An Introduction to Medicinal Chemistry

Graham L. Patrick

OXFORD

UNIVERSITY PRESS

Great Clarendon Street, Oxford, OX2 6DP, United Kingdom

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries

© Graham L. Patrick 2013

The moral rights of the author have been asserted

Second Edition copyright 2001 Third Edition copyright 2005 Fourth Edition copyright 2009

Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

> You must not circulate this work in any other form and you must impose this same condition on any acquirer

British Library Cataloguing in Publication Data Data available

ISBN 978-0-19-969739-7

Printed in Italy by L.E.G.O. S.p.A.—Lavis TN

Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work.

Preface

This text is aimed at undergraduates and postgraduates who have a basic grounding in chemistry and are studying a module or degree in medicinal chemistry. It attempts to convey, in a readable and interesting style, an understanding about drug design and the molecular mechanisms by which drugs act in the body. In so doing, it highlights the importance of medicinal chemistry in all our lives and the fascination of working in a field which overlaps the disciplines of chemistry, biochemistry, physiology, microbiology, cell biology, and pharmacology. Consequently, the book is of particular interest to students who might be considering a future career in the pharmaceutical industry.

New to this edition

Following the success of the first four editions, as well as useful feedback from readers, there has been some reorganization and updating of chapters, especially those in Part E.

Chapters have been modified, as appropriate, to reflect contemporary topics and teaching methods. This includes:

- new coverage of 99 drugs not featured in the previous edition;
- six new boxes, covering topics such 'Cyclodextrins as drug scavengers', 'The structure-based drug design of crizotinib', and 'Designing a non-steroidal glucocorticoid agonist';
- a new case study on steroidal anti-inflammatory agents;
- over 25 new sections, providing additional depth in subject areas including 'Tethers and anchors' and 'Short-acting β-blockers';
- additional end-of-chapter questions;
- current reference lists.

We have also made significant changes to the Online Resource Centre, adding 40 molecular modelling exercises and 16 web articles.

The structure of the book

Following the introductory chapter, the book is divided into five parts.

• Part A contains six chapters that cover the structure and function of important drug targets, such as recep-

tors, enzymes, and nucleic acids. Students with a strong background in biochemistry will already know this material, but may find these chapters a useful revision of the essential points.

- Part B covers pharmacodynamics in Chapters 7–10 and pharmacokinetics in Chapter 11. Pharmacodynamics is the study of how drugs interact with their molecular targets and the consequences of those interactions. Pharmacokinetics relates to the issues involved in a drug reaching its target in the first place.
- Part C covers the general principles and strategies involved in discovering and designing new drugs and developing them for the marketplace.
- Part D looks at particular 'tools of the trade' which are invaluable in drug design, i.e. QSAR, combinatorial synthesis, and computer-aided design.
- Part E covers a selection of specific topics within medicinal chemistry-antibacterial, antiviral and anticancer agents, cholinergics and anticholinesterases, adrenergics, opioid analgesics, and antiulcer agents. To some extent, those chapters reflect the changing emphasis in medicinal chemistry research. Antibacterial agents, cholinergics, adrenergics, and opioids have long histories and much of the early development of these drugs relied heavily on random variations of lead compounds on a trial and error basis. This approach was wasteful but it led to the recognition of various design strategies which could be used in a more rational approach to drug design. The development of the anti-ulcer drug cimetidine (Chapter 25) represents one of the early examples of the rational approach to medicinal chemistry. However, the real revolution in drug design resulted from giant advances made in molecular biology and genetics which have provided a detailed understanding of drug targets and how they function at the molecular level. This, allied to the use of molecular modelling and X-ray crystallography, has revolutionized drug design. The development of protease inhibitors as antiviral agents (Chapter 20), kinase inhibitors as anticancer agents (Chapter 21), and the statins as cholesterollowering agents (Case study 1) are prime examples of the modern approach.

About the book

The fifth edition of An Introduction to Medicinal Chemistry and its accompanying companion web site contains many learning features which will help you to understand this fascinating subject. This section explains how to get the most out of these.

Emboldened key words

Terminology is emboldened and defined in a glossary at the end of the book, helping you to become familiar with the language of medicinal chemistry.

Boxes

Boxes are used to present in-depth material and to explore how the concepts of medicinal chemistry are applied in practice.

Key points

Summaries at the end of major sections within chapters highlight and summarize key concepts and provide a basis for revision.

Questions

End-of-chapter questions allow you to test your understanding and apply concepts presented in the chapter.

Further reading

Selected references allow you to easily research those topics that are of particular interest to you.

Appendix

The appendix includes an index of drug names and their corresponding trade names, and an extensive glossary.

present in the drug can be important in forming inter-molecular bonds with the target binding site. If they do so, they are called **binding groups**. However, the carbon skeleton of the drug also plays an important role in bind-ing the drug to its target through van der Waals interacing the drug to its target through van der Waals interac-tions. As far as the target binding site is concerned, it too An ionic or electrostatic bond is the strongest of the contains functional groups and carbon skeletons which intermolecular bonds (20–40 kJ mol⁻¹) and takes place can form intermolecular bonds with 'visiting' drugs. between groups that have opposite charges, such as The specific regions where this takes place are known as a carboxylate ion and an aminium ion (Fig. 1.5). The **binding regions**. The study of how drugs interact, with strength of the interaction is inversely proportional to their targets through binding interactions and produce the distance between the two charged atoms and it is cohormocolouic affect in known cohormocomponent, and one does not be an interaction of the participance.

one or more of the follow

a pharmacological effect is known as pharmacodynamics.

sarily all of them

1.3.1 Electrostatic or ionic bonds

also dependent on the nature of the environment, being

ctions but not ne

BOX 3.1 The external control of enzymes by nitric oxide

external control of enzymes is usually initiated by rnal chemical messengers which do not enter the cell. tiated by However, there is an exception to this. It has been discovreverse, there is an exception to this. It has been discov-ered that cells can generate the gas **nitric oxide** by the reac-tion sequence shown in Fig. 1, catalysed by the enzyme **nitric oxide synthase**. Because nitric oxide is a gas, it can diffuse easily through cell membranes into target cells. There, it activates enzyme H₂N ,co₂h H₂N ,CO₂H

rate cyclic GMP from GTP (Fig. 2). called cyclases to generate cyclic GMP from GTP (Fig Cyclic GMP then acts as a secondary messenger to ence other reactions within the cell. By this process, nitric oxide has an influence on a diverse range of physiolog processes, including blood pressure, neurotransmission, immunological defence mechanisms.

H₂N ,co₂H

KEY POINTS Drugs act on molecular targets located in the cell membrane of cells or within the cells themselves.

- Drug targets are macromolecules into which the drug fits and binds. olecules that have a binding site
- · Most drugs bind to their targets by means of inte
- · Pharmacodynamics is the study of how drugs interact with their targets and produce a pharmacological effect.
- Electrostatic or ionic interactions occur between groups of

QUESTIONS

- 1. Enzymes can be used in organic synthesis. For example Enzymes can be used in organic synthesis, For example, the reduction of an aldehyde is carried out using aldehyde dehydrogenase. Unfortunately, this reaction requires the use of the cofactor NADH, which is expensive and is used up in the reaction. If ethanol is added to the reaction, only catalytic amounts of cofactor are required. Why?
- 2. Acetylcholine is the substrate for the enzyme acetylcholinesterase. Suggest what sort of binding

neir pharmacological effect By chemical structure Many drugs which have a con mon skeleton are grouped together, for example penicil-lins, barbiturates, opiates, steroids, and catecholamines In some cases, this is a useful classification as the biologi-In some cases, then is a discusse of assimilation are obtoget-cal activity and mechanism of action is the same for the structures involved, for example the antibiotic activity of penicillins. However, not all compounds with similar chemical structures have the same biological action. For example, steroids share a similar tetracyclic structure, but they have very different effects in the body. In this text, various groups of structurally-related drugs are discussed

estradiol in the presence of the cofactor NADH. The initial

rate data for the enzyme of an inhibitor is as follo Substrate concentration (10-2 mol dm-3) 5 10 25 50 100

Initial rate (10-1 mol dm-3 s-1) 28.6 51.5 111 141 145

Create a Michaelis Menton plot and a Lineweaver-Burk plot. Use both plots to calculate the values of $K_{\rm M}$ and the

FURTHER READING

- Broadwith, P. (2010) Enzymes do the twist, Chemistry World, Available at: http://www.rsc.org/chemistryworld/News/2 January/06011001.asp (last accessed 14 June 2012) orld/News/2010/ Knowles, J. R. (1991) Enzyme catalysis: not different, just
- better. Science 350, 121-124. Maryanoff, B. E. and Maryanoff, C. A. (1992) Some thoughts

on enzyme inhibition and the quiescent affinity label concept. Advances in Medicinal Chemistry 1, 235–261.

Navia, M. A. and Murcko, M. A. (1992) Use of structural information in drug design. Current Opinion in Structural Biology 2, 202–216.

Teague, S. J. (2003) Implications of protein flexibility for drug discovery. Nature Reviews Drug Discovery 2, 527-541.

Appendix 1

Essential amino acids

NON POLAR ⊕ ↓ ⊖ H₃N…C —CO₂

About the Online Resource Centre

Online Resource Centres provide students and lecturers with ready-to-use teaching and learning resources. They are free of charge, designed to complement the textbook, and offer additional materials which are suited to electronic delivery.

You will find the material to accompany *An Introduction to Medicinal Chemistry* at: **www.oxfordtextbooks.co.uk/orc/patrick5e**/

Student resources

Rotatable 3D structures

Links to where you can view the structures from the book in interactive rotating form.

Web articles

Developments in the field since the book published and further information that you may find of interest.

Molecular modelling exercises

Develop your molecular modelling skills, using Wavefunction's *Spartan*TM software to answer the set questions. To answer all the questions, you will need the full version of Spartan, which is widely distributed at colleges and universities; check with your institution for access.

You will be able to answer a selection of the questions and familiarize yourself with the basics using *Spartan Student Edition*TM. Students can purchase this from store.wavefun.com/product_p/SpStudent.htm. Enter the promotional code OUPAIMC to receive 20% discount for students using *An Introduction to Medicinal Chemistry*. For questions or support for *Spartan*TM, visit www.wavefun.com.

Multiple choice questions

Test yourself on the topics covered in the text and receive instant feedback.

Lecturer resources

For registered adopters of the book

All these resources can be downloaded and are fully customizable, allowing them to be incorporated into your institution's existing virtual learning environment.

Test bank

A bank of multiple choice questions, which can be downloaded and customized for your teaching.

Answers

Answers to end-of-chapter questions.

Figures from the book

All of the figures from the textbook are available to download electronically for use in lectures and handouts.

PowerPoint slides

PowerPoint slides are provided to help teach selected topics from the book.

Acknowledgements

The author and Oxford University Press would like to thank the following people who have given advice on the various editions of this textbook:

- Dr Lee Banting, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
- Dr Don Green, Department of Health and Human Sciences, London Metropolitan University, UK
- Dr Mike Southern, Department of Chemistry, Trinity College, University of Dublin, Ireland
- Dr Mikael Elofsson (Assistant Professor), Department of Chemistry, Umeå University, Sweden
- Dr Ed Moret, Faculty of Pharmaceutical Sciences, Utrecht University, the Netherlands
- Professor John Nielsen, Department of Natural Sciences, Royal Veterinary and Agricultural University, Denmark
- Professor Henk Timmerman, Department of Medicinal Chemistry, Vrije Universiteit, the Netherlands
- Professor Nouri Neamati, School of Pharmacy, University of Southern California, USA
- Professor Kristina Luthman, Department of Chemistry, Gothenburg University, Sweden
- Professor Taleb Altel, College of Pharmacy, University of Sarjah, United Arab Emirates
- Professor Dirk Rijkers, Faculty of Pharmaceutical Sciences, Utrecht University, the Netherlands
- Dr Sushama Dandekar, Department of Chemistry, University of North Texas, USA
- Dr John Spencer, Department of Chemistry, University of Sussex, UK
- Dr Angeline Kanagasooriam, School of Physical Sciences, University of Kent at Canterbury, UK
- Dr A Ganesan, School of Chemistry, University of Southampton, UK
- Dr Rachel Dickens, Department of Chemistry, University of Durham, UK
- Dr Gerd Wagner, School of Chemical Sciences and Pharmacy, University of East Anglia, UK
- Dr Colin Fishwick, School of Chemistry, University of Leeds, UK
- Professor Paul O'Neil, Department of Chemistry, University of Liverpool, UK
- Professor Trond Ulven, Department of Chemistry, University of Southern Denmark, Denmark
- Professor Jennifer Powers, Department of Chemistry and Biochemistry, Kennesaw State University, USA
- Professor Joanne Kehlbeck, Department of Chemistry, Union College, USA
- Dr Robert Sinclair, Faculty of Pharmaceutical Sciences, University of British Columbia, Canada

- Professor John Carran, Department of Chemistry, Queen's University, Canada
- Professor Anne Johnson, Department of Chemistry and Biology, Ryerson University, Canada
- Dr Jane Hanrahan, Faculty of Pharmacy, University of Sydney, Australia
- Dr Ethel Forbes, School of Science, University of West of Scotland, UK
- Dr Zoë Waller, School of Pharmacy, University of East Anglia, UK
- Dr Susan Matthews, School of Pharmacy, University of East Anglia, UK
- Professor Ulf Nilsson, Organic Chemistry, Lund University, Sweden
- Dr Russell Pearson, School of Physical and Geographical Sciences, Keele University, UK
- Dr Rachel Codd, Sydney Medical School, The University of Sydney, Australia
- Dr Marcus Durrant, Department of Chemical and Forensic Sciences, Northumbria University, UK
- Dr Alison Hill, College of Life and Environmental Sciences, University of Exeter, UK
- Dr Connie Locher, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Australia
- Dr Angeline Kanagasooriam, School of Physical Sciences, University of Kent, UK
- Jon Våbenø, Department of Pharmacy, University of Tromsø, Norway

The author would like to express his gratitude to Dr John Spencer of the University of Sussex for coauthoring Chapter 16, the preparation of several web articles, and for feedback during the preparation of this fifth edition. Much appreciation is owed to Nahoum Anthony and Dr Rachel Clark of the Strathclyde Institute for Pharmaceutical and Biomedical Sciences at the University of Strathclyde for their assistance with creating Figures 2.9; Box 8.2, Figures 1 and 3; and Figures 17.9, 17.44, 20.15, 20.22, 20.54, and 20.55 from pdb files, some of which were obtained from the RSCB Protein Data Bank. Dr James Keeler of the Department of Chemistry, University of Cambridge, kindly generated the molecular models that appear on the book's Online Resource Centre. Thanks also to Dr Stephen Bromidge of GlaxoSmithKline for permitting the description of his work on selective 5-HT2C antagonists, and for providing many of the diagrams for that web article. Finally, many thanks to Cambridge Scientific, Oxford Molecular, and Tripos for their advice and assistance in the writing of Chapter 17.

List of boxes

General interest

3.1	The external control of enzymes by nitric oxide	38
7.1	A cure for antifreeze poisoning	88
7.2	Irreversible inhibition for the treatment of obesity	90
7.3	Suicide substrates	94
7.4	Designing drugs to be isozyme-selective	95
7.5	Action of toxins on enzymes	96
8.1	An unexpected agonist	106
8.2	Estradiol and the estrogen receptor	109
10.1	Antidepressant drugs acting on transport proteins	136
10.2	Targeting transcriptor factors: co-activator interactions	140
10.3	Cyclodextrins as drug scavengers	150
11.1	Metabolism of an antiviral agent	164
12.1	Recently discovered targets: the caspases	190
12.2	Pitfalls in choosing particular targets	192
12.3	Early tests for potential toxicity	193
12.4	Selective optimization of side activities (SOSA)	205
12.5	Natural ligands as lead compounds	206
12.6	Examples of serendipity	207
12.7	The use of NMR spectroscopy in finding lead compounds	209
12.8	Click chemistry in situ	211
13.1	Converting an enzyme substrate to an inhibitor by extension tactics	232
13.2	Simplification	237
13.3	Rigidification tactics in drug design	240
13.4	The structure-based drug design of crizotinib	242
14.1	The use of bioisosteres to increase absorption	251
14.2	Shortening the lifetime of a drug	256
14.3	Varying esters in prodrugs	260
14.4	Prodrugs masking toxicity and side effects	262
14.5	Prodrugs to improve water solubility	263
15.1	Drug metabolism studies and drug design	276
16.1	Examples of scaffolds	320
17.1	Energy minimizing apomorphine	340
17.2	Study of HOMO and LUMO orbitals	344
17.3	Finding conformations of cyclic structures by molecular dynamics	347
17.4	Identification of an active conformation	353

17.5	Constructing a receptor map	369
17.6	Designing a non-steroidal glucocorticoid agonist	378
18.1	Altering log <i>P</i> to remove central nervous system side effects	387
18.2	Insecticidal activity of diethyl phenyl phosphates	390
18.3	Hansch equation for a series of	393
	antimalarial compounds	
19.1	Sulphonamide analogues with reduced toxicity	417
19.2	Treatment of intestinal infections	418
19.2	The isoxazolyl penicillins	418
19.5		
	Ampicillin prodrugs	434
19.20	Organoarsenicals as antiparasitic drugs	465
21.7	Development of a non-peptide farnesyl transferase inhibitor	547
21.10	Design of sorafenib	557
21.13	Gemtuzumab ozogamicin: an antibody-	571
	drug conjugate	
22.1	Mosses play it smart	604
24.3	Opioids as anti-diarrhoeal agents	644
24.6	Design of naltrindole	651

Synthesis

15.0	Custosia of chalzatan	207
15.2	Synthesis of ebalzotan	287
15.3	Synthesis of ICI D7114	287
16.2	Dynamic combinatorial synthesis of vanco-	334
	mycin dimers	
19.9	Synthesis of 3-methylated cephalosporins	439
19.17	Synthesis of ciprofloxacin	458
21.8	General synthesis of gefitinib and related	550
	analogues	
21.9	General synthesis of imatinib and	553
	analogues	
23.2	Synthesis of salbutamol	619
23.3	Synthesis of aryloxypropanolamines	623
24.2	Synthesis of N-alkylated morphine	639
	analogues	
24.4	Synthesis of the orvinols	646
25.1	Synthesis of cimetidine	672
25.2	Synthesis of omeprazole and	686
	esomeprazole	
CS2.1	Synthesis of captopril and enalaprilate	297
CS4.1	Synthesis of oxamniquine	310

XX List of boxes

Clinical correlation

19.3	Clinical properties of benzylpenicillin and phenoxymethylpenicillin	423
19.4	Pseudomonas aeruginosa	426
19.6	Clinical aspects of β -lactamase-resistant penicillins	432
19.8	Clinical aspects of broad-spectrum penicillins	435
19.10	Clinical aspects of cephalosporins	442
19.11	Clinical aspects of miscellaneous β-lactam antibiotics	443
19.12	Clinical aspects of cycloserine, bacitracin, and vancomycin	451
19.13	Clinical aspects of drugs acting on the plasma membrane	452
19.14	Clinical aspects of aminoglycosides	453
19.15	Clinical aspects of tetracyclines and chloramphenicol	454
19.16	Clinical aspects of macrolides, lincosamides, streptogramins, and oxazolidinones	457
19.18	Clinical aspects of quinolones and fluoroquinolones	459
19.19	Clinical aspects of rifamycins and miscellaneous agents	462
20.1	Clinical aspects of viral DNA polymerase inhibitors	475

20.2	Clinical aspects of antiviral drugs used against HIV	478
20.3	Clinical aspects of reverse transcriptase inhibitors	481
20.4	Clinical aspects of protease inhibitors (Pls)	493
21.1	Clinical aspects of intercalating agents	525
21.2	Clinical aspects of non-intercalating agents inhibiting the action of	527
	topoisomerase enzymes on DNA	
21.3	Clinical aspects of alkylating and metallating agents	530
21.4	Clinical aspects of antimetabolites	533
21.5	Clinical aspects of hormone-based	540
	therapies	
21.6	Clinical aspects of drugs acting on	543
	structural proteins	
21.11	Clinical aspects of kinase inhibitors	559
21.12	Clinical aspects of antibodies and	569
	antibody-drug conjugates	
23.1	Clinical aspects of adrenergic agents	611
23.4	Clinical aspects of β-blockers	624
24.1	Clinical aspects of morphine	633
24.5	A comparison of opioids and their effects on opioid receptors	649
CS3.1	Clinical properties of artemisinin and analogues	303
CS6.1	Clinical aspects of glucocorticoids	692

Acronyms and abbreviations

Note: Abbreviations for amino acids are given in Appendix 1

5-HT	5-hydroxytryptamine (serotonin)	dATP	deoxyadenosine triphosphate	
7-ACA	7-aminocephalosporinic acid	DCC	dicyclohexylcarbodiimide	
6-APA	6-aminopenicillanic acid	dCTP	Deoxycytosine triphosphate	
ACE	angiotensin-converting enzyme	DG	diacylglycerol	
ACh	acetylcholine	dGTP	deoxyguanosine triphosphate	
AChE	acetylcholinesterase	DHFR	dihydrofolate reductase	
ACT	artemisinin combination therapy	DMAP	dimethylaminopyridine	
ADAPT	antibody-directed abzyme prodrug therapy	DNA	deoxyribonucleic acid	
ADEPT	antibody-directed enzyme prodrug therapy	DOR	delta opioid receptor	
ADH	alcohol dehydrogenase	dsDNA	double-stranded DNA	
ADME	absorption, distribution, metabolism,	dsRNA	double-stranded RNA	
	excretion	dTMP	deoxythymidylate monophosphate	
ADP	adenosine diphosphate	dTTP	deoxythymidylate triphosphate	
AIC	5-aminoimidazole-4-carboxamide	dUMP	deoxyuridylate monophosphate	
AIDS	acquired immune deficiency syndrome	EC ₅₀	concentration of drug required to produce	
AML	acute myeloid leukaemia		50% of the maximum possible effect	
AMP	adenosine 5'-monophosphate	E_{s}	Taft's steric factor	
AT	angiotensin	EGF	epidermal growth factor	
ATP	adenosine 5'-triphosphate	EGF-R	epidermal growth factor receptor	
AUC	area under the curve	EMEA	European Agency for the Evaluation of	
cAMP	cyclic AMP		Medicinal Products	
BuChE	butylcholinesterase	EPC	European Patent Convention	
CCK	cholecystokinin	EPO	European Patent Office	
CDKs	cyclin-dependent kinases	FDA	US Food and Drug Administration	
CETP	cholesteryl ester transfer protein	FdUMP	fluorodeoxyuracil monophosphate	
cGMP	cyclic GMP	FGF	fibroblast growth factor	
CHO cells	Chinese hamster ovarian cells	FGF-R	fibroblast growth factor receptor	
CKIs	cyclin-dependent kinase inhibitors	FH_4	tetrahydrofolate	
CLogP	calculated logarithm of the partition	F	oral bioavailability	
	coefficient	F	inductive effect of an aromatic substituent	
CML	chronic myeloid leukaemia		in QSAR	
CMV	cytomegalovirus	F-SPE	fluorous solid phase extraction	
CNS	central nervous system	FLOG	flexible ligands orientated on grid	
CoA	coenzyme A	FPGS	folylpolyglutamate synthetase	
CoMFA	comparative molecular field analysis	FPP	farnesyl diphosphate	
COMT	catechol O-methyltransferase	FT	farnesyl transferase	
COX	cyclooxygenase	FTI	farnesyl transferase inhibitor	
CSD	Cambridge Structural Database	G-Protein	guanine nucleotide binding protein	
СҮР	enzymes that constitute the cytochrome	GABA	γ-aminobutyric acid	
	P450 family	GAP	GTPase activating protein	
D-Recepto	D-Receptor dopamine receptor GCP Good Clinical Practice			

GDEPT	gene-directed enzyme prodrug therapy	IUPAC	International Union of Pure and Applied
GDP	guanosine diphosphate	IV/	Chemistry
GEF	guanine nucleotide exchange factors	IV V	intravenous
GGTase	geranylgeranyltransferase	K _D	dissociation binding constant
GH	growth hormone	K _i	inhibition constant
GIT	gastrointestinal tract	K _M	Michaelis constant
GLP	Good Laboratory Practice	KOR	kappa opioid receptor
GMC	General Medical Council	LAAM	L-α-acetylmethadol
GMP	Good Manufacturing Practice	LD ₅₀	lethal dose required to kill 50% of a test sample of animals
GMP	guanosine monophosphate	LDH	lactate dehydrogenase
GnRH	gonadotrophin-releasing hormone	LH	luteinizing hormone
gp	glycoprotein	LHRH	luteinizing hormone-releasing hormones
GTP	guanosine triphosphate		
h-PEPT	human intestinal proton-dependent	LipE LogD	lipophilic efficiency logarithm of the partition coefficient
	oligopeptide transporter	Log <i>P</i>	0 1
H-receptor	histamine receptor	LDL	low density lipoprotein
HA	hemagglutinin	LUMO	lowest unoccupied molecular orbital
HAART	highly active antiretroviral therapy	-	muscarinic receptor
HAMA	human anti-mouse antibodies	MAA	Marketing Authorization Application
HBA	hydrogen bond acceptor	MAB	monoclonal antibody
HBD	hydrogen bond donor	MAO	monoamine oxidase
HCV	hepatitis C virus	MAOI	monoamine oxidase inhibitor
HDL	high density lipoprotein	MAOS	microwave assisted organic synthesis
HERG	human ether-a-go-go related gene	MAP	mitogen-activated protein
HIF	hypoxia-inducible factor	MAPK	mitogen-activated protein kinases
HIV	human immunodeficiency virus	MCH-R	melanin-concentrating hormone receptor
HMG-	3-hydroxy-3-methylglutaryl-coenzyme A	MDR	multidrug resistance
SCoA		MDRTB	multidrug-resistant tuberculosis
HMGR	3-hydroxy-3-methylglutaryl-coenzyme A	MEP	molecular electrostatic potential
	reductase	miRNA	micro RNA
HOMO	highest occupied molecular orbital	miRNP	micro RNA protein
HPLC	high-performance liquid chromatography	MMP	matrix metalloproteinase
HPMA	N-(2-hydroxypropyl)methacrylamide	MMPI	matrix metalloproteinase inhibitor
HPT	human intestinal di-/tripeptide transporter	MOR	mu opioid receptor
HRV	human rhinoviruses	MR	molar refractivity
HSV	herpes simplex virus	mRNA	messenger RNA
HTS	high-throughput screening	MRSA	methicillin-resistant Staphylococcus aureus
IC ₅₀	concentration of drug required to inhibit a	MTDD	multi-target drug discovery
50	target by 50%	mTRKI	multi-tyrosine receptor kinase inhibitor
IGF-1R	insulin growth factor 1 receptor	MWt	molecular weight
IND	Investigational Exemption to a New Drug	N-receptor	nicotinic receptor
	Application	NA	neuraminidase or noradrenaline
IP ₃	inositol triphosphate	NAD+/	nicotinamide adenine dinucleotide
IPER	International Preliminary Examination	NADH	
	Report	NADP+/	nicotinamide adenine dinucleotide
IRB	Institutional Review Board	NADPH	phosphate
ISR	International Search Report	NAG	N-acetylglucosamine
ITC	isothermal titration calorimetry	NAM	N-acetylmuramic acid

NCE	new chemical entity	RMSD	root mean square distance
NDA	New Drug Application	rRNA	ribosomal RNA
NICE	National Institute for Health and Clinical	RNA	ribonucleic acid
THEL	Excellence	s	standard error of estimate or standard
NMDA	N-methyl-D-aspartate	0	deviation
NME	new molecular entity	SAR	structure-activity relationships
NMR	nuclear magnetic resonance	SCAL	safety-catch acid-labile linker
NNRTI	non-nucleoside reverse transcriptase	SCF	stem cell factor
	inhibitor	SCID	severe combined immunodeficiency
NO	nitric oxide		disease
NOR	nociceptin opioid receptor	SKF	Smith-Kline and French
NOS	nitric oxide synthase	SNRI	selective noradrenaline reuptake inhibitors
NRTI	nucleoside reverse transcriptase inhibitor	siRNA	small inhibitory RNA
NSAID	non-steroidal anti-inflammatory drug	snRNA	small nuclear RNA
NVOC	nitroveratryloxycarbonyl	SOP	standard operating procedure
ORL1	opioid receptor-like receptor	SPA	scintillation proximity assay
Р	partition coefficient	SPE	solid phase extraction
PABA	<i>p</i> -aminobenzoic acid	SPOS	solution phase organic synthesis
PBP	penicillin binding protein	SPR	surface plasmon resonance
PCP	phencyclidine, otherwise known as 'angel	ssDNA	single-stranded DNA
	dusť	SSRI	selective serotonin reuptake inhibitor
PCT	patent cooperation treaty	ssRNA	single-stranded RNA
PDB	protein data bank	TB	tuberculosis
PDE	phosphodiesterase	TCA	tricyclic antidepressants
PDGF	platelet-derived growth factor	TFA	trifluoroacetic acid
PDGF-R	platelet-derived growth factor receptor	TGF-α	transforming growth factor-α
PDT	photodynamic therapy	TGF-β	transforming growth factor-β
PEG	polyethylene glycol	THF	tetrahydrofuran
PGE	prostaglandin E	TM	transmembrane
PGF	prostaglandin F	TNF	tumour necrosis factor
PIP ₂	phosphatidylinositol diphosphate	TNF-R	tumour necrosis factor receptor
PI	protease inhibitor	TNT	trinitrotoluene
РКА	protein kinase A	TRAIL	TNF-related apoptosis-inducing ligand
РКВ	protein kinase B	TRIPS	trade related aspects of intellectual prop-
РКС	protein kinase C		erty rights
PLC	phospholipase C	tRNA	transfer RNA
PLS	partial least squares	UTI	urinary tract infection
PPBI	protein-protein binding inhibitor	vdW	van der Waals
PPI	proton pump inhibitor	VEGF	vascular endothelial growth factor
PPts	pyridinium 4-toluenesulfonate	VEGF-R	vascular endothelial growth factor receptor
QSAR	quantitative structure-activity relationships	VIP	vasoactive intestinal peptide
r	regression or correlation coefficient	VOC-Cl	vinyloxycarbonyl chloride
R	resonance effect of an aromatic substituent	VRE	vancomycin-resistant enterococci
DEC	in QSAR	VRSA	vancomycin-resistant Staphylococci aureus
RES	reticuloendothelial system	VZV	varicella-zoster viruses
RFC	reduced folate carrier	WHO	World Health Organization
RISC	RNA induced silencing complex	WTO	World Trade Organization