. Classification of double points.

At a double point of a curve, there are two tangents one for
cach branch. _

Case (i) 1If the two tangents are real and not coincident, then

the two real branches of the curve passing through the pcmt is
called node or cranode.

Case (i) If the two tangents are coincident the point fs
called a cusp, stationary point or spinode.

38




594 Singularities

Case (iil) If tangents are imaginary, there are no real points
on the curve in the neighbourhood of the point considered ; such
a point is called an isolated point ox conjogaie point or, acnede.

At a conjugate point the tangents arc usually imaginary but
sometimes tangents at such point may be real.

14, 5. Find the necessary condition for the existence of double ]
points.

Let f(x, ¥)=0 be the equation of a curve aid P (x, y) be any
point on it.

The slope of the tangent at P (x, y) to the curve f(x, »)=0is

%"—fdf: whence f,+f, %_0 - 7D 2

At a multiple poiat of a curve the curve hasa least two,

tangents at that point and -:—g must have two values at the

multiple point. But the eq. (1) is of first degree in % can be

4,

. if and only if

satisfied by two values of

fa=0 and f;=0

Hence the necessary condition for aoy point (x, ») of the
curve to be a multiple point is then
fa=0 and f,=0
Solve the equation fx=0 and f,=0 for x and y. Put the values
of xand y in eq. f(x, »)=0. The pairs of values of xard y
which satisfy f(x, y)=0 constitute the required double poirts.
The values which do not sa'isfy f(x; ¥)=0 should bz rejected.
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The Co-ordinates of the multiple points then satisfy the three
equations. .
fx, H=0.  fe=0, fy=0,
Differentiate fs+/f5 ::~ =0 with respect to x.
Then .

- d; dy\ dy aty
Sextfor gt (Froken 3 Vot 5 "
. For a double point fx=0, f,=0

Also fay=fyx

Thus fyy -%x‘-’-)’ +2f,,(‘:,’;—)+f,.-o St ()

: : 2
The above equation is quadratic in dj;

dy =yt Wfimtfnle
vy

S
The double point be a node, cusp or conjugate according as
4f2,—Afyy fu>,= Or, <0 or, [4:>,= or, <fyefex
If fex, fiy and f,, are not also zero.

- 1In general a double point is a mode, cusp, or conjugate

point if  f2.>=o0r <ferfax - R )
If fux®=f;,m=fy, =0, then such a point is a triple point.

14. 6. (a) Classification of cosps.
Thers are two types of cusps.

Fiz 22 Fig. 23 Fige 24
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(i) Siagle cusps (ti) Double cusps

~ Fig. 25 Fig. 26 _
(i) Single cosps g When branches of the curve do not extend
on both sides of the point of contact. Fig.22 & 23
(i) Double casps e—When branches of the curve extend on
both sides of point of contact. Fig. 24, 25, 26.

(b) Species of cnsps.
Cusps (singl: or double) are of two spaclen

First Species—A cusp of the first species or a keratoid cusp,
(cusp like horns) is that in which the branches are on (oppositc
sides of the common tangents. Se¢ fig. 22 and 24. |

Second Species g—A cusp of the sccond species or a rhamp-
hold cusp (cusp like beak) is thatin which the branches of the
curve lic on the same side of the common tangents, see fig. 23
and 25.

Oscal inflexion ¢ — Double cusp with change of speciesisa
pmnt of oscul inflexion.

The poiat of oscul-inflexion is the coml:u 1ation of two species
fig. 26.

The point of contact is a double cusp. The cusp is of 2nd
species on the right side of the poiat of coatact aad the cusp is

of first species on the left side of the point.

Differential Calculus )8

14. 7. Search for the nature of a cusp.

Let P(x, ) be a cusp on a curve f(x, ¥)=0

To determine the nature of the cusp transfer the origin to
the point Px, y). The equation of the curve is such that the
lowest degree terms form a perfect squoare f. e there are two

coincident tangent at P(x, y). Draw perpendicular from a point.
ax-+by
¥/ (a®+b?)
As the poiat is very ncar to Plx,y) then we can writc
p=ax+by (roughly).
Now eliminate y between f(x, y)=0 and p=ax 1 by.

near to P(x, y) to the tangent ox +by=m 0, then p=e

We get an equation inp and x only. As we want to consider
only the small values of pand x, so we take only the terms in--
voiviag p?and x2. Thus we get a quadratic equation in x and p.

(@) If the roots of p are imaginary there is a conjugate
point at the point (new origin).

(b) If the roots are real but of opposite signs (4, ¢, product.
of the roots is negative) then two perpendiculars lic on opposite

sides of common tangent at that poiat. Heace the cusp of 1st
species or Ist kind. :
(¢) Ifthe roots of p are real and of samesign; then two

parpandizulars liz on same side of the common tangeat. Hence
the point ks a casp of the 21d species.

(d) If thereality of the roots of the equation depends on
the sign of x the cusp is single,

(z-] If the reality of th: roots of the equation is independent-
of the sign of x the cusp is double.

The above stated facts have been shown in the examples.

Ex 1. Find the points of the inflexions of the following
surves.
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() y=2+x34x (i) r(e2—3)=2
() y=2%x+a1%+x* b o ks Y
Differentiate with respect to x.

d a2
'Ex)""'z+3’f°+4" % d_;;_.sxﬂzxz...(z)

? dsy -
For a points of inflexion 29 .0 and "&;"J;’i&a

dx2
Y 0 g5 Grildvat on Rl
P . d ;

From (1) y=0, 4 when x=0,—2
The probable points of inflexion are ©, 0), (—2, 4)
Again :% =64 242 which is not zero for ."’“0 and—2,
Hence th: points of inflexion are (0, 0) and (-2, 4)
(i r(*—3)=2
ore 2u=0%—3, _Put u=1/r
2“1=.2° ; 25‘8*2.
u+uy=30—3/2+ 1=3"—3=% (6—1)(0+1)=0
If g=*1.
As u +u; changes sign as § passes through these values.

From r(§2—3) =2 ; r=—1,—1 for g=+1, Hence the points

of inflexion are at (—1, 1) and (—1, 1).
Ex. 1. (a) Determine the double points of the curve

i yt—dalzy=0 R. H. 1964
Let fiz, y) =z*+y*—4dazxy - pas ooi 0))
. fo=dxd—4a3y=0 ase v 2)
and f,=4y'—dalz=0 .. - . . (3)

From (2) and (3)

4z*—4ay=0 and 4y5—4a2x =0
Solve for z and y. Then

z=0, a,and y=0, a

The double points are (0, 0) and (a, a)
But (0, 0) only satisfies f{(x, y)=0.
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Hence only probable double point is at (0, 0)
Again f,,=12z2=0at (0, 0), f,,=12y*=0 at 0, 0)
Now f2y, —fixfyy=16a*—0. 0=16a"=+ve

y P> feldyy
Wh:ch shows that the double point is a node at the origin,

Ex. 2. Find the position and nature of the double points on
the curve.

z(227—5az+4a*) =ay (Za-y)

Let f (z,y)=x (2z%—>5x+4a?)—ay(2a—y) (1)
fe=622—10az+4a2=0 e )
f,.=‘—20—|—23?=0 s s (3)

From (2) and (3, we have

of these only (g, @) staisfies eq. Sf(x, »=0
Hence ths only probabla double point is at (a, a),
Agam fo.=122—10z at (a, ) =2a
Syy=2 at (a, a)
fix=0 at (a, a)
Now f%:~faxSoy=0—2a.2=—4a
or; f%,,<felfp
i, e; the double point is a conjugate point.
Ex. 3. Examine the nature of the origin on the curve

z=a, faand y=a,

y! =2x2y +x‘y_.—2x4 me san (I) D. U- 1958
Tangents and the origin of the curve are given by
=0, o, y=0 . - - (2)

i. e. there are two coincident tangents at the origin. The
probable double point is a cusps. ;
Let y=p then (1) becomes,
Pr=2x2p4zrp—2x* or, p>—p (2x3+2%)+224-=0
or, p=3}[222+4x5+ J{(2z2+x")2—8z%]
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=3 (26 +x%) £ /{42 —4x* +-x8))
=122+ 2% 22/ (dx— 4+ 2%}
=3 {222+ 2*4 x2(4x2—4)} for small values of = near the
origin =224 22 J (4z2—4).
For small values of z. (422~ 4) is always imaginary, Hence
p is imaginary near the origin, there is no real point near the

i origin. Hence the double point is a con jugate point.
.- Ex. 4. Find the nature of the curve
l* Ye=19 (1=—2)
The tangent at the origin is
»2=0 or, y=0 ke (1)

i. e. z—axis is the tangent at the origin
Put y=p in Y2 =x3 (1—=z), then
. pP=xt(l-x) o1, pPr=zgd_xt
J ' S pE= A af(Et—xh) . - (2)
For small values of z, x* is neglected in comparison with x3,
then near the origin =4 v/ z3.

For pegative values of x, p is imaginary i. e., there isno

branch of the curve to the left of the origin,

H For positive values of z, p has equal and opposite signs.
! Hence there is a cusp for first -species of single cusp.

cusp of the 2nd species at the origin.
The tangent at the origin is z+y=0.
Let p=z+y o1 y=p—x (1)
Put the value of y in the equation, then \
| p=2 (p—zx)*+3(p—z)*/2
or, 2p%°—p (4z+1)+222=0 2
Near the origin, we neglect $%/2,x%/?in comparison to x2 and 2.
or, p=%[(dz+1)++ (162248241 —-1627))
=3 [4z4+1)+£4/(82+1)]

l Ex. 5 *Show that the curve z+ y =32 (2+3¢y) has a single :
|

601
The reality of roots of » depends on the sign of x. Hence
the doub. point is a single cusp.

Again from (2), the product of 100ts of p s positive (227)
i. ¢, the two 100ts of p have the same sign. Thus the cusp is of
2nd species.

Hence the double point is a single cusp of 2nd species,

Ex 6. Show that the curve 32222y 7%y x4-—0 hasa
double cusps of first species at the origin.

Let 32 —2z2y—zty—1t=0 (¢8)

The tangents at the origin are y2= 0

Theze are two coincident tangents at the origin, so there is a
cusp at the origin.

Let y=» e €)

From (1)by (2). wehave

P22 —x'p—z*=0 or, Pp2—p(22242Y)—z'=0 ... (3)

S P=1 22420 & {222+ xY)* +4x4)]

=3 (2t +-2) £/ (B + 42+ 2%)

Near the origin we neglect 22, z* in comparison with 22,

Then p=% (22Y+2./ 22%) = (1+ W 2)22

Therefore roots of p arte real. Moreover the reality of roots
does not depend on x ( x may be positive or negative ). Hence
the origin is a cusp.

Again products of roots p* from (3), is equal to—z*, i, e. the
I00ls are opposite in signs.

Thus the two perpendiculars lie on the “opposite sides of the
common tangent at the cusp. The cusp is of 1st species.

Hence the origin is a double cusp of first species.

Ex. 7. Show that the carve $2—z22p+25°=0 has an
osculinflexion at the origin.

- The tangents at the origin are y2=0
The two tangents are coincident at the origin ; so there is a

cusp at the origin,
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Let y=p (2)
Then the equation (1) becomes by (2).
Pr—ztp+25=0 (3)

o1, p=3 2%+ v (z*—4z")

As 7 is very small, so :@:‘*--—-43li is pos:txve ‘Then the roots
of p are real.

Morze over roots do not depend upon the sign of z.

Hence the double point is a double cusp.

The product of the roots of p in (3), is equal to z%.

If z is positive, the product of the root is positive.

Hence the two perpendiculazs lie on the same sides of the
common tangent at the origin. The cusp is of 2nd species.

If z is negative the product of the roots is negative i, ¢ ; the
two perpendiculars lie on the opposite sides of the common
tangent at the origin.

Hence the cusp is also of 1st species.

Thus cusp at the origin is of the double cusp of mixed species
i, e- the point is a oscul-inflexion.

Ex. 8. Examine the nature of the double points on the curve

(z+3)3— 42 (y—z+2)2=0 D. U. H. 1959
Let f(z)y) =(z+9P—~2y—z+22=0 .. (@)
fe=3(z+y)2+2vV2(y—z+2)=0 .. - D)
fr=3(z+y)*—2J2(y—2x+2)=0 3)

Add (2) and (3) ;6(z+y)?=0 or z4+y=0 ... (4)
Subtract (3) from (2) ; :

4y 2(y—=z+2)=0 or; x—y=2 (5
Thus from (4) and (5) z=1, y=—1

The point (1,—1) satisfies f (z, y)=0.

Hence (1,—1) is a double point.

What type of double point js ?

Again f, =6(x+y)—-2¢/2=—2,/2 when =1, y=—1

Jre=6(x+3)+2J2=2¢2 when z=1, y=-1
S =6(z+y)—=2¢/2=—24/2 when z=1, y=—1

Therefore at (1,—1), we have f:?x =f=tf.rr

Thus the curve f (z; ¥)=0 has a cusp at (1,—1)

What is the species of the cusp ?

Now transfer the origin at (1,—1), the equation (1)
is[Putz=z+1, y=y—1]

(z4+1+y—1)2— J2(y—1 —2—142)3=0

o, (z+¥yP—A/2(y—x)?=0 ... .. .. (6)

Tangentn at the new origin of eq (6) are

(y—x)¥=0 of, y—z=0

Put y—z=p &P}

Now th2 eq. (6) by (7) becomes s

(2z+ p)3—4/2p?=0 or, 8294+ 1222p-L62p2+p3—4/2p2=0

or, p?(6x—+v/2)+12z%+82%=0

neglecting »° in the neighbourhood of the origin; z and »
are small.
—12x24 o/ {144x* — 3273(62 — ./ 2)}

or, p= 2 (6z—nNZ)
Sl C &0 o RS e
2(6z— N 2) ‘

neglecting z* in comparison with z% For positive values of
z, p is Teal.
For negative values of z, p is imaginary. Hence there is a

single cusp at (1,—1). From (8) for small positive values of =
one value of p is positive and the other negative, Hence the
cusp is of the first species.

Therefore there is a single cusp of first species at (1,—1).

Exercise XIV

1. Find the points of inflexion of the following curves if any.

i) Hz—1)=2 (i) zy*=a?(a—2zx)

(i) z%=32(a%+?) (iv) s?*=dz+2?

(v) v=3z*—4x*+1 (vi) a=ry/0
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(vii) %9=a? (vill) rgg R0
2. Show that the point of irflexion on the curve r=af® are

given by r=a {—n{n+ 1)}/ '

" 3. Show that the point of inflexion of the curve
y*=(z—a)* (z—Db) lie on the line 3+ a=—4b.

4. Find the nature of the cusps, if any, in the following curves
() y=xt/+z? G z =32+ 51+
(iii) (z—2)2=—9(y—1)2=0 (iv) x*—ax’y+az)’+a**=0
v) 2?—y2—Tz?+4y+15z -13=0 (vi) a?y?—2abzv—z3=0,
(vii) 27+ 224 + 225y + 22 + 22y +y?=0 et B
(viii) yly— 6) =2Uz—9)°—9 (ix) y=221+z8/2; 2
®) yp=22+23¢(9—z) (xi) P=2'(z?-1) D.H. 1962
5. Show that the origin on the curve y2=px sin (z/a) thete

is a node or a conjugate point according as g and b bave like
or unlike signs. :

6. Show that the curve a?y?—2abxr?y+b3(x°+2x%)=0 hasa
double point at the origin. Show that the double point isan
oscul-inflexion. '

7. Show that the curve 22+ 52+ z2—x—4y-+ 3=0 has a node
at (=1, 2) and a loop.

8. Show that the cutve x*—2az?r—azy?+ae%?=0 has a
cusp of tte 2nd kind at the origin.

9. Show that the curve z*+ayx*—a’z% +a*’=0 has a
double cusp of 2nd species at the origin.

16. Show that the curve y*=2z?y +x3y-+z? has a siugle cusp
of the fizst species at the orxigin.

11. Show that the curve y?=222y+z*y-+2® has a double
cusp of 1st. species z{t\the origin.

12. Show that the cuive y—2<=2x({1-+z+2%?) has a single
cusp of second species at a point where it cuts the y—axis.
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13. Prove that the radius of curvature of the cartenary

y=1ale*/*+e*/*) is y?/a and that of the carlenary of uniform
strength y=¢ log sec z/c is ¢ sec (z/c) R. U. 1958

@giE X1V

1. faafafys qacaet ofecs afi (3 1a @vafSs (points of inflexion)
71 e ozt fada 730

() yx—1)=x (i) xy?=a%(a—x)
(iii) a%=p2(a®4y%) (iv) 32=4x2L,?
(V) y=3r3—4x341 (vi) a=ry8

(vii) r%9—a* (viii) 2(@=pEaq”

2. (W0 @ r=ab® IWzum B ARG fa wEE

=a(=n(r+}F niterd way cront oA
3. (AW18 (1 YP=(x—a}! (x~b) Fwcawrd oA fy g

3x+a=~4b wgmrzera T wafrw

4. fmfas sacawefas w wam i i e o ST
agfy @4y =31 e _
m PR - (i) x=piypyriy
(i) (—2F—y(y—1)2=0 (v x*—axtyiaxtiatyt_g
(V) X3 x84 4y 1 152 -13=0 (vi) @y*—2abxty—x5=0
(Vi) X7 264209 121 2ny 4 y00 R.U.1991.
Cill) y(y—6)=x(x—9¥—9 (ix) y—x?48/1413
(R y=x*+aty(9-x) (xi) yr=xi(x2—1) D, H. 1962
5. ¢t4re ¥ yi=bx sin (x/a) qwLaqTa Torg CQIEC L CIEL 4
w3l I R L A aam b a3 i <3 239 77 fow 399 qn
6. TG ¢ 0% —2abxly4bix54x0=0 :
AR T@ GAREe @2f ffm, ang ) unm e (@
feRe® b ams gm fam,



60"7 (rdTe (8 X +pHxi—X—dy+3=0 @A (-1,2) e
| a7e a loop) HLZ !

ﬂwf w&::d:l "5’;; jﬁjiﬁy‘iﬁx’ﬂ immm e Teies

B g %97 TEA Ty wngl (a cusp of the 2nd kind).

9. (rure (@, b apai—aiatppalyt=0 FmAYE B aﬁﬁm
9l fotn zarfer f& EﬁTd g et (2 double cusp of the 2zd
flet;-} e (@ PP=2xty+xyHad JEIATA @%_ﬂﬁﬁw'ﬂm
299 oarfea a3 2 g ane (3 single cusp of the first species ).

1. gigre (8 P=2xy+x‘y+a3 IWAYA T gafre @b

e il ;
. lzmi::rf :Tj-fzzxtl $x42%?) q@car @ s y-aws
w5 1 oms F e awfer a3 v Ry AN

(a sipgle cusp of 2nd species ). |

13. o4 %3 1 FNSAIAY  y=ia (€[4 ~€)-03 AT EHEC]
3 y¥la @} s-fza ITCBATR y=c log sec (¥ /e)-ea a‘:%g 3171?’;:
53 ¢ sec (xjc).

Sgaaisl X1V

1 @ 0.0 @) Mo @ Mo W Mo M %, i)

i) (r=ay2, 8=} (vi)) 0=}  (viii) 8=/, T.—i-’sﬂ»fg
4 () eve (wardae wme fyy () 8 aafs @) mre
oy (node) (iv) zafgg Coujugate poini) w ftmﬁﬂm{node)
(Vi) wrAegIRfg (V) rae-grAfEd (Osc}ﬂ’:inﬁcmn.) (viti) -jﬂif;f
ﬁa‘@m—*& gmraf@g (single keratoid cusp) TWY (Conjugate point)
(x) fotn awfea ez 9w g1 () St aw1fed ﬁ-'mm-
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EXERCISE XV
Envelopes and Evolutes

15. 1. Family of curves 3—Let there be an equation of the
form f(z, y, ¢)=0--..--(1) where ¢ is an arbitrary constant. For
different values of c, the equation (1) will 1epresent different

cuirves. Tlre quantity ¢ which is constant for a particular curve
‘but different for different curves is called a parameter of the
family to which the curves belong. Since there is only one para-
meter ¢ in f (x, ¥, ¢) = 0. these curves are sometimes called the
«one parameter family of curves.

15. 2. Definition of Envelope :—A curve which touches each
member of a l'amil? of curves and conversely if each pointis
touched by some members of the family, is called the envelope

of that family of curves.

15.3. To find the equation of an envelope.

Let f(z,y,c)=0 0 o (D)
represent a family of curves.
Let f(z, ¥,¢)=0 } @
.f (2,. ¥y, €+}I)=0
be the two consecutive members of the family of curves 1)
Suppose the curve (1) touches the envelope at P,

The curves in (2) will intersect at a point?; which is nrear
the points of contact of these curves with the envelope.
The equation of the curve through P, of (2) is '
f(z,9, c+h)—f(z,y, ¢)=0

or: - &% c+ﬁ)_;f (@3 6)_

Lim f(z,y,c+h)—f(x, »
h

c)
k>0 i)
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o5 = f(x, y,0)=0 o @)

i e he co- ordmates of P will satisfy the equatmn (3). But

Hence the envelope of the straight lines
¥ coSs &ty sin a—a =0 is the circle z2432=42% See fig.  28.
Pis a point on the curve (1)

Hence P satisfies eq. (1) and (3). If we ¢liminate ¢ from (1)
and (3) we shall get the locus of that point of intersection for

A Y Y:'I" B Y

COTD ;/; ii x

c =)

| all values of parameter c.
Hence the locus of P is the envelope of f (z, ¥, ¢)=0
Let us explain the above definition by two illustrations.

Fig. 27 Fig. 28
Ex. 1. Consider the family of circles
RiF (EeP R e e ()
Where ¢ is a parameter.

" The centre of the cizcle is at (c, 0). " Fot different values of ¢,
we will get different circles of radius ‘+* The centers of the circles
lie on the z-axis. This family of circles will lie between two
straight lines y=r and y=—r. All the circles touch the straight
lines AB and CD. Straight lines AB and CD are the envelopes of
the family of the circles (1), see fig. 27.

The required envelope is the eliminant of ¢ from
f(z, y,6)=0 } '

&_:“‘ (z, v, c)ﬂﬂ

Coxr. The envelope of Aa®+2Ba+C—0is B’ =AG
If the equation f(z, y, a) =0 is a quadratic equation in =, let
it be of the form
Aa?+2Ba4+C=0 (¢8)
where A, B, C are functions of z and ».
Differentiate (1) w. r to a partially 2.4a+ 2B =0
o1, a=—DBfA (2)
Put the value of ein (1), then
A (—BJAY +2B (—Bl4)+C=0 or, BYA—9BYA+C=0
o1, B2=AC
Thus the envelope of Aa?4-2Ba+C=0 is B*=AC.

'I (Ex. 2. Consider the family of straight lines.

% cos ¢4y sin e=a, where z is a2 parameter.

We know that = cos a+y sina—a=01is the tangent to the
circle at ( a cosa, a 8in &)

|
For each value of @, we geta fixed straight line which touches
 the fixed circle C=z? + yt—a?=0. For different valuee of & we

will get diffarent straight lines which touch the cizcle C. Note e=—The polar curves f (r, 0, ¢)=0 may be treated in the

Salne manner.

8 30
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15. 4. The envelope touches each member of the family.
Let f(z,y, ¢)=0 (1

represent a family of curves.

The slope of the tangent at any point (x, ) of f(x, ¥, ¢)=0is

dy __ ¥ffsx & af
d.z: e 8 f_j_Sy 0T, 6}' V+‘ d-E 0 (2)

The envelope of (1) is obtained by ellmmating ¢ from (1) and

af,
3¢

Let z and y be the functionof¢c.i.e ;3 z=¢ (c)
y=4 (c)
Therefore values of z and y are obtained by solvmg the
equation (1) and (3) in terms of c. :
The slope of the tangent at Pz, y) of the envelope is.

dy t!) “le) '
2 ge (5).
where primes denote differentiation w. r. to c.

Now take lhe total differential of 7 (z, y, ¢)=0
de L da; | 3§ dy-+ “‘2{- &b 2w S MG

(+For convemence,f(x. ¥, ¢) will be written as 5 )

If z and y satisfy equations (4). then df=0

!x y’ c)_o B =My N (3.)

(4)

dz—¢" (0) de, dy={" (¢) dc and-g--—o by (3)
Hence (6) becomes
d’—LSfby .0 or, Hﬁ A o

Ix Sw dx
af ._B_'t ‘!T' (F) =0 o
ca o

Envelopes 611

.

From (2)and (7) we notice that both the gradients of the
tangents are the same. Thus the curve and the envelope have
the same tangent at the common points onthe curve i.e. ;the
envelope touches each member of his family.

Note :—If 5//5x and 5f [ 8y are both zero then envelope may
not touch a curve at points. These points are the singular points
on the curve.

15. 5 Double Parameters

Let f (-1:, ¥, & p) = 0 Lo i (1)

be an equation with two variables (parameters)

Let the parameters be related by

gep=0 - - @ ;

To remove the variables from (1) and (2) let us suppose «
an independent parameler. Then from 1) and (2).

3 8f dﬂ
A A S
where 3f 313 'jf =0 ... (4)

There ate four equauon and thiee quantities such as a, 3,
(dB/d+). The eliminant of these quantities is the required

envelope of (1)

15. 6. (i) Pedal curves as Envelopes g—

1f circles are drawn on radius vector of a piven cumve ag
diameters ; they all touch the first positive pedal of the curve
with respect to the origin. Thus the process of finding the first
positive pedal of a curve is the same as the finding of envelopes
of circles described on the radii veciors as diameters.

(i) Envelope of a line ag Negative pedala.

The first negative pedal of a curve is the envelope of a
straight line drawn through any point of the curve and perpendi-
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cular to the radius vector to the point on the curve.

Let O be the pole OP the radius vector of a point P on the
curve. PQ is perpendicular to OPat P. The locus of PQ is the
envelope of such straight lines or the first negative pedal of the
curve. See Examples 6 and 7. i
EVOLUTES

15.7. Definition of evolutes ;—The locus of centre of cur- |

Fig‘ 16
Therefore every curve has an infinite number of involutes but

) 1 ere 18 i

shii eaep Ex. 1. Find the envelope of th. straight line
15, 8, Properties of evolute §E L Slate - Bi) whets m is o purenyater,
(i» The normal to a given curve is a tangent to its evolate, The equation is written as (y—m.z)?=a%m? -+ b2

or, m3(x%—a?)—2mxy--yi—b2=0 - (L

This is quadratic in m.

f ii) The length of an arc of the evolute of a certain curve
is the difference between the radii of curvature of the given
Hence the envelope of (1) is given, by Art. 15.3 Cor.
42%y=4(z2—a?)(y* - b%) o1, X’y =xy +a%?-b2? - a?)?
or, z*/a®+y?/b’=1 which isan ellipse
Ex. 2. Find the envelope of the straight line

curve, which are tangents to this arc of the evolute at its
extremites.
(i) Radius of the curvature of the evolute ¢” =

a’ 3 ¥ adiu
where o7 iz the radius of curvature of the evolute. zcos0+p s'n O=a sin® cos § where 0is the parameter
“he given equation is written as
z v
"y e I el

Differentiate (1) partially w. r. to ¢, then

15. 9. Involutes s—If one curve is the evolute of another
then the later is called an involute of the formez

If the curve Q1 Q, Qs O, is the evolute of the cuzve P, F, Py
P, then PP, P3P, is called the involote of the curve 0:Q,0.0,.

Again P15, P% P*, is also the involute of the eurve Q,02,0,0,-
All curve parallel to the curve Py P, Py P, ate the involutes of

Q1Q; O3 Q4

z y : -
sin’g cos 6 cos’0 (""‘gln B_]r:ﬂ OrT 3 tanig= —-J-;._

3

ori b= e/t . SRR
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»/2
,J( st yzp )

put the value of sin 6 and cos 6 in (1)
dhion xn (2?24 y*/%) % ya (%2 +y’/’}za

cos b=

e Y2
|
' o1; NP+ ) =a
" or; (224233 =a or; Z[+y=alfs

which is the required envelope of the given straight line.

Ex. 3. Find the envelope of circles passing though the origin
and having their centres lie on the parabola z2=4ay D. H. 1966

In the parabola z?=4ay: P(2at, ai?) is any point. The.
distance OP from the origin O (0, 0) is

OP= f (4a%?+a2t*)=radius of ths circle.

(z—2at)?+ (y—at?)? =0P?=4a%?*+ a*t*
or: z?4y'—dazrt—2Zayt'=0 -~ e (D)
Differentiate w. 7. to t. Then—4az—4ayt=0 or, t=—zx|y
putting the value of ¢ in (1), we have
22+ Y +4a.z.xly—2ya. z2[y?=0 o1, yzl+ P4day*—2ax?=0
o1, #34ypr?i2axt=0 which is the required envelope.
Ex. 4. Find the envelope of the family of ellipses x?/a*+y2/62=1

where two parameters a, b are connected by the relation

a+b=c, ¢ being a constant D. H 1962
Here x%/al+ p*/bl=1 vee “es ()

and atb=c " . (if) .

Sy —(2za)da—(2y%/12) db=0

or, (2Yadida+(y/bYdb=0 ... (iii)

and From (ii) da+db=0  -- o (iv)

from (iii) and (iv) Comparing we have

The eqne'tion of the circle whose centre isat (2at, at?) is. |
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Sla =y b5 (sayy or, go/ar=d* WIYW=B .. ()
Adding we have 22 fa2 +y2 02 =(ad &) a
o1, l=cA or, A=1/; by (i) and (ii)
From (v),

xYa*=afc and YIR_blc of a,__:{xzc)lf'-", b—=(y2c)1/3
Therefore putting the valyes of @ agd b in (i1

234y P=c2/ which is the requirfd envelope of (i)

Ex. 5. Find the envelope of the raight line x/l+y/m=1.

where [ and m are Parameterg connected by the relation

lla+m/b=1, aand p being constan’S R U. 1964, *88
Here z/i4y/m=1 o o 1 S

and la+mfb=1 (ii)

—(z/1®) di- (¥Im?) dm=0

of, (z/P)dl+(y/m®)dm= 0 (i)
and dlja+dm/b=0 A (iv)

From (iii) and (iv}y comparing We have

l

Adding ¢ all +ylm=y\(l/a -%r”/b} e EH e
or, y=1

Therefore from (v) :

LP=ax, m*=by ! et (vi)

of, I=y/lazx), m= .-J’(by}
Pu([mg the values of I and 17 in (li‘?
we have ¢/ (az)/a+ y (by)/b= I.d* ‘\/_'{.r,n'a)-,l- N(3/b)=1

which is the IEQUiItﬂd enve]ope of tl..-e sluve line U}

Es. 6. Show thstdapelops of suaifgh[ lines at right angles to

the fadii Neetoss of the Rurs v gt (14098 #) drawn through their

extiemities 1s r=2g cos g,
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The equation of the given curve is
r=a (l+4cos0) (1)
Let £, ) be any poiot on the cutve (1)

then I=a (14 cos g) @
The cquation of a straight line right anglesto 02 {i. ¢ PO,
Q (r, )3 is
L cos (0—e)
as LOPQ=9Y, L1F0Q=0 waacl OQ=r, OP=]
l=r cos f—z) vr, alfcosaj=s cos (0-@) - = (3)
or, a=«osa(rcosQ—a)+r sin xsin b ()

whure o 13 a paramelcI.
Differentiate (3) 1e. 7. t0 a, then
= —sin & (r cos G—a)—l-rsnﬁcosu. - (9)
Square and add (4) and (5) to get a%=(r cos B—a)«'l+r= sin%@
or, at=r?+4a*—2ar cos® or, r=2acosf. Proved
Ex. 7. Show that the envelope of the circles drawn on the

radii vectors of the curve r®=g® cos nf as diameter is

n n
n+l an+l 70
r  =a COB e

Let P (l, a) be any point on
the curve r"=a® cos 70 .-+ - {i).
Then the equation (i) becomes

IP=g% €COS & <o eor mee onn wnn (i)

Fig 30

Draw the circle OPQ with OPas a diameler and take Q(r, 0)
any point on the circle. Then

617
£0OQP=90°, /POX=«, LQOP=0, OP =i 0Q=r
LPOQ=8.-« (iii)
The equation of the circle is
OQ!OP=COS (3+d) or, r=] cos (ﬂ_g‘J
Put the value of / {rom (i1)
o1, r=a(cos 14)'/* cas (0—«) T )
or, logr=log a- —;1;— log cos n 4-log cos (0—«)
Differentiate w. 7. to < which is a parameter, then
=—(1/n)n tan nx +tan (§—=) ", nx=0—« 0L, «=0/(n+1)
Put the value of « in (i) then

1" " 9 70 \'/* s10
r=a|(cos — =
( #nt+ 1) (0 Bt 1) (cos n l) e n+1

o1, r=a ( ) (cos s 1)(n+l),n
_zl_‘

7

41 r4l ﬂa
o, T - =g cos, (—=2."Y Proved
n+1

Ex. 8. Find the evolute of parabola y2=4ax.

We know evolute is the envelope of normals, so the evolute

of the parabola y2=4az is the envelope of the normals,

y=mz— 2am — am® (1)

at (am?, 2am) of the parabola, where m is the parameter.
Differentiate (1) w. r. to m then

0=2—2a—3am® or, 3am?= _x—2a 2
From (1) ; y=.:n(x —2a)—amd=m. 3am®—am® by 2)
or, y=2am® o1, m*=yl2a or, m=/{y/2a)*}?

Put the value of » in (2), then
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3a(3u‘2a)2/3:(x—2a) or, 27a'(y[2a)? = (z—2a)®

or, 27ay*=4{z—2a)

which is the required evolute of yr=4dax.

Note ; Evolute is the locus of centres of cuivature of a curve,

The cen e of curvature at any point (.) of y2=4ax is(« B) such

2 <
that « =3x+ 22 and ,G-.-._:F.EIUI Ohy, &= =r

o2\ 2
,B=.—2— £ 32a)! or, 27Ba=4(x—2a/

~a

. The requited evolute is 27ay? =4'z—2a)®
2

: x »?
Ex. 9. Show that ¢volute of ellipse 7o Tk ]
is (ax)3,3+(by)2/3=(a=__.bz,zf3
Evolute is the envelopes of normals to the ellipse

The equation of the normal at (a cos 0, b sin 6) of

x )P

'Ez_“i"‘ F‘ :1 anw an (1)

e B2 Bl i e D)
cosf ' sin 0 )

where 0 is the parameter,

Differentiating (2) w.Z.to

1 . 1 ' _
az X —=z (—sin §)+ by x sin’-ﬂtcos =0 . .. (3
; i/3
or tanaa=--b—)-' or. tan B=(—b-y- /
’ az ax

1

ging cos® { sin?8 4 cos®0
Ty " (@B

B +( a:c)“l‘} = T ax) s+ ory/e,

619

or, sin@ = TR Goen 0T, CO86 =
+(by)21%} < W@x)*P + (b))

Patting the value of sin ¢ and cos 6 in (2)

N {laz)? [P+ (by)2/%} ~A{(ax)?/34(by)22
(az)i/s )(b.v)‘ﬁy} e o

or, {(az)/3+ (by)2?}/? % {{az)?/?+(by)?/*= a®—b2
or, {(ax)’/34(by)* PP 2= a2—b2

or, (ax)2+(by)¥/*=(a?—b2)Ys Proved.
Ex. 10. Find the evolute of the equiangular spiral

azr X

+ by

9 cot &
r=ae .
we know p=r sin g sve (1)
0 cot <
r=ae
vie 2
B 7
> gy —cot< oz, cot @=cotd ' g=«
Hence p=r sin« (3)
Let ¢ be the radius of curvature at 8=«  (LPOX=0)
: dr p
S W=|»-/a;m ®@=r COSEC & by (4)
Let CP be the nomal, then
Cp=e B
LOPN=p=«; /CP0=90°—« N
Now CP=0P cosec = OP cosec ~ P
(90°—« )=0P secx i. e, OC is 07 \ E3
perpendicular to OP 4 Fig. 3L
1 - ‘

[ #See Author’s Co-ordinate Geometry Art. 10]

Since [ isthe centre of curvature, the evolute is the locus of C.
Let C (ry, 8)) be the co-ordinates of centre of curvatare. Then
ri=0C=0Pcotd=rcota o1, r=rjtan«
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| - o o s _909+9
i / 8= LCOX=90°+L POX=90°40" or, 8 ’

1 621
Put the values of r and 6 in ab=c is 4.::3y1=c2.
§ cot & (—4w 1 0) cot = | 7. Show ihat the eavelope of ihe family of ircles whose
re=ae R i ) ] diameters are double ordinates of
The evolute of the equiangular spizal (0—-1m) cot « y*=4az is the parabola y? =4a(z +a)
isr tan &= a:."‘lﬁ‘w} e of  fim=a 008 8 i 8. Show that envelope of the circles described on the yad